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Marine microalgae produce a number of valuable compounds that have significant
roles in the pharmaceutical, biomedical, nutraceutical, and food industries. Although
there are numerous microalgal germplasms available in the marine ecosystem, only a
small number of strains have been recognized for their commercial potential. In this
study, several indigenous microalgal strains were isolated from the coast of the Arabian
Sea for exploring the presence and production of high-value compounds such as
polyunsaturated fatty acids (PUFAs). PUFAs are essential fatty acids with multiple
health benefits. Based on their high PUFA content, two isolated strains were identified
by ITS sequencing and selected for further studies to enhance PUFAs. From molecular
analysis, it was found both the strains were green microalgae: one of them was a
Chlorella sp., while the other was a Planophila sp. The two isolated strains, together
with a control strain known for yielding high levels of PUFAs, Nannochloropsis oculata,
were grown in three different nutrient media for PUFA augmentation. The relative
content of α-linolenic acid (ALA) as a percentage of total fatty acids reached a maximum
of 50, 36, and 50%, respectively, in Chlorella sp., Planophila sp., and N. oculata. To the
best of our knowledge, this is the first study in exploring fatty acids in Planophila sp. The
obtained results showed a higher PUFA content, particularly α-linolenic acid at low
nutrients in media.
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HIGHLIGHTS

➢ Microalgae feedstock is the key to eco-friendly and sustainable PUFA production.
➢ Indigenous microalgal strains rich in ALA were isolated and identified from the Arabian
Sea coast.
➢ Media with a low level of nutrients and salinity favors ALA enrichment.
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INTRODUCTION

Poly unsaturated fatty acids (PUFAs) and monounsaturated fatty
acids (MUFAs) are essential bioactive compounds with multiple
health benefits (Rincón-Cervera et al., 2022). PUFAs, particularly
eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA),
have tremendous applications in a variety of inflammatory
conditions, such as arthritis, Alzheimer’s disease, and lupus
(Yates et al., 2014). The common sources of these FAs are
nuts, fishes, seeds (Ferreira-Dias et al., 2022), and organisms
from the deep-sea ecosystem (Svetashev, 2021). Traditionally,
marine fish are the most conventional source of PUFAs (Bagul
and Annapure, 2021). However, due to declining fish stocks and
the presence of contamination such as methyl mercury, dioxins,
and polychlorinated biphenols (PCBs), alternative sources are
required (Ruiz-Rodriguez et al., 2010). In addition, vegetarian
consumers prefer algal oil to fish oil. Microalgal oils often exhibit
simpler fatty acid profiles and possess a varying ratio of PUFAs
with inherent antioxidant properties to protect the oils against
oxidation. Marine organisms such as Schizochytrium, Ulkenia,
and Crypthecodinium are grown heterotrophically for
commercial production of DHA, particularly for uses such as
infant formula where low levels of EPA are desired (Barclay et al.,
1994; Ren et al., 2010; Klok et al., 2014). On the other hand,
common EPA-producing algae are Nannochloropsis, Nitzchia,
and Phaeodactylum tricornutum (Spolaore et al., 2006).

Algae are of vital importance in the primary establishment and
maintenance of aquatic and marine ecosystems (Beetul et al.,
2016; Barkia et al., 2019). The marine environment comprises

diversity of organisms which are potential sources of bioactive,
secondary metabolites, with application in pharmaceuticals,
nutraceuticals, and functional foods (Barkia et al., 2019).
Indigenous microalgal isolates collected from water bodies at
diverse geographical locations are potential contenders for high-
value compounds, such as PUFAs, and as biofuel feedstock
(Maneechote et al., 2021). Moreover, accumulation of high-
value compounds can be enhanced using different growth
conditions, such as under stress, providing efficient cost-
effective production of some metabolites (Chua et al., 2020).
Enhancement of lipid and pigment productivity from the same
biomass under numerous rate limiting conditions is commonly
practiced (Minhas et al., 2016a). For instance, factors such as light
intensity, altered photoperiod, and concentration of nutrients
highly affect the microalgal growth (Parmar et al., 2011; Minhas
et al., 2020). Significant diversity of microalgal isolates occurs at
different geographical locations because of different nutrient
variability and diverse climatic conditions (Bernal et al., 2008).
Depending on the habitat and climatic conditions, microalgal
isolates are known to be rich in different types of lipids,
hydrocarbons, proteins, and other components (Chisti, 2007).

