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Bacterial inclusion bodies (IBs) are discrete macromolecular complexes that appear in
recombinant prokaryotic cells under stress conditions. These structures are often
discarded for biotechnological uses given the difficulty in recovering proteins of interest
from them in a soluble form. However, recent approaches have revealed the potential of
these protein clusters as biomaterials to promote cell growth and as protein depots for the
release of recombinant proteins for biotechnological and biomedical applications.
Although these kinds of natural supramolecular complexes have attracted great
interest, no comprehensive study of their toxicity in cell cultures has been carried out.
In this study, caco-2 cells were exposed to natural IBs, soluble protein-only nanoparticles
(NPs), and non-assembled versions of the same protein for comparative purposes.
Cytotoxicity, oxidative stress, and genotoxicity were analyzed for all these protein
formats. Natural IBs and soluble protein formats demonstrated their safety in
eukaryotic cells. No cytotoxicity, genotoxicity, or oxidative stress was detected in
caco-2 cells exposed to the protein samples in any of the experimental conditions
evaluated, which covered protein concentrations used in previous biological activity
assays. These conditions evaluated the activity of protein samples obtained from three
prokaryotic hosts [Escherichia coli and the endotoxin-free expression systems
Lactococcus lactis and ClearColi® BL21 (DE3)]. Our results demonstrate that natural
IBs and soluble protein nanoparticles are non-toxic materials for eukaryotic cells and that
this may represent an interesting alternative to the classical unassembled format of
recombinant proteins for certain applications in biotechnology and biomedicine.
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INTRODUCTION

The global biopharmaceutical market is in expansion and actively seeking novel biomaterials to cover
the unmet needs of biomedical and biotechnological applications (Fenton et al., 2018; Puertas-
Bartolomé et al., 2021). One type of complex biological product that has invaded the biopharmaceutical
market in the recent decades is recombinant proteins, and among them, monoclonal antibodies
(mAbs) are blockbuster drugs (Ecker et al., 2015; Sanchez-Garcia et al., 2016). In most of the products
approved for clinical uses, the protein of interest is administered by the parenteral route in a soluble
form (Ibraheem et al., 2014). Unfortunately, owing to the pharmacokinetic characteristics of antibodies
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and recombinant proteins in general, a significant portion of the
protein does not reach the biological target (Petitcollin et al., 2020).
Strategies to cope with this reduced effective dose are being
developed, such as the so-called virus-like particles (VLPs) or
soluble protein nanoparticles (NPs). These particles are formed
by higher-order complexes of several copies of the same
recombinant protein, which can mitigate the renal clearance
effect but can be concomitantly associated with the formation
of protein corona and stimulation of cellular uptake by phagocytic
and non-phagocytic cells (Cheng et al., 2015).

In this regard, the formation of protein supramolecular
complexes in nature is not an isolated event. In fact, in the
recombinant protein area, the presence of protein aggregates has
been widely documented in all expression systems tested so far
(Kopito, 2000; Rodríguez-Carmona et al., 2015; Rueda et al., 2016;
Gifre-Renom et al., 2018; De Marco et al., 2019). At the
ultrastructural level, these protein aggregates are stable structures
with a basic scaffold formed by intramolecular and intermolecular
interactions between beta sheets of the same recombinant protein
(De Marco et al., 2019). Embedded in this cage, recombinant
protein conformers, corresponding to a mixture of native and
non-native protein species, can be released by physical means
including complete denaturing processes up to solubilization
with mild detergents under non-denaturing conditions (Carratalá
et al., 2021). In any case, the evidence supporting the presence of
biological activity among the protein subpopulations forming part
of these aggregates has completely changed the view of this type of
biological material from waste to reusable biocompatible material.
Initial studies were directed toward the analysis of enzyme
immobilization in repeated cycles for industrial applications
(Jäger et al., 2020). Other types of approaches have explored the
biocompatible nature of these protein clusters in tissue regeneration
approaches (Díez-Gil et al., 2010; Seras-Franzoso et al., 2012;
Tatkiewicz et al., 2019) or even as protein depots of releasable
active protein with tumor-targeting potential in animal models
(Pesarrodona et al., 2019; Céspedes et al., 2020). With all these data
taken together, IBs are envisioned as a novel biotechnological
platform of nanomaterial based on recombinant proteins.
However, despite being a source of biological active protein as
well as a nanomaterial with intrinsic biomedical potential, detailed
analysis of the toxicity of this type of protein clusters has not been
fully explored. The presence of endotoxins in recombinant proteins
produced in E. coli has been widely described (Magalhães et al.,
2007; Mamat et al., 2015). However, this type of compounds can be
removed from the purified protein by established methods, which
have allowed biopharmaceutical products on the market to be
approved, insulin being the paradigmatic example of this
expression system (Ferrer-Miralles et al., 2009; Baeshen et al.,
2015). In parallel, other prokaryotic expression systems are being
developed to produce recombinant proteins lacking these specific
toxins. An E. coli-derivedmutant strain has beenmodified to inhibit
the synthesis route of the lipopolysaccharide of E. coli and is now
commercially available (ClearColi® BL21 (DE3)) (Planesse et al.,
2015; Viranaicken et al., 2017). Another strategy is to use Gram-
positive microorganisms that do not synthesize endotoxins as
Gram-negatives do. An interesting alternative is the Gram-
positive Lactococcus lactis, which is an accepted food additive by

