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Arc-Length Re-Parametrization and
Signal Registration to Determine a
Characteristic Average and Statistical
Response Corridors of Biomechanical
Data

Devon C. Hartlen and Duane S. Cronin*

Department of Mechanical Engineering, University of Waterloo, Waterloo, ON, Canada

A characteristic average and biofidelity response corridors are commonly used to
represent the average behaviour and variability of biomechanical signal data for
analysis and comparison to surrogates such as anthropometric test devices and
computational models. However, existing methods for computing the characteristic
average and corresponding response corridors of experimental data are often
customized to specific types or shapes of signal and therefore limited in general
applicability. In addition, simple methods such as point-wise averaging can distort or
misrepresent important features if signals are not well aligned and highly correlated. In this
study, an improved method of computing the characteristic average and response
corridors of a set of experimental signals is presented based on arc-length re-
parameterization and signal registration. The proposed arc-length corridor method was
applied to three literature datasets demonstrating a range of characteristics common to
biomechanical data, such as monotonic increasing force-displacement responses with
variability, oscillatory acceleration-time signals, and hysteretic load-unload data. The
proposed method addresses two challenges in assessing experimental data: arc-
length re-parameterization enables the assessment of complex-shaped signals,
including hysteretic load-unload data, while signal registration aligned signal features
such as peaks and valleys to prevent distortion when determining the characteristic
average response. The arc-length corridor method was shown to compute the
characteristic average and response corridors for a wide range of biomechanical data,
while providing a consistent statistical framework to characterize variability in the data. The
arc-length corridor method is provided to the community in the freely available and open-
source software package, ARCGen.

Keywords: arc-length re-parameterization, biomechanical data, statistical response corridors, characteristic
average curve, biofidelity, force-displacement, acceleration-time
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INTRODUCTION

Experimental data collected from biological tissues, volunteer
studies, or post-mortem human subject testing is used to assess
or validate surrogates, such as computational models and
anthropomorphic test devices, but is often highly variable
(Schmitt et al., 2014). This variability complicates the assessment
and validation of biomechanical surrogates (Yoganandan et al,
2015), where an average response and statistical representation of
variability are needed. Quantitative curve matching assessments
such as r-squared, root mean square error, or more sophisticated
techniques like dynamic time warping require a single representative
or average curve to compare experimental data to surrogate models
(Kim et al,, 2013). In contrast, biofidelity response corridors have
long been used to represent the variability of experimental data (e.g.,
CORA (Gehre et al., 2009)). However, the fundamental challenge of
computing an average curve and corridors remains ill-defined and is
often tailored to specific applications such that existing methods are
not generally applicable.

Documented methods of computing a characteristic average
and biomechanical response corridors have been broadly divided
into time-based and cross-variable (representing one measured
variable with respect to a second measured variable, such as force-
displacement) methods (Kim et al., 2013). While all signals are, to
one extent or another, time-based, the time component of a signal
may not be applicable or useful, such as in the case of quasi-static
mechanical characterization testing or in cases where time
information may not be available, such as reproducing force-
displacement responses from publications.

Due to the prevalence of time-series data in experimental
work, time-based methods are among the most mature and
widely used to determine characteristic curves from
experimental data (Barker and Cronin, 2021). Time-based
methods have generally relied on point-wise calculation of
average values and statistics such as a point-wise standard
deviation (Kim et al., 2013), requiring all experimental signals
to be collected at a uniform rate and to have the same number of
points. Unequally space data or signals of different sampling rates
can be incorporated but must be resampled to match the
sampling rate and the number of data points as the other
signals being analyzed.

However, a challenge for time-based methods is that point-
wise calculations can misrepresent or distort characteristics of the
signals if critical features such as peaks and valleys are not aligned
in time. Such misalignment could result from physical variation
between individual experimental tests, or experimental
difficulties such as synchronizing the start of time-series data
between different tests. A range of methods have been presented
to align signals based on techniques such as alignment of a
characteristic time (Cavanaugh et al, 1986; Maltese et al,
2002) and alignment to minimize variation (Morgan et al,
1981; Eppinger et al.,, 1984) or maximized correlation between
signals (Nusholtz et al., 2009; Donnelly et al., 2017), generally by
shifting signals in time relative to one another. These phase-shift
techniques have seen success in minimizing distortion during
averaging but can become less effective if signals contain more
than one critical feature (Ramsay, 2018).