Microalgae are rich reservoirs of PUFAs, proteins, lipids,
polyphenols, minerals, vitamins, etc. (Brown et al., 2014).
Fatty acids, protein, and pigments are the most commonly
available products from microalgae in market (Nagi et al.,
2021). Fatty acids obtained from microalgae are applied as
sustainable synthetic dietary alternatives to fish oil and possess
potential in the treatment, prevention, and management of some
physiological anomalies (Beetul et al., 2016). Advantages of fatty
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acids from microalgae over those from fish oil are primarily
related to renewable and economical production (Ray et al.,
2022), but they can also have tailored levels of different
PUFAs that show benefit against inflammation and cardiac-
related diseases such as hypertension and thrombosis
(Nauroth et al., 2010; Adarme-Vega et al., 2014).

In this study, a bioprospecting pipeline, targeting microalgae
along the west coast of India, was developed, and their potential
for the production of PUFAs was investigated. The coast was
targeted due to suitable climatic and environmental conditions,
ideal for spawning and nurturing the marine life (Kamat et al.,
2020). The coast has, thus, been explored extensively by
numerous researchers for studying microorganisms, especially
microalgae, for a wide range of potential uses (Damare et al.,
2021). The objective of this work was to isolate and identify
indigenous microalgal strains with high PUFA contents and to
characterize the isolates by ITS sequencing. The primary selection
criterion was an ability to produce high amounts of ALA. Based
on high ALA levels, isolates of interest were cultivated in three
different media for the assessment of PUFA productivity and fatty
acid profiles. ALA productivity was optimized for the media that
produced the highest ALA levels, and so this study provides
useful strain, media, and growth condition information useful for
enhancing PUFA levels in these microalgae.

MATERIAL AND METHODS

Collection and Isolation of Microalgae
Water samples were collected from diverse habitats ranging from
the marine, backwater, and salt pans of western India, Goa (15°

32′ 0.2904″ N 73° 45′ 53.8344″ E) which possesses a coastline of
101 km (Supplementary Figure S1). The samples were collected
in April 2018 from various sites during the daytime, when the Sun
was overhead; the samples were put in a plastic container marked
with their collection site names. Next day, samples were brought
to the laboratory, centrifuged, and immediately transferred to
artificial seawater media (ASW) (Andersen, 2005) at 25°C with
150 rpm orbital shaking with a photoperiod of 16 h of light
(100 μmol/m2/s) alternating with 8 h of darkness, up to the
late exponential phase (Minhas et al., 2016b).

To segregate large population and to obtain maximum isolates
from the collected water samples, the standard dilution plating
method was followed. After 2 weeks, serial dilution up to 105 and
106 was performed on sterile ASW agar plates (1.6% w/v), and
samples were incubated until colonies appeared. Individual
colonies were transferred axenically in liquid ASW medium
and were observed under the microscope (Carl Zeiss,
Germany). Morphologically non-identical strains were selected
for further study.

Microalgal Strains
Isolated strains were grown in a media broth in 100-ml
Erlenmeyer flask containing 50 ml of ASW medium (Lee et al.,
2014) at pH 8. The experiments were conducted in a
temperature-controlled growth chamber at 25°C under a
photoperiod of 16:8 (light:dark) at a light intensity of

120 μmol/m2/sec. In order to attain high PUFA-containing
isolates, the freeze dried biomass from the stationary phase
cultures was processed through lipid extraction and fatty acid
analysis, as described in the following analytical methods. All the
salts and chemicals used in this study were of analytical grade and
procured from Sigma-Aldrich and Merck Chemicals.