the European Food Safety Authority (EFSA) and considered
Generally Recognized as Safe (GRAS) by the U.S. Food and
Drug Administration (FDA) (Morello et al., 2008; Gifre-Renom
et al., 2018). Therefore, the effect of the presence of endotoxins in
prokaryotic systems needs to be addressed and these contaminants
need to be eliminated from the final product. In this work, the
toxicity of the protein aggregates, known in prokaryotic hosts as
inclusion bodies (IBs), was analyzed at the cellular level, taking into
consideration the cytotoxicity, genotoxicity, and oxidative stress of
the interaction of such protein formats with cultured cells. Two
unrelated His-tagged recombinant proteins which can be produced
and purified from the soluble and insoluble cell fractions were
selected: T22-GFP-H6, a GFP-containing protein that carries an
N-terminal domain with the ability to bind to CXCR4 receptor
(Unzueta et al., 2017), and IFN-γ-H6, a pleiotropic
immunomodulator (Schroder et al., 2004). These analysis were
compared with two soluble recombinant proteins formats including
NPs (Unzueta et al., 2012; López-Laguna et al., 2019) as well as non-
assembled protein counterparts from protein samples obtained
from endotoxin-producing cells as well as endotoxin-free
prokaryotic expression systems (Supplementary Figure S1).

METHODS

Bacterial Strains and Plasmids
A synthetic gene encoding the modular protein T22-GFP-H6 was
designed in house, produced by Geneart (Thermo Fisher Scientific,
Waltham, MA, United States) and subcloned into the expression
vector pET22b (Novagen, Merck KGaA, Darmstadt, Germany).
T22 is a chemokine receptor (CXCR4) antagonist derived from the
polyphemousin II that has an antiparallel β sheet structure
stabilized by two disulfide bonds (Murakami et al., 1997). E. coli
Origami B (Novagen) was used as expression system for the T22-
GFP-H6 formats as shown in Table 1 (Protein NPs and IBs). In
this E. coli strain, the thioredoxin reductase (trxB) and glutathione
reductase (gor) genes are deleted, facilitating disulfide bond
formation (Xu et al., 2008). A synthetic gene encoding IFN-γ-
H6 was designed in house and produced by Geneart (Thermo
Fisher Scientific) as a codon optimized version for Lactococcus
lactis host and subcloned into pETDuet (Novagen) for E. coli
expression system and pNZ8148 plasmid (Cm®, MoBiTec GmbH,
Göttingen, Germany) for L. lactis expression system. ClearColi®
BL21 (DE3) strain (Lucigen, Middleton, WI, United States) was
used as expression system for IFN-γ-H6 protein formats
(unassembled protein format and IBs) in an E. coli endotoxin-
free strain (Table 1). IFN-γ-H6 was also produced in Lactococcus
lactis expression strain NZ9000 (NICE®, Boca Scientific, Inc.,
Dedham, MA, United States) (Mireau 2005 AMB) in the same
protein formats as in ClearColi® (Table 1).