Statistical Arc-Length Response Corridors

Signal registration (also called curve registration) is a
technique borrowed from the field of functional data analysis
(Ramsay and Li, 1998; Tang and Muller, 2008; Gasser and Kneip,
2012; Ramsay, 2018) for aligning multiple features of time-series
data simultaneously to compute a characteristic average. The
principal behind signal registration is the introduction of warping
functions, h;, that non-linearly scale portions of each signal to
align features such as peaks and valleys between all signals
without altering the underlying shape of each signal. Warping
functions are determined iteratively by optimizing for a range of
metrics such as cross-correlation or mean squared error between
all curves. As opposed to the phase-shift methods discussed
earlier, signal registration provides the ability to align many
shared features simultaneously, helping to minimize distortion
and better capture the underlying shape of the data (Ramsay and
Li, 1998; Ramsay, 2018).

Computing corridors for cross-variable signals presents a
number of challenges. While researchers have successfully
combined the average and standard deviation of two time-
series signals to produce cross-variable response corridors
(Cavanaugh et al., 1986), this method is only effective when
signals are highly correlated and when the original sampling time
data is available. Further, point-wise averages of signals based on
one of the cross-variable signal axes can result in loss of the
characteristic shape of the underlying data (Kim et al.,, 2013;
Mattucci and Cronin, 2015) or entirely fail if signals do not
extend to the same point on each axis (Lessley et al, 2004;
Mattucci and Cronin, 2015), such as differences in
displacement to failure.

A historical method of generating corridors for cross-variable
data is the so-called ‘eyeball average’, wherein a characteristic
average and corridors are drawn based on how the researcher
interprets the signals (Lobdell et al., 1972). Unfortunately, this
methodology is highly subjective and does not characterize the
average curve or statistical variability of the data. The work of
Lessley et al. (2004) presents one of the first rigorous methods for
computing a characteristic average and corridors by normalizing
each cross-variable signal against itself, then computing the
average and standard deviation for each point in the
normalized curves Shaw et al. (2006) later implemented an
improved statistical representation of signals based on a two-
dimensional normal distribution. However, both the methods
were limited to monotonic data, requiring non-monotonic signals
to be divided into strictly monotonic segments. Consistent
segmentation can be challenging for highly variable signals or
signals without a well-defined characteristic shape Perez-Rapela
et al. (2018) eliminated the need for segmentation by re-
parameterizing signals based on their arc-length, rather than
ordinate and abscissa values. Perez-Rapela further utilized a
simple method for aligning signal features by normalizing arc-
length calculations to a feature shared between signals, such as a
characteristic peak that appears in every signal.

While biomechanical data takes the forms of time-based or
cross-variable signals, the overall shape and characteristics of the
signals are equally important metrics as these factors place
limitations on the methods used to analyze the signals. To that
end, biomechanical data can be broadly divided into three
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FIGURE 1| An overview of the three stages of the arc-length corridor method used to compute the characteristic average and response corridors of a set of inputs

signals.
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categories based on signal shape. The first category includes strictly
monotonic signals, such as the mechanical response of biological
tissues such as ligament force-displacement signals (Mattucci et al.,
2012; Mattucci and Cronin, 2015). Second, signals that exhibit
oscillatory or otherwise non-monotonic behaviour in one axis.
Acceleration-time signals, such as head acceleration under rapid
deceleration being a classic example (Ewing and Thomas, 1972).
Third, signals that exhibit hysteresis or non-monotonic behavior in
both axes. The load-unload force-displacement response from
impact testing, such pendulum impacts on the thorax of post-
mortem human subjects (Kroell et al., 1971), fall under this
category.

In the present study, an improved general methodology for
computing a characteristic average and statistical response
corridors from biomechanical data is presented to address
many of the limitations encountered in previously documented
methods. The proposed method incorporates arc-length re-
parameterization and signal registration to enable general
applicability, and was applied to three distinct signal types:
monotonic  increasing data  (force-displacement)  with
variability, oscillatory acceleration-time data, and hysteretic
load-unload force-displacement data.