Identification of Microalgal Strains
The potential candidate displaying maximum levels of PUFAs
was selected further for yield enhancement studies and was
subjected to ITS sequencing by implying ITS1 and ITS4
primer sets. ITS sequencing was performed at Eurofins,
Bangalore, India, for species identification.

DNA Extraction
The total genomic DNA of the algal isolate was isolated and
purified using the DNA extraction kit (NucleoSpin®). About
1.5 ml of the exponentially grown algal culture was centrifuged
at 7,500 g for 8 min at 4°C. The resulting cell pellet was lysed using
liquid nitrogen and was further dissolved and mixed in 140 μL
buffer T1 and 8 μL proteinase K solution. The mixture was left at
56°C for 1 h incubation in a thermomixer (Thermomixer
comfort, Eppendorf, New Delhi, India) for complete cell lysis.
Thereafter, B3 buffer amounting to 140 μL was added to the same
vial and left at 70°C for 5 min incubation in a thermomixer.
Samples after attaining room temperature were centrifuged for
5 min at 9,000 × g, and the obtained supernatant was transferred
to a new microcentrifuge tube. Absolute ethanol of 140 µL was
added to the samples; immediately after the addition of ethanol, a
thread-like precipitate appeared. The vials were then left at −20°C
for 15 min for complete precipitation. The obtained precipitate
was transferred to a NucleoSpin® tissue column, and a collection
tube was placed below it. Centrifugation was performed for all
samples for 2 min at 10,000 × g; all algal samples were eluted
separately. The column was placed again in the same collection
tube, and 100 μL of washing buffer W1 was added to the same
vial; samples were centrifuged for 1 min at 10,000 × g, and the
process was repeated again for proper washing. Finally, a
NucleoSpin® tissue column was placed in a new 1.5 ml
microcentrifuge vial, and 30 µL elution buffer (BE) was added
directly onto the center of the column for eluting DNA, which
was centrifuged for 2 min. Extracted DNA was kept at −20°C for
further analysis.

PCR Amplification
DNA fragments of selected strains were observed on the gel via
gel electrophoresis with respect to the 1 kb DNA ladder
(GeneDireX, Taiwan, China). The DNA concentration
obtained from microalgae was between 70 and 92 ng/μL. The
obtained DNA was subjected to PCR amplification; PCR was
carried out using 0.1 mM dNTPs, 10 pmol of each primer, 1 U of
Taq DNA polymerase, and the supplied reaction buffer (Biotools,
Madrid, Spain) in the total volume of 25 μL. Each reaction was
performed in duplicates in a T-100 thermal cycler (Bio Rad
Laboratories Inc., California, United States) under the
following conditions: initial denaturation at 95°C for 5 min,
followed by 35 cycles at 94°C for 35 s, 60°C for 1 min, 72°C for
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1 min, followed by a final extension period at 72°C for 10 min, and
rest at 4°C. Agarose gel electrophoresis was performed which
depicted sharp bands of algal PCR products at 600 bp. Sanger
sequencing was performed for both the samples at the
commercial facility service of Eurofins Private Limited
(Bangalore, India). The sequences were subjected to BLAST
(BLASTN, NCBI) analysis, and their homology was established.