Soluble Protein Production and Purification
of Soluble Protein Formats
pET22b-T22-GFP-H6 plasmid was transformed into E. coli
Origami B (Novagen) by heat shock at 42°C and maintained
in lysogenic broth (LB) supplemented with 100 μg/ml ampicillin.
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Recombinant protein was produced in the same medium O/N at
20°C upon induction with 0.1 mmol/L isopropyl- β-D-1-
thiogalactopyranoside (IPTG; Sigma–Aldrich, Sant Louis, MO,
United States). Cells were then harvested by centrifugation
(10 min at 5,000 g). T22-GFP-H6 was purified from the
soluble cell fraction by affinity chromatography
(Supplementary Method). Protein purity was determined by
SDS-PAGE gel electrophoresis and subsequent protein
immunodetection by Western blot using an anti-His
monoclonal antibody (Santa Cruz Biotechnology, Dallas, TX,
United States; ref: Sc-57598). Protein integrity was then
verified by MALDI-TOF mass spectrophotometry in a linear
mode (20–80 kDa). For that, 5 µl of protein sample was first
dialyzed against milli-Q H2O in aMillipore membrane for 20min
and loaded then onto a MALDI plate with Siapinic Acid in
sandwich mode. Final protein concentration was determined by
Bradford assay. Formation of protein NPs (generated by the self-
assembling of monomeric building blocks of recombinant
protein) was determined by dynamic light scanning (DLS)
analysis in a Zetasizer Nano ZS (Malvern panalytical, Malvern,
United Kingdom). The factors involved in the formation of
protein NPs from soluble recombinant proteins have been
previously described and seem to be related to the cationic
nature of the peptide located at the N-terminal end of the
protein and the C-terminal His-tag (Unzueta et al., 2012;
Serna et al., 2016).

Cultures of ClearColi® BL21 (DE3) cells transformed with the
plasmid pETDuet-IFN-γ-H6 were incubated in a shake flask at
37°C and 250 rpm in LB medium supplemented with 100 μg/ml
ampicillin. Protein expression was induced in the same medium
by adding 1 mmol/L isopropyl-β-D-thiogalactopyranoside
(IPTG). The cultures were then incubated at 20°C and
250 rpm O/N for protein production. Cells were harvested by
centrifugation (10 min at 5,000 g). IFN-γ-H6 was purified from
the soluble cell fraction by affinity chromatography
(Supplementary Method). The final protein concentration was
determined by Bradford assay, yielding 0.80 mg/ml.

pNZ8148 plasmid (CmR, NICE) was transformed into
competent L. lactis NZ9000 bacteria, as described elsewhere
(Cano-Garrido et al., 2016). Transformed L. lactis cells with
pNZ8148-IFN-γ-H6 were grown in M17 medium
supplemented with 0.5% glucose at 30°C without agitation.
Antibiotics were used for plasmid selection such as
chloramphenicol (5 μg/ml) and erythromycin (2.5 μg/ml).
Protein production was induced in the same medium by

adding 500 ng/ml nisin (Sigma–Aldrich). After induction,
cultures were grown for 3 h. Bacteria were harvested at 5,000 g
for 5 min at 4°C and washed twice with PBS. IFN-γ-H6 was
purified from the soluble cell fraction by affinity chromatography
(Supplementary Method). Protein purity was determined by
SDS-PAGE gel electrophoresis and final protein concentration
was determined by Bradford assay.

Different protein formats of T22-GFP-H6 and IFN-γ-H6
obtained from the soluble cells fractions of the expression
hosts are represented in Supplementary Figure S1.

Insoluble Protein Production and
Purification of IBs
pET22b-T22-GFP-H6 plasmid was transformed into E. coli
Origami B (Novagen) by heat shock at 42°C and maintained
in LB supplememted with 100 μg/ml ampicillin. Recombinant
protein was produced in the same medium for 3 h at 37°C upon
induction with 1 mmol/L isopropyl- β-D-1-thiogalactopyranoside
(IPTG). Cells from 20 ml of culture were then harvested by
centrifugation (5 min at 5,000 g). Purification of IBs of T22-
GFP-H6 was performed following protocol described in
Supplementary Method. Protein purity was determined by
SDS-PAGE gel electrophoresis and protein concentration was
determined by western blot using an anti-His monoclonal
antibody (Genescript # A00186) with a calibration curve of
quantified soluble recombinant GFP-H6.