METHODOLOGY

The proposed method of computing a characteristic average and
response corridor outputs from a set of input signals presented
here can be divided into three stages: arc-length re-
parameterization, signal registration, and statistical analysis
(Figure 1). The analysis considers a set of n signals, y;(x)
(i=1,...,n) where the j™ point of the i™ signal is defined as
¥ij- It should be noted that the input signals do not need to

contain the same number of data points, nor is a constant
sampling rate required, as resampling was undertaken during
the re-parameterization process.

Stage 1: Arc-Length Re-Parameterization of
Input Signals

In the first stage, individual signals were re-parametrized with
respect to arc-length, a monotonically increasing metric
intrinsically tied to the shape of each signal (Figure 2). Each
signal was first scaled based on the total range of the data (Eqs
1, 2) such that the ordinate and abscissa values were of the same
order in magnitude.

- Xi,j
Xij = = ]_ (1)
Xmax — Xmin
. Yij
Yii=T = p (2)
¥ ymax - ymin
where
fpon = - Y min(x) )
L= — min .
xmm n Pt 1 xl
_ I¢
Xmax = ; Z max(xi) (4)
i=1
_ IR
ymin:;zmln(yi) (5)
i=1
_ I¢
Vmax =, z max (y;) (6)
i=1

In the scaling equations, X; and j; are the scaled components
of each signal. By scaling signals by the mean extrema of all
signals, the relative shape and size of each signal relative to one
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and y; (8)) with respect to arc length (B).
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FIGURE 2 | A graphical depiction of the arc-length re-parameterization process, where input signals (A) defined y (x) are re-parameterized into two curves (x; (§)

another are maintained. It is important to note that X; and y, are
only used for arc-length calculations. Unscaled signal
components x; and y; are used exclusively in later signal
registration and statistical analysis stages.

Following scaling, the arc-length of each j™ data point (s; i)
within each individual i signal was computed with zero arc
length start corresponding to the first point of the signal. Linear
behavior was assumed between discrete points of the signal to
compute arc-length for simplicity and was found to be reasonable
for the data sets considered in this study (Eq. 7). Higher-order
interpolations can be applied in cases where the data is sparse.
The arc-length corresponding to each point in the signal was then
normalized using the total arc-length of each signal, where §;
denotes normalized arc-length and the total arc-length is equal to
the arc-length at the final data point. At this point, both axes of
each signal, both scaled and unscaled, are defined with respect to
normalized arc-length, such that x;(s;) and y;(s;) and the
normalized arc-length of each signal §; ranges from 0 to 1.
Finally, all signals were resampled at regular intervals with
respect to normalized arc-length §, ensuring all signals had the
same number of points at the same normalized arc-lengths. This
step is necessary as varying slopes in regularly sampled data will
result in irregular arc-lengths between discrete signal points. A

uniform arc-length between each point is necessary for statistical
calculations in stage 3.

Jj
Sij = Z\/(xi,k = xi,k—l)2 + (yi,k - yi,k—l)z (7)
k=2

Stage 2: Signal Registration to Align Critical

Features
Signal registration was applied to align features of all » signals
simultaneously (Figure 3) and address an embedded assumption
in arc-length re-parameterization, that critical features occur at
approximately the same normalized arc-length across all signals.
Signal registration used of strictly monotonic, signal-specific
warping functions, h; (§), to continuously align features across all
signals simultaneously by remapping normalized arc-length.
Warping functions h;(5) were chosen to be monotonic cubic
Hermite interpolating splines, with exterior control points
defined at [0,0] and [1,1]. Signal registration included two
user-defined parameters: the number of interior control points,
m, used in the warping function, and the penalty factor, A, used to
control the degree of warping. Appropriate selection of these two
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Signal peaks not aligned w.r.t. arc-length §

y-component of re-parameterized signal

FIGURE 3| A graphical depiction of the signal registration process to align critical features (A) Signals in the arc-length space may not have key features aligned. (B)
Peaks occurring a different normalized arc-lengths (C) Warping functions are introduced for each signal h; ($) that remap the normalized arc-length of each signal (D) to
align features. Signal registration operates on arc-length, not the underlying (x,y) data of the signal.