Study on the Effect of Different Media on
Growth and Fatty Acid Profiling
Isolates from different sites were selected (one isolate per site)
based on the highest PUFA content. The selected isolates were
then grown in three different media (Andersen, 2005), viz.,
modified F/2 (Guillard et al., 1975), MASM (https://www.ccap.
ac.uk/wp-content/uploads/MR_MASM.pdf), and MKM
Watanabe, A. (1960) in a multicultivator (MC 1000-OD, Photon
Instrument Systems, Drasov, Czech Republic). The isolates with an
initial cell count of 3 × 106 cells/mL calculated using a Neubauer
hemocytometer (Rohem Instruments, Nashik, Maharashtra, India)
were inoculated in the 70ml of media inmulticultivator tubes having
a volume of 120ml under photoautotrophic conditions with a light
intensity of 120 μmol/m2/sec and a temperature of 25 ± 1°C, with a
16:8 h (L:D) photoperiod (Minhas et al., 2020). The aeration rate was
maintained at 0.12ml/min. Growth of microalgae was examined by
measuring the daily changes in the optical density (OD) at 680 nmby
OD viewer software attached to the cultivator. Themicroalgal growth
rate of isolates was determined by fitting the OD at the exponential
phase of each isolates to the late stage exponential growth phase
(Wang et al., 2010). Once the isolates achieved their optimum
growth, at the late stationary phase on an average, they were
harvested by centrifuging them at 7,000 rpm for 10min at 4°C
followed by lyophilization. The samples were further subjected to
GC-MS for fatty acid profiling. Studies were performed in sets of
triplicates.

Analytical Methods
Lipid Extraction and Fatty Acid Analysis
Total lipids were extracted from the freeze dried biomass by
adopting the method developed by Lewis et al. (2000) with some
modifications. In brief, 3 ml solution of chloroform:methanol (2:
1, v/v) was added to 10 mg of the dried algal biomass and was
homogenized by using a vortex shaker (Spinix, Maharashtra,
India) for 2 min followed by centrifuging for 15 min at 10,000 × g.
The process is repeated three times for complete extraction until a
colorless biomass is achieved. The obtained fractions were pooled,
and water was added; the upper layer containing methanol and
water was discarded. The chloroform fraction was passed through
syringe filters and was transferred in a pre-weighed glass vial. The
vials containing lipids were incubated in a hot air oven for 6–7 h
at 50°C. Finally, the total lipids were measured gravimetrically.

Preparation of Fatty Acid Methyl Esters
FAME profiles were determined using the method described by
Christie (1987) (Christie, 1982). For preparation of FAMEs, dried
lipid samples were obtained after incubation and oven drying;
500 μL of toluene was added to the sample, followed by theT
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addition of 10 μL of the internal standard (50 mg of C19:0-
methyl non-adecanoate), acetyl chloride 400 μL (prepared by
adding 1 ml acetyl chloride dropwise to 10 ml of methanol on
ice), and butylated hydroxytoluene 200 μL, and the samples were
incubated at 50°C overnight. The following day, 1 ml of 5% NaCl
and 1 ml of hexane were added to the dried samples. Finally, the
solvent layer containing hexane was analyzed by GC (Agilent
122–2,332 column, Santa Clara, California, United States)
equipped with mass spectrometry (MS) with capillary columns
(DB-23; 30 × 0.25 mm; film thickness, 0.25 μm). Retention time
of the known fatty acid standard mix (37 FAME mix, Supelco,
Sigma-Aldrich) was identified, and the peaks of fatty acid chains
were analyzed and quantified. ChemStation chromatography
software (Agilent Technologies, Santa Clara, California,
United States) was utilized further for integrating the peaks of
targeted fatty acids. 1 μL volume of the sample was injected in the
instrument maintained at 250°C with helium as a carrier gas. The
chemicals and standard for FAMEs (C19:0) used in this study
were of analytical grade and were procured from Sigma-Aldrich
(St. Louis, United States).

Statistical Analysis
All statistical analyses and graphics were performed using R
(version 4.1.2). To measure the growth rate, optical density
was fitted against four different growth models (Richard,

logistic, Gompertz, and modified Gompertz) using the
gcFitModel function of the “grofit” package. The best fit
model was selected based on Akaike information criterion
(AIC) values. Instead of using the popularly used logistic
growth curve, different growth models were applied because of
the variation of growth curves. For principal component analysis
(PCA), the “factoextra” package was applied. The function “glht”
in the package “multcomp” was used for Tukey’s post hoc test.