pETDuet-IFN-γ-H6 plasmid was transformed into ClearColi®
BL21 (DE3) cells and grown as described for the soluble protein
version. IB production was induced by adding 1 mmol/L
isopropyl-β-D thiogalactopyranoside (IPTG) to ClearColi®
BL21 (DE3) cultures grown in LB supplemented with 100 μg/
ml ampicillin. After induction, the cultures were grown for 5 h at
37°C. Cells were harvested by centrifugation (10 min at 5,000 g).
Purification of IBs of IFN-γ-H6 was performed following
protocol described in Supplementary Method. The
recombinant protein yield was estimated by comparison with
a standard curve of known amounts of purified rBoIFN-γ protein
quantified by the Bradford assay. Quantification was performed
with Image Lab software (Bio-Rad).

pNZ8148-IFN-γ-H6 was transformed into L. lactis cells and
cells were grown as described in the production of soluble IFN-γ-
H6 protein version in this prokaryotic host. IB production was
induced by adding 500 ng/ml nisin (Sigma–Aldrich). After
induction, cultures were grown for 5 h. Final OD550 nm was

TABLE 1 | Detailed information of the protein name, cell fraction origin, protein format, and expression system of the recombinant proteins used in the study.

Sample # Protein name/MW Cell fraction Protein format Expression vector Expression system

1 IFN-γ-H6 / 18.02 ICF IBs pETDuet Clearcoli®

2 IFN-γ-H6 / 18.02 SCF unassembled pETDuet Clearcoli®

3 IFN-γ-H6 / 18.02 ICF IBs pNZ8148 L. lactis NZ9000
4 IFN-γ-H6 / 18.02 SCF unassembled pNZ8148 L. lactis NZ9000
5 T22-GFP-H6 / 30.7 ICF IBs pET22b E. coli Origami B
6 T22-GFP-H6 / 30.7 SCF Protein NPs pET22b E. coli Origami B

Each protein was analyzed in two different formats as indicated. ICF, insoluble cell fraction; SCF, soluble cell fraction. Three protein formats were obtained: IBs, inclusion bodies; protein
NPs, protein nanoparticles and unassembled soluble protein. MW, molecular weight in kDa.
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3.02. Bacteria were harvested at 5,000 g for 5min at 4°C and
washed twice with PBS. Purification of IBs of IFN-γ-H6 was
performed following protocol described in Supplementary
Method. Protein purity was determined by SDS-PAGE gel
electrophoresis, and protein concentration was determined by
western blot using an anti-His monoclonal antibody (Genescript
# A00186) with a calibration curve of quantified soluble
recombinant GFP-H6.

Schematic representation of purification of IBs of T22-GFP-
H6 and IFN-γ-H6 obtained from the insoluble cells fractions of
the expression hosts are showed in Supplementary Figure S1.

Cell Culture Conditions
Caco-2 cells were grown in Dulbecco’s modified Eagle’s medium
(DMEM) free of sodium pyruvate (Biowest, Nuaillé, France),
supplemented with 10% fetal bovine serum, 1% non-essential
amino-acids (Biowest) and 2.5 μg/ml Plasmocin (InvivoGen, San
Diego, CA, United States) in a humidified atmosphere of 5% CO2
and 95%air at 37°C. This cell linewas used as it provided lowor absent
expression of CXCR4 to which T22 peptide acted as an antagonist
(Tamamura et al., 2006; Rubie et al., 2011; Stuckel et al., 2020).

Cell Viability Assay
Cell viability was determined by the Beckman counter method
using a ZTM Series Coulter-Counter (Beckman Coulter Inc. Bea,
CA, United States). Briefly, 150,000 cells per well were seeded on
12-well plates. The next day, the cells were exposed to increasing
concentrations of the different protein formats of T22-GFP-H6
(ranging from 4 × 103 to 70 × 103 ng/mL, or what is the same, 0,14
to 2.3 μmol/L) and IFN-γ-H6 (ranging from 18 to 180 ng/ml, or
the same, 1–10 μmol/L). After 24 h, cells were counted, and
survival curves were represented.