Introduce warping functions h;(3) to
align signal features w.r.t arc-length 3

\

Yy hi(8) = 0.44_
‘}\hi(é) —0.44
o J1i(8) = 0.44

D

~

3

Peaks aligned w.r.t. warped arc-length h;(3)

No registration

m=23 m=1
FIGURE 4 | Exemplar signals to aid in selecting the number of control
points (m) with prominent inflection points denoted with red crosses (A)
Monotonic signal, no warping needed. (B) Non-monotonic, a single control
point is used in this signal due to the single inflection point (C) Oscillatory
signal, three control points corresponding to three inflection points. (D) Load-
unload signal, one warping point is required for a single inflection point in x
versus arc-length response.

parameters was important to align signal features while
maintaining the shape of the input signals.

The number of interior control points, m, required for a signal
was problem-specific; however, some guidance was developed in
the current study. It was found that signal registration was
generally not required for monotonic data (Figure 4A).
However, for non-monotonic data, the number of interior
control points should be equal to the number of prominent
inflection points present in the characteristic shape of the
signal. This number should not include inflection points
resulting from small-scale, high-frequency oscillations caused
by noise or experimental variation (Figures 4B, C). In
addition, some signals may demonstrate load-unload response
requiring control points (Figure 4D) corresponding to inflection
points in the arc-length space.

The location of the m control points in arc length, for all n
signals were determined simultaneously by maximizing the cross-
correlation score, CEq. 8, between all n signals in the arc-length
space (Nusholtz et al., 2009), where ¢, is the cross-correlation
Eq. 9 between two re-parameterized signals in the arc-length
space (such as x,(h,(8)) and x,(hy(S)) or y,(h,(S)) and

Yo (hp (5)) ).
1 n n
C= m ZZC,']‘ —-n

i=1j=1

8)

_ NY 1 XaiXpi — N Xaj Xp;
Cab = 2 - 2 2 = 2
\/Zixa,i —NXg; \/ Zixb,i — NXp,i

As C approaches unity, the cross-correlation between all

©)

signals improves. Correlation scores were computed for
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B Compute mean and standard devation at each warped arc-length
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==

Assembly of characteristic average and reponse corridors

FIGURE 5 | A graphical depiction of the statistical analysis of re-parameterized signals and construction of response corridors (A) The mean and standard deviation
of signals are computed point-wise in the arc-length space for x and y before being combined. (B) Mean x and y values make up the characteristic average, while
standard deviations form elliptical confidence regions. The response corridor is defined as the envelope of all elliptical regions.

xi(h; (5)) and y;(h;(5)) separately, with both values being
averaged to form a single optimization score.

In order to prevent shape distortion, warping was limited by a
penalty function, A Eq. 10, with a defined penalty factor, A. The
penalty function increased as the distance between the warping
function k; ($) and unwarped normalized arc-length, §, increased.

n

A= %Z J;(h(§) —3)ds (10)

i=1

For the penalty factor A, larger values will minimize the
amount of warping introduced during signal registration. A
value of 1072 was found to align signal features well without
compromising the shape or sampling point density of the signals
in this work. However, this parameter may need to be changed for
other scenarios.

Stage 3: Statistical Analysis of
Re-Parametrized and Registered Signals

After arc-length re-parameterization and signal registration to
ensure all signals have the same number of points and have
critical features aligned, point-wise statistical analysis was
conducted using normalized arc-length. This statistical analysis
assumed all (x, y) points at a given normalized arc-length were
uncorrelated and normally distributed.

The characteristic average of the signals was constructed by
computing the mean of all (x, y) points at each normalized arc-
length (Figure 5). A two-dimensional, uncorrelated normal
distribution Eq. 11 was used to compute uncertainty, where X
and y were the mean of all points at a given arc-length, and SD (x)
and SD (y) were the standard deviation.