RESULTS AND DISCUSSIONS

GC-MS Analysis of Isolated Microalgae for
the Presence of Omega-3 Fatty Acid
The unialgal cultures established from the samples collected from
diverse water bodies of Goa were subjected for GC-MS profiling
and are tabularized in Table 1. Goa is identified as a suitable area
for microalgae cultivation, as per reports of the National
Renewable Energy Laboratory, United States (Milbrandt and
Jarvis, 2010). Several species of zooplanktons (Sai Elangovan
and Gauns, 2021) and phytoplanktons (Untawale et al., 1980;
Raghukumar et al., 1991; Bhandari et al., 2012) are identified from
their water bodies on a regular basis (Damare et al., 2021).
Therefore, different water bodies, namely, Bagha (marine),
Salim Ali (mangrove), NIO (marine), and Sirdao (brackish)

FIGURE 1 | Phylogenetic tree of microalgal isolates revealing cluster grouping of (A) NIO ITS sequences are closely related to Planophila. (B) BAG1 ITS sequences
are related to chlorella; Saccharomyces cerevisiae was used as out-group.
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FIGURE 2 | SEM images of (A) Chlorella and (B) Planophila. Light microscopic images of (C) Chlorella and (D) Planophila.

FIGURE 3 |Growth of (A) Planophila sp., (B)Chlorella sp., and (C)N. oculata in different media. The top panel shows the model selected for each strain growing at
different media. u = specific growth rate (hour−1), L = lag period (hour), and A = carrying capacity (OD at 680 nm).
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were targeted for sample collection. The unialgal established cultures
were screened for their FA profiling for estimating the contents of
PUFAs present in the established strains. GC-MS profiling
established the major fatty acids in all the strains including oleic
acid (C18:1), linoleic acid (C18:2), and ALA (18:3). ALA (18:3)
accumulated in the highest amounts in all the strains compared with
the other two fatty acids, followed by linoleic acid (C18:2) and oleic
acid (C18:1). Similar to this study, researchers isolated the four algal
strains belonging to the family Chlorophyceae from the coastal zone
of Goa. FA profiling revealed the presence of both saturated FAs and
unsaturated FAs, including oleic, linoleic, and linolenic acids
(Bhandari et al., 2012).

The highest amount of ALA was accumulated in one of the
species (BAG1) collected from the site Bagha at 69%, followed by

51% for SIR and ~46% for NIO (Table 1). The second most
abundant fatty acid for all three strains was linoleic acid (C18:2)
with ~40.2% for the isolate BAG2, followed by NIO, SA, and SIR
(Table 1). The relative FA percentage of palmitoleic acid (C16:1) was
the highest in BAG1 at ~12%, followed by 5% in SA and 3% in NIO.
In a study conducted by Nagappan et al., they identified a
Desmodesmus sp. strain with the potential for production of
biodiesel and omega-3 FAs (Nagappan and Kumar Verma,
2018). BAG1, having the highest amount of C18:3 and C16:1,
may also find application in both biodiesel and nutraceutical
production.

NIO depicted traces of eicosadienoic acid ~0.49%, whereas
eicosatrienoic acid and eicosatetraenoic acid were accumulated by
SA at 6% and 4%, respectively. Isolates BAG1 andNIOwere selected

FIGURE 4 | Relative FA contents in (A) Planophila sp., (B) Chlorella sp., and (C) N. oculata in different media. In each box, the middle horizontal line shows the
median, the outer lines show the 25 and 75% confidence intervals, and vertical lines show 95% confidence intervals.

TABLE 2 | ALA content (%Total fatty acids) present in different microalgal species.