Cell Death, Necrosis, and Apoptosis Assay
The proportion of live, apoptotic, and necrotic cells was assessed
with Annexin V FLUOS staining kit (Sigma–Aldrich) following
the manufacturer’s protocol. Thus, cells were seeded at a density
of 150,000 cells per well in 12-well plates and the following day,
they were treated with two different concentrations of each
protein: 18 × 103 ng/ml and 70 × 103 ng/ml T22-GFP-H6, and
72 and 180 ng/ml IFN-γ-H6. After 24 h of exposure, the
supernatant was collected in a 15 ml tube. Adherent cells were
trypsinized and collected in the same tube as the supernatant for
each condition. The mix was centrifuged and washed once with
PSB 1X. The pellet was resuspended in 100 µl of incubation buffer
with 2 µl of Annexin V and 2 µl of propidium iodide (PI).
Unstained cells and resuspended cell mixture were used as
compensation controls to improve the gating strategy. The
cells were incubated for 15 min at room temperature and in
the dark for staining before adding 100 µl more of incubation
buffer per sample. Then, samples were analyzed by BD
FACSCanto Flow Cytometer (BD Biosciences, Franklin Lakes,
NJ, United States). More than 10,000 events per sample were
analyzed. Among these events, the PI-negative and Annexin
V-negative cells represent the living population, PI-negative
and Annexin V-positive cells are considered apoptotic and
cells positive for both PI and Annexin V are considered

necrotic. Cells exposed for 30 min to 100 mM H2O2 were used
as positive controls.

Comet Assay
The alkaline single cell gel electrophoresis (Comet) assay is a
powerful technique to detect directly both oxidative stress and its
effects inducing DNA strand breaks at the level of individual cells.
Here it was used to evaluate the genotoxic and oxidative DNA
damage for caco-2 cells exposed to the different protein forms, using
formamidopyrimidine DNA glycosylase (FPG) as previously
described (Bach et al., 2014). Gelbond® films (GF) were used for
this assay. Cells were exposed for 24 h to high concentrations of the
different recombinant proteins and forms: 4, 8, 18, 36, and 70 μg/ml.
The next day, the cells were trypsinized, collected, centrifuged, and
resuspended in cold PBS 1X at a concentration of 1 × 106 cells/mL. In
the following step, cells were mixed with 0.75% low-melting-point
agarose at 37°C and three drops of 7 μl each were placed in the GF.
Two GF with identical samples were processed simultaneously in
each experiment. Then, a lysis step was performed overnight by
immersing the GF in ice-cold lysis buffer at 4°C (2.5 mol/L NaCl,
0.1 mol/L Na2EDTA, 0.1 mol/L Tris base, 1% Triton X-100, 1%
lauroyl sarcosinate, 10% DMSO), at pH 10. The following day, the
GF replicates were gently washed twice (1 × 5min, 1 × 50min) in
enzyme buffer at 4°C and pH 8 (10mmol/L HEPES, 0.1 mol/L KCl,
0.5 mm l/L EDTA, 0.2 mg/ml BSA) and then, they were incubated
for 30 min at 37°C in enzyme buffer (negative control) or FPG-
containing enzyme buffer. Later, the GF were washed with
electrophoresis buffer and placed in a horizontal electrophoresis
tank for 35min to allow the DNA unwinding 0.3 ml/L NaOH and
1mmol/L Na2EDTA pH 13.2 before the electrophoresis, which was
carried out for 20min at 0.8 V/cm and 300mA at 4°C. Then, GF
were rinsed with cold PBS for 15 min and fixed in absolute ethanol
for 2 h before air-drying it overnight at room temperature. A staining
step was performed by incubating the GF for 20 min with SYBR
Gold 1/10,000 in TE buffer (10 mmol/L Tris, 1 mmol/L EDTA pH
7.5). Finally, gels were mounted, visualized for comets using an
epifluorescent microscope at ×20 magnification, and analyzed with
the Komet 5.5 Image analysis system (Kinetic Imaging Ltd.,
Liverpool, United Kingdom). The levels of DNA damage were
evaluated according to the percentage of DNA in the tail of the
cells. One hundred randomly selected comet images were analyzed
per sample. Cells exposed to the DNA damaging agent methyl
methanesulfonate (MMS,Sigma–Aldrich) at 200 μmol/L for 1 h at
37°C were used as controls.

Statistics
Analysis of variance followed by Dunnett’s multiple comparison
test was performed appropriately to compare the effect of the
exposure to the different recombinant proteins. A two-sided p <
0.05 was considered statistically significant in all cases.