1

f (%) = (278D (x)SD(y)) " exp <‘ 2 [(sxD_(j:)>2

(o)) w

From this distribution, a two-dimensional confidence region
can be defined as

_ 2 _ 2
x—Xx y-y
(P2 (SD(x)) +<SD(y)) (2
where X% (p) is the quantile function (or inverse cumulative density

function) of the chi-squared distribution with two degrees of
freedom (corresponding to x and y). This confidence region

defines an ellipse centered at (X, ) with axes of 4/y2(p)SD(x)

and /3 (p)SD (y). One benefit of this definition is that the size of
the ellipse can be defined with respect to probability, p. While
corridors of plus and minus one standard deviation are common in
the literature (X% (p) = 1), a confidence interval of this size only
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FIGURE 6 | The quasi-static force-displacement response of 12 anterior
longitudinal ligament specimens (Mattucci et al., 2012).

encompasses approximately 39.4% (p = 0.394) of variation. Using
the chi-squared distribution makes it possible to define corridors
that encompass any amount of variation desired.

Response corridors were defined as the envelope of all elliptical
confidence regions at each resampled arc-length value. As
determining the envelope of a set of ellipses does not
necessarily have a closed-form analytical solution, a marching
squares algorithm (Lorensen and Cline, 1987) was used to extract
this envelope numerically.

Evaluation of Three Experimental Datasets
Using the Arc-Length Corridor Method

Three data sets were assessed using the proposed arc-length corridor
method. The first data set, comprising force-displacement data for
cervical spine ligaments (Mattucci et al, 2012), demonstrated
monotonic behavior with relatively large variability and a lack of
shared endpoints. Five ligaments were tested, including the anterior
longitudinal ligament (Figure 6), posterior longitudinal ligament,
ligamentum flavum, capsular ligament, and interspinous ligament
(Supplementary Material S1;Section 1). Force-displacement signals
were reproduced from the original experimental data provided by
the authors. In keeping with the method used by Mattucci et al,
signals were truncated at the end of the traumatic region, excluding
post-ultimate load response. Although Mattucci et al. also excluded
the traumatic region of some experimental signals because the
signals were considered uncharacteristic in shape, no portion of
any signal was excluded in the current study. Since the signals were
monotonic in nature, no control points were defined (m = 0) and
therefore signal registration was not applied.

Statistical Arc-Length Response Corridors

The second data set, head acceleration data from human
volunteer 15g frontal sled tests (Ewing and Thomas, 1972),
was non-monotonic and oscillatory (Figure 7). This study
reported head center of gravity kinematics in the global
coordinate system, where the x-axis aligned with the
acceleration pulse. Experimental acceleration-time and
displacement-time signals were retrieved from the National
Highway Traffic Safety Administration online database
(National Highway Traffic Safety Administration, 2017).
Experimental signals were captured at 2000 Hz and published
with critical features well aligned. No additional filtering or signal
processing was performed prior to applying the arc-length
corridor method. Kinematics in the z-axis are highlighted in
this paper as they were the most representative of both highly
oscillatory  (acceleration-time) and potentially divergent
(displacement-time) signals. The remaining kinematics are
reported in the Supplementary Material S1, Section 2.0.

The third dataset was force-displacement data from pendulum
impacts on the thorax of post-mortem human subjects (Kroell
et al, 1971), demonstrating non-monotonic and hysteretic
response (Figure 8). Signals used in this work were digitized
from the original (Kroell et al., 1971) publication with no
additional processing aside from converting measurements to
metric units.

RESULTS

The characteristic average and response corridors were computed
for the three literature datasets to demonstrate the efficacy of the
arc-length corridor method.

Dataset 1: Monotonic Cervical Ligament

Response Data

The arc-length corridor method was applied to five cervical
ligament quasi-static experimental datasets (Mattucci and
Cronin, 2015). Only the results of the Anterior Longitudinal
ligament are documented here (Figure 9), with the remainder
presented in the Supplemental Material S1;Supplementary
Figures S1-5.