S. No Microalgal species ALA (% total fatty
acids)

References

1 Dunaliella primolecta 41.1 Viso and Marty, (1993)
2 Nannochloris sp 28.2 Lang et al. (2011)
3 Parietochloris incisa 14.3 Lang et al. (2011)
4 Nostoc commune 38.1 Lang et al. (2011)
5 Skeletonema costatum 25.31 Widianingsih et al. (2013)
6 Thalassiosira sp. 7.93 Widianingsih et al. (2013)
7 Isochrysis sp. 11.57 Widianingsih et al. (2013)
8 Acutodesmus obliquus CN01 38 Othman et al. (2019)
9 Chlorella vulgaris NIES-1269 35 Othman et al. (2019)
10 Chlorella sp. Carolina-15–2069 17.9 Othman et al. (2019)
13 Planophila sp 35.5 This study
14 Nannochloropsis oculata 50 This study
15 Chlorella sp. 50 This study
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for further study due to their highest percentage of C18:3, at 70% and
45%, respectively. SIR was not selected, partly because of its slower
growth rate (data not shown). The two selected isolates, namely, NIO
and BAG1 were further evaluated for their efficiency in producing
biomass and lipid yields. At the stationary phase, after 15 days of
cultivation in ASWmedia, biomass of NIO and BAG1 reached up to
620.6 and 498.8 mg/L, respectively, whereas the lipid content of the
NIO and BAG1 reached 14.5 and 14.9% of the dry weight of
biomass, respectively. The two selected strains were subjected to
molecular identification followed by media studies.

Molecular Identification and Phylogenetic
Analyses
The high molecular weight DNA of BAG1 and NIO strains was
extracted by the NucleoSpin kit. ITS1 (TCCGTAGGTGAACCT

GCGC) and ITS4 (TCCTCCGCTTATTGATATGC) were
employed as the universal primers for the amplification of
aforementioned strains. ITS sequencing was conducted for the
molecular identification of two algal isolates (Eurofins, Bangalore,
India). The obtained sequences of both the strains were subjected
to BLAST (BLASTN, NCBI) analysis, and their homology was
established. Results revealed NIO was identical to Planophila
(MT991544.1), with 91.53% similarity, and the other strain BAG1
showed 98.81% similarity with Chlorella (MH045494.1) in the
homology analysis.

Phylogenetic analysis was conducted on the BLASTN results
of both samples using maximum likelihood algorithms.
Sequences were aligned with the MUSCLE (MEGAX), and a
phylogenetic tree was constructed for NIO and BAG1 strains with
other 50 different species of algae and with one out-group species
Saccharomyces cerevisiae, respectively. Phylogenetic analysis

FIGURE 5 | PUFA percentages of three different algal isolates grown in three diversemedia. In each box, themiddle horizontal line shows themedian, the outer lines
show the 25 and 75% confidence intervals, and vertical lines show 95% confidence intervals. The black line indicates the mean PUFA content of N. oculata, green for
Chlorella sp., and blue for Planophila sp.

TABLE 3 | ANOVA table showing the effect of strain and media on the PUFA content.

Degree of
freedom

Sum square Mean sum
square

F Value Probability (>F)

Strain 2 9,621 4,810 515 01 < 2e-16 ***
Media 2 771 386 41.29 1.88e-07 ***
Strain: Media 4 781 195 20.91 1.44e-06 ***
Residuals 18 168 9 — —
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showed that NIO clustered together with Planophila sp.
(MT991544.1) Figure 1A and BAG1 with Chlorella
(MH045494.1) Figure 1B. Thus, the results confirmed that
NIO is highly identical with Planophila and BAG1 with
Chlorella, respectively.

To the best of our knowledge, this is the first time the strain
Planophila sp. was isolated from the region of Goa and is studied
for fatty acid profiling in different media. However, Planophila sp.
was previously reported to be isolated from Asian regions
(Watanabe, 1983). The species were reported to be found in
fresh water and soil (Szymańska and Werblan-Jakubiec, 1999;
Friedl et al., 2012). The morphology of these strains is presented
in Figure 2.

Effect of Different Media on Growth and
Fatty Acid Profiling
Nutrients are the key driver for microalgal growth and metabolite
synthesis (Mandal and Mallick, 2009). A trade-off between
growth and lipid levels has been reported in some microalgal
studies (Shurin et al., 2014; Pandey et al., 2020). In this study,
instead of applying the direct stress-based approach by

eliminating or reducing nutrients from a particular medium,
isolated Planophila sp. and Chlorella sp. were subjected to
three different nutrient media, a method to elevate PUFAs.
The commercial strain N. oculata, known for a higher PUFA
content (Zanella and Vianello, 2020), was selected as a control for
comparison.