RESULTS

Analysis of Purified Recombinant Proteins
Gel electrophoresis of T22-GFP-H6 and IFN-γ-H6 showed the
expected protein bands (Supplementary Figure S2). In the
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soluble cell fraction (Supplementary Figure S2A) the main
protein band corresponded to the recombinant protein
showing a purity >90%. Some other accompanying protein
bands of higher molecular weight corresponded to a small
proportion of quaternary structures. In fact, dimerization of
GFP (Wiedenmann et al., 2000) and IFN-γ (Fensterl and Sen,
2009) has been widely described and observed even under
denaturing conditions of the SDS-PAGE electrophoresis. The
presence of protein NPs in the T22-GFP-H6 sample was
determined by DLS (Supplementary Figure S4) as previously

described (Céspedes et al., 2016). Protein identification in the
insoluble cell fraction was performed by immunodetection
(Supplementary Figure S2B). In each sample, the protein
band compatible with the corresponding expected molecular
weight could be detected although analysis on polyacrylamide
gels showed variable purity (Supplementary Figure S3). In fact,
the relative presence of the recombinant protein in such samples
depends on the protein itself and the experimental conditions set
during gene expression with a wide range of purity between
experiments for different proteins (Peternel et al., 2008;

FIGURE 1 | Cytotoxicity of recombinant proteins. (A,C,E) Cell viability of caco-2 exposed for 24 h to increasing doses of INF-γ-H6 from ClearColi®, INF-γ-H6 from
L. lactis and T22-GFP-H6, respectively. Data are presented as number of exposed cells relative to the non-exposed controls ±SEM. (B,D,F) Percentage of live,
apoptotic, and necrotic cells in the non-exposed controls, and cells exposed for 24 h to increasing doses of INF-γ-H6 from ClearColi® , INF-γ-H6 from L. lactis and T22-
GFP-H6, respectively. The positive control corresponds to the percentage of live, apoptotic, and necrotic cells after 30 min of exposure to H2O2. The data
determined by Annexin V staining are presented as mean % ± SEM.
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Castellanos-Mendoza et al., 2014; Carratalá et al., 2020b). The
presence of associated proteins as chaperones and other cellular
components in IBs have been widely described (Ventura and
Villaverde, 2006).

Toxicological Assessment of the
Recombinant Proteins
The analysis of diverse endpoints linked to the toxicity
potential in vitro showed that neither T22-GFP-H6 nor
IFN-γ-H6 purified from ClearColi® or L. lactis were toxic in
any of the protein forms assessed (natural IBs or soluble
protein formats). Caco-2 cells had a cell survival rate
generally over 80% when exposed to concentrations within
the standard range, and no significant differences were found
between exposed cells and non-exposed controls (Figures
1A,C,E). This was further confirmed by the results from the
PI and Annexin V staining followed by flow cytometry
analysis, where living cells were again found to be above
80% for all concentrations tested (Figures 1B,D,F), and in
any case, these percentages were significantly different from
the non-exposed controls. The proportion of apoptotic and
necrotic cells in the culture was characterized for an
intermediate and a high concentration of exposure (72 and

180 ng/ml for IFN-γ-H6; and 18 × 103 and 70 × 103 ng/mL of
T22-GFP-H6), confirming the results of the cell viability assays
(Figures 1B,D,F). Approximately 2% of the cell population
were apoptotic cells in those exposed to IFN-γ-H6, while
around 4% of the cells were apoptotic after exposure to
T22-GFP-H6. Necrotic cells represented 1% of the caco-2
cells exposed to IFN-γ-H6 from ClearColi®, 6% of the cells
exposed to IFN-γ-H6 from L. Lactis, and 10% of the cells
exposed to T22-GFP-H6. Nonetheless, none of these
percentages were significantly different from the
proportions observed in non-exposed cells. In line with the
above, the analysis of oxidized DNA bases by the comet assay
with the inclusion of FPG enzyme also points out toward the
absence of induced oxidative stress, as oxidative DNA damage
did not exceed 10% for any of the conditions tested (Figure 2).
Importantly, the analysis of DNA damage in individual cells by
the Comet assay revealed no genotoxic effects of the
recombinant proteins despite the increment in the dose of
exposure. Genotoxic DNA damage levels did not differ from
those found in the control cells, with values no higher than
12% (Figure 2). There were no significant differences in the
levels of DNA damage when comparing T22-GFP-H6, IFN-γ-
H6 from ClearColi®, and IFN-γ-H6 from L. lactis, nor between
IBs or the soluble form of the different proteins.