In all cases, the arc-length corridor method produced a
characteristic average that captured the three physiologic regions
of ligament behavior: a toe region, a predominantly linear region,
and a concave-down traumatic region. The characteristic average
curve from the arc-length method agreed well with that calculated by
Mattucci and Cronin (2015). The corridors computed by the arc-
length method were defined as +1 one standard deviation, and
demonstrated broadening width with increased displacement.

Dataset 2: Oscillatory Head Kinematics
Data

The arc-length corridor method was applied to compute the
characteristic average and response corridors for head
acceleration (Figure 10) and displacement (Figure 11) in the
z-direction (Ewing and Thomas, 1972). The characteristic
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FIGURE 7 | Head acceleration (A) and displacement (B) in the z-direction for a 15 g frontal acceleration. Signals were collected from seven human volunteers.
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FIGURE 8 | Kroell et al. thoracic impact response signals collected from
eight post-mortem human subjects.

average and corridors for head kinematics in the x-direction and
rotation about the y-axis are provided in the Supplementary
Figures $6-11. For all load cases, a penalty factor of 107> was
used during signal registration. Four warping control points were
used to register the acceleration signals in the z-direction while
two control points were used for displacement signals. A full
accounting of warping control points is provided in
Supplementary Table S1 for all kinematics. The calculated
corridors were + 1 standard deviation from the average curve.
Traditional time-based point-wise average curves and corridors
were calculated and presented for comparison.

Dataset 3: Hysteretic Thoracic Impact

Response Data

Application of the arc-length corridor method to the Kroell
dataset (Kroell et al., 1971) used two control points (m = 2),
corresponding to the prominent inflection point seen in the load
component and plateau region of the signals (Figure 12). The
signal registration penalty factor was A = 1072, and the calculated
response corridors were * 1 standard deviation. It should be
noted that the arc-length corridor method was applied uniformly
to the data, and did not require segmentation as previously
documented methods (Lessley et al., 2004) to handle the non-
monotonic and hysteretic nature of the signals.

DISCUSSION

A consistent and reproducible method is needed to determine an
average characteristic curve and quantify variability in
biomechanical data that may be used as input for
computational human models or to assess the output and
biofidelity of a model. Such curves are used as input for tissue
material properties (Mattucci and Cronin, 2015) in detailed
human body models, and can be used to assess the biofidelity
of human computational models using methods such as cross-
correlation (Barker and Cronin, 2021). Contemporary data
averaging and corridor methods are often tailored to a specific
data set and require some judgement in application to other
signals, such that no general, consistent methodology is available
to address the wide variety of data observed in biological tests.

In a review of published methods of computing response
corridors, Kim et al. (2013) determined that while most time-
and cross-variable-based methods produce broadly similar
characteristic averages, the computed response corridors differ
to a large extent, likely owing to differences in formulation
between each method. Kim et al. judged that a relatively
simple time-based, point-wise averaging method produced the
best corridors. However, it is important that Kim et al. used a
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reasonably simplistic synthetic dataset that did not include
features unavoidable in experimental data such as noise, non-
monotonic behaviour, or signal misalignment. The arc-length
corridor method proposed in the current study employs arc-
length re-parameterization to enable calculations for non-
monotonic data, including load-unload type data without
manual signal segmentation. Although differences in
magnitude between the axes can skew arc-length calculations
and misrepresent features, scaling of signals to compute arc-
length minimized distortion. Such differences in magnitude are
common in experimental data like force-displacement or stress-
strain curves.

The integration of signal registration through the use of
warping functions allowed for the automatic alignment of
critical signal features (such as peaks and valleys) based on a

user-defined number of control points and warping penalty
factor. Signal registration addresses a limitation in other arc-
length parameterization and point-wise averaging methods,
which assume critical features occur at approximately the
same value of the dependent variable in all signals. This is a
valid assumption for signals that are monotonic in both axes or
highly correlated signals that exhibit very little variability.
However, this assumption is violated when input signals
exhibit variability or may not share all the same features.
Further, the utilization of signal registration allowed the
characteristic average and response corridors to be computed
without smearing or distorting the underlying shape of the data.