Four different growth kinetic models logistic, Gompertz,
Richards, and modified Gompertz were applied to understand
the growth dynamics attained under the different media
conditions (Supplementary Figure S2). As shown in Figure 3,
kinetic model Richards and Gompertz were selected as the best
model based on the lowest Akaike information criterion (AIC)
values. For Planophila sp., the highest growth is observed for F/2
and MASMmedia in which salinity was 30 practical salinity units
(PSU), as opposed to 15 PSU in MKM. The highest growth of
Planophila sp. in the media with higher salinity conditions
indicated their selective preference towards a marine-like
environment, mimicking their natural marine habitat (Pandit
et al., 2017). The salinity stress affects the microalgal cells and
their physiological mechanism. Parameters such as precursors,
influx, and uptake of ions in and outside the cell membrane
(Srivastava et al., 2014) and sodium ions and their role in

FIGURE 6 | Principal component analysis (PCA) shows the correlation among nutrients contents and fatty acids of the three different strains. Each point indicates
the position of the strain along PC1 and the color for media.
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photosynthesis (Salama et al., 2013) are the key factors for the
changes and enhanced specific fatty acid composition (Srivastava
et al., 2014). The presence of excess sodium chloride causes
reactive oxygen species (ROS) formation, leading to oxidative
stress and breakdown of cellular macromolecules (Chokshi et al.,
2015). Another possible explanation of the lower growth rate in
the MKM medium is the lower nutrient concentration which is
limited in the media (Pandit et al., 2017). Chlorella sp. depicted
highest growth in F2 media followed by MKM media. The lower
growth rate in MASM in Chlorella sp. is due to the sudden growth
depression between 80 and 90 h (Figure 4B). The control strain
N. oculata exhibited a maximum growth in MASM media,
followed by MKM and F/2. The growth of N. oculata is much
higher and reached the carrying capacity at 2.89 (OD) which is
3–4 times than the isolated strain. These results suggest further
optimization in growth parameters such as light intensity
(Metsoviti et al., 2020) and temperature (Chokshi et al., 2020)
may be required.

In order to combat diverse environments, specifically higher
salinity conditions and low nitrogen availability, microalgae alters
or enhances the PUFA production (Dhanya et al., 2020).
Enhancement in the TAG content (Kan et al., 2012) and
intracellular lipids in microalgae (Zhila et al., 2011) are also
reported for salinity stress. For instance, Annamalai et al.,
reported the enhanced lipid production in one of his selected
strain under lower salinity conditions (Annamalai et al., 2016).
Interestingly, the results revealed that the percentage of ALA
(C18:3) was the highest in media with the lowest salinity (9 g/L),
amounting to 35.5% in Planophila sp. and 41% in Chlorella sp. in
MKMmedia. A similar finding was obtained for the control strain
N. oculata with 50% of the ALA content in the same media.
Differences in the fatty acid composition among different media
for a particular strain indicated that the salt type and
concentrations in media impacts the fatty acid content,
consistent with optimizing media, for salt can be useful for
targeting levels of specific fatty acids (Minhas et al., 2016a;
Haris et al., 2022).

In Planophila sp., the highest percentage of oleic acid at 71%
occurred in MASM media, with lower levels in F/2 and MKM
media, whereas linoleic (17%) and linolenic acid (35%) were
maximal in MKM media (Figure 4A). Similar to Planophila sp.,
N. oculata showed highest linoleic acid and linolenic acid
contents in MKM media (Figure 4C). However, in Chlorella
sp. maximum accumulation of linolenic acid (50%) and linoleic
acid (37%) was observed in F/2 media, followed by MKM and
MASMmedia. The differences in types of fatty acid accumulation
in different media support earlier findings in which nutrients
were found to regulate FA biosynthesis (Ren et al., 2010; Dhanya
et al., 2020). Thus, selection of optimum media should be carried
out before attenuation of specific stress factors for enhancing
targeted fatty acids. The findings of the present study in terms of
highest ALA content of the two well characterized isolates are
tabulated together with the other microalgae in Table 2. The ALA
content found in two different strains of Chlorella, i.e., Chlorella
vulgaris NIES-1269 and Chlorella sp. Carolina-15–2069 was 35
and 17.9%, respectively (Othman et al., 2019), whereas the same
isolate in the present study was producing an ALA content about