FIGURE 2 |Genotoxic and oxidative DNA damage induced by the recombinant proteins. DNA damage level on cells exposed to increasing doses of (A) INF-γ-H6
from ClearColi®, (B) INF-γ-H6 from L. lactis, and (C) T22-GFP-H6 after 24 h. 1 h exposure to MMS (200 μmol/L) was used as a positive control. Data are presented as
mean % of DNA quantified in the comet tail ±SEM.
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DISCUSSION

Recombinant proteins play an essential role in diagnosis and therapy.
The E. coli expression system is one of the most established hosts,
generating more than 20% of biopharmaceuticals on the market
(Baeshen et al., 2014). However, although the steady increase in
mAbs approvals favors the trend toward mammalian over non-
mammalian expression hosts (Walsh, 2018), in cancer therapies,
prokaryotic host-derived products account for more than 60% of
marketed products (Sanchez-Garcia et al., 2016).

One of the disadvantages of recombinant protein production
in E. coli is the formation of IBs, which have been classically
regarded as undesirable by-products. However, the detailed
characterization of this type of protein aggregate has revealed
the presence of protein molecules with native-like structure,
which can be recovered by diffusion from the scaffold
structure of the IBs under non-denaturing conditions (Peternel
et al., 2008; Singh et al., 2015; Gifre-Renom et al., 2018). In
addition, IBs have been demonstrated to facilitate cell growth of
cultured cells on decorated surfaces and 3D scaffolds as well as to
release recombinant protein in a sustained manner when
administered subcutaneously (Seras-Franzoso et al., 2012;
Seras-Franzoso et al., 2013; Céspedes et al., 2020). These
properties have raised interest in this biomaterial for
biomedical applications (De Marco et al., 2019). For this
reason, toxicological assessment of IBs needs to be addressed.

In this study, IBs were obtained from three different
prokaryotic expression hosts in order to discriminate the
putative toxicity of IBs obtained from E. coli, which produces
endotoxins; from an E. coli strain (ClearColi®) that produces a
genetically modified version of lipopolysaccharide (LPS), which
does not induce endotoxin response in mammalian cells; and
from L. lactis, an LPS-free host (Wakelin et al., 2006; Morello
et al., 2008; Mamat et al., 2015). In all cases, two protein formats
were obtained, the soluble protein and the corresponding IBs, for
comparison reasons. The results presented here indicate that
neither the protein format nor the origin of the protein samples
had any effect on the toxicity assays performance on caco-2 cells.
The presence of endotoxins in the protein samples obtained from
E. coli has been widely described for soluble counterparts
(Schwarz et al., 2014) and in IB products (Stanek et al., 2019).
Even though the LPS contents of the protein samples obtained in
this study were not determined, it can be assumed that this
product was present at the same level. In the case of proteins
obtained from the other two expression systems, the presence of
LPS might be residual and only a product of cross-contamination
arising from sharing the same laboratory facilities, equipment,
andmaterial. In fact, the protein concentrations used in this study
mirrored previous experimental approaches used in cell culture
assays to assess the biological activity of the recombinant proteins
(Serna et al., 2019; Carratalá et al., 2020a; Carratalá et al., 2020c;
Álamo et al., 2020). The soluble version and the IBs format of
T22-GFP-H6 have been tested for the selective interaction with
CXCR4+ cells to target metastatic cells in a variety of cancer types
as well as their performance as an antimicrobial agent due to the
presence of the T22 peptide (polyphemusin) isolated from the
hemocytes of horseshoe crabs (Céspedes et al., 2016; Falgàs et al.,

2020a; Falgàs et al., 2020b; Céspedes et al., 2020; Serna et al.,
2021). The IFN-γ proteins, in both formats, have been assayed in
cultured cells and in animal models to check the
immunostimulatory effect of the cytokine in infectious diseases
(Carratalá et al., 2020a; Carratalá et al., 2020c). The lack of
induction of cytotoxicity, cell death, apoptosis, and necrosis,
oxidative stress, and genotoxicity of any of the proteins and
the protein formats tested in this study indicates that this type of
protein complex may represent an appealing platform of protein-
based biomaterials from which to explore their use in the
development of novel protein formats in biomedical
applications including diagnosis and therapy.
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