The proposed arc-length corridor method was used to analyze
three datasets with distinctly varying signal characteristics, a
generalization not possible with current methodologies.
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Monotonic force-displacement human ligament data (Mattucci
and Cronin, 2015) demonstrating variability and lack of shared
signal endpoints could not be assessed using point-wise
averaging. Mattucci and Cronin (2015) proposed a tailored
method based on the assumed shape of ligament behaviour.
The data was analyzed by segmenting each signal into three
characteristic shapes or regions, then normalizing and averaging
curves within each region. One consequence of this method was
an enforced stationary point at the end of the traumatic region.
While this is a valid assumption from a physiologic perspective,
such a trait was not readily apparent in the experimental signals.

In contrast, the arc-length corridor method did not contain a
priori assumptions of signal shape. The method generated similar
average curves to the Mattucci method, which is to be expected
since the aim of the Mattucci method was to generate

representative average curves tailored to the data set. However,
the average curves did differ between methods for the
interspinous (Supplementary Figure S5) and Ligamentum
Flavum (Supplementary Figure S3). The arc-length corridor
method resulted in lower average curves for the traumatic
region of these two ligaments. The higher average produced by
the Mattucci method may be the result of the assumed curve
shape and magnitude difference for a small number of curves in
each dataset. Importantly, the arc-length corridor method
enabled the generation of statistical corridors, which was not
possible using the method developed by Mattucci.

The head center of gravity data in the human volunteer sled
data (Ewing and Thomas, 1972) were oscillatory in nature and
demonstrated low variability. Applying arc-length re-
parametrization without signal registration for the head

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org

10

March 2022 | Volume 10 | Article 843148


https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

Hartlen and Cronin

Statistical Arc-Length Response Corridors

20

Accleration (g)
°

¥

Accleration (g)
o

-10
90

100 110 120
Time (ms)

No signal registration

130 140

|\

[ 100
Time (ms)

Exp.

= Char. Avg.
+10 Corridor

FIGURE 13 | Effect of signal registration on the characteristic average and response corridors for head acceleration in the z-direction. Signal registration (B) utilized
m = 4 control points and produced a characteristic average that captured the underlying shape of the signals better than not performing signal registration (A).

B

0

200 300

5

Accleration (g)
o

-5

-10
90

100 110 120
Time (ms)

Signal registration

130 140

z-acceleration, it was noted that the average and corridors did not
capture the true mean height or location of the intermediate
peaks centred at a time of approximately 115m (Figure 13).
These peaks were smeared out somewhat due to variations in arc-
length between signals resulting from noise and experimental
variability (Figure 13A). After performing signal registration
with m =4 control points and a penalty factor of 1072, the
characteristic average has a more defined peak and larger
amplitude between adjacent features that reflect the shape of
individual signals better without distortion, while the response
corridors conformed better to the shape of the experimental data
(Figure 13B). The effect was subtle in this case, owing to the
relatively small misalignment between peaks and valleys.

It was noted that the experimental signals exhibited divergent
behaviour later in time (Figure 11) made signal registration
difficult, where the differences in curve length and diminished
cross-correlation between signals. Conversely, the arc-length
corridor method produced characteristic averages and
corridors that reflected experimental behaviour well in cases
where signals were better correlated.

The low variability of the Ewing and Thomas dataset enabled
point-wise methods (e.g., Barker and Cronin (2021)) to represent
the average response and corridors. The arc-length corridor
method produced broadly similar results compared with the
time-based point-wise average and corridors computed for
each set of signals. However, it is important to consider that
this dataset is ideal for using a time-based point-wise average, as
all signals were sampled at exactly the same times and published
with key features well aligned in time. Not all time-based
acceleration data reported in the literature is as well-behaved
and highly correlated as the Ewing and Thomas data.

The Lobdell thorax impact response signals are a highly
influential dataset in biomechanics, particularly in occupant
safety, and serve as the basis of some of the earliest cross-
variable response corridors (Lobdell et al., 1972). Of the three
datasets examined, the application of the arc-length corridor

method to the Kroell et al. thoracic impact dataset presented
the largest improvement over other reported techniques. The arc-
length corridor method provided the ability to compute a
characteristic average and response corridors without
segmentation of the signals (Lessley et al., 2004). Furthermore,
the statistical underpinning of the corridors from the current
methodology provided a significant improvement over the
original + 15% wide corridors presented by Lobdell et al.
(1972). The improved resolution of arc-length response
corridors also captured how the variability between signals
changed throughout the impact event. One interesting feature
of the corridors was a constriction around 42 mm of deflection in
the plateau region. While it may seem incongruous, this
constriction captured the coalescence of input signals around
that point.