50% in F/2 media. Therefore, explaining the variations in the
ALA/PUFA productivity in similar microalgal species collected
from different habitats is possibly due to their growth, media, and
nutrient conditions.

Fatty acid data was further analyzed by considering only
PUFAs (Figure 5) in which only FA molecules (unsaturation
>2) with a chain length of 18 or more carbon atoms were counted
(Park et al., 2002). The PUFA content was significantly different
in three different strains (F2,18 = 515.01, p < 0.0001, Table 3). The
high PUFA content was found inN. oculata followed by Chlorella
sp. and Planophila sp. (Tukey’s post hoc test, p < 0.05,
Supplementary Table S1). Although the media have a
significant effect on the PUFA content (F2,18 = 41.29, p <
0.0001, Table 3), PUFA contents were not different between
MKM and F2 media (Tukey’s post hoc test, p = 0.282,
Supplementary Table S2).

The principal component analysis (PCA) in Figure 6
summarizes the correlations among media components and
fatty acids of the three strains. Principal component 1 (PC1)
and principal component 2 (PC2) axes explained 47.4% and
24.4% of variation among strains. The overlapping between F2
and MASM indicates their similarities in media composition
and FA profiling as compared to the MKM medium. The
accumulation of linoleic (C18:2) and linolenic acids (C18:3)
was closely associated and negatively related to the nutrient
content of the media. Linolenic acid (C18:3) accumulated
more in MKM media in which the nutrient concentration is
comparatively low. Similar to our observation, Trommer et al.
(2019) reported a decline in ALA in phytoplanktons under
higher nutrient concentrations in the natural lake community.
Our results agree with others that salinity had a negative
correlation with ALA (Trommer et al., 2019). Overall PUFA
accumulation in this study is independent of the nutrient
concentration. In contrast to our study, several studies
reported higher nutrient level results in increasing
galactolipids which are rich in PUFAs (Guschina and
Harwood, 2006; Guo et al., 2016). The close association
among the nutrient components in the PCA plot is the
major limitation in our study to describe the variation FA
unsaturation based on each component of the media. Thus,
further experiment with larger variation in nutrients of the
media is recommended to establish the relation between the
media component and FA unsaturation. Although, this study
showed that MKM with comparatively lower nutrients could
be a suitable growth media for improved FAs without
compromising growth.

CONCLUSION

In the present study, authors reported the isolation and
identification of two microalgal isolates, Planophila sp. and
Chlorella sp. collected from the west coast of India, Goa. The
work demonstrated the initial screening and selection of these
microalgae based on their PUFA contents, followed by their
molecular characterization. Additionally, media studies
employing three different media were performed to compare
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and analyze variations in the FA content, including levels of ALA,
within the same isolates in diverse media. Furthermore, growth
kinetics studies of the isolates were performed to compare the
growth patterns in three different media. The results showed that
media with lower nutrient levels increased the ALA content, as
found in MKMmedia, amounting to 35.5% in Planophila sp. and
41% in Chlorella sp., respectively. The study shows that media
optimization is important before attenuation of stress factors for
optimizing targeted FA levels. The media studies are simple,
economical, and act as a preliminary selection tool for defining
the optimum physiological conditions for each indigenous algal
strain. Each indigenous strain from a particular environment
requires experimentation to determine optimum growth
conditions since growth does not correlate directly with that
of standard algal strains. Thus, targeted growth studies of
indigenous strains are required to determine the potential of
local organisms for the optimization of bioresource production
from algae.
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