The arc-length corridor method presents several major
advantages over existing techniques documented in the
literature as a generalized methodology that can be applied
across a wide range of biomechanical signals. While this
methodology shares features from the arc-length method
documented by Perez-Rapela et al. (2018), it is set apart by a
more robust method of re-parameterizing input signals, the
incorporation of signal registration to continuously align signal
features, and the statistical framework and automated techniques
used to extract response corridors. However, the arc-length
corridor method does have some limitations. The method
relies on the arc-length of a signal, such that high frequency
oscillatory signals, such as those arising from noise, could skew
results by increasing the computed arc-length of a signal. While
signal registration does mitigate this issue to a degree, the arc-
length method could produce skewed averages and corridors with
extremely oscillatory or noisy input signals. Skewed results can be
remedied in one of two ways: filtering the signals (recommended
in most cases) or increasing the number of warping control
points. In a similar vein, corridors could be skewed should
one input signal be significantly longer than the others, such
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as if one signal in a set of time series responses was collected for
twice as long as the others. The simplest solution to this issue is to
crop the longest signal; however, cropping should only be applied
when physically justified.

While signal registration was shown to be valuable in aligning
input signals, especially as seen in the Ewing and Thomas data
discussed earlier, signal registration could potentially introduce a
degree of subjectivity, as the number of warping control points
and penalty factor is somewhat specific to a given dataset. In this
study, the number of control points was recommended to be
equal to the number of prominent inflection points in the shape
of the signal, and this rule of thumb worked well for the data sets
considered in the current study. Furthermore, a penalty factor of
A =10"2 was used for all datasets. Unfortunately, there is no
general, quantitative method of determining penalty factor value
for signal registration (Ramsay and Li, 1998; Ramsay, 2018). A
sensitivity study found the data sets in the current study, which all
had a relatively high density of data points, were not sensitive to
changes in the penalty factor (within an order of magnitude).

Figure 14 demonstrates how varying the penalty factor A
affects the process of signal registration to aid in the selection of
this parameter. If A is set to a high value (e.g., 1.0) (Figure 14A),
registration becomes very limited, producing a characteristic
average that smears out features like peaks and valleys. This
result is effectively the same as not performing registration at all.
If A is small (e.g., 0.0) (Figure 14C), registered points tend to

cluster around specific features as the registration process
maximizes cross-correlation between signals without regard to
the original signal shape. The resulting characteristic average may
not capture some critical features or produce poor signal
discretization in certain areas, both features that may produce
unacceptable response corridors. An appropriate value of A
(Figure 14B) produces a characteristic average that captures
critical features without distorting peaks or valleys and
without introducing significant changes in signal discretization.
While any signal registration will produce a signal where points
are not uniformly discretized with respect to arc-length, the
appropriate selection of A will not alter signal point density to
a significant degree. To that end, the number of signal points
plays some role. For well-discretized signals sampled at a high
sampling rate, the changes in density caused by signal registration
will have less impact on the resulting average and corridors,
making well discretized signals less sensitive to the selection of A.
Poorly discretized signals will be more susceptible to changes in A
as minor changes in signal point density can affect the critical
features of a signal to a large degree. In such cases, it is
recommended that a range of penalty factor values be
evaluated in a parametric study to determine an acceptable
value of A for a given data set. It is highly recommended that
researchers report both the number of control points and penalty
factor used to produce response corridors to allow for the
reproducibility of their results.
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Finally, while the arc-length corridor technique can
accommodate varying sampling rates, the original signal must
have a sufficiently high sampling rate to ensure that no distortion
is introduced during the re-parameterization and signal
registration. Although linear interpolation between discrete
signal points was applicable in the current study, if signals
were not sampled at a sufficiently high rate, there is a
possibility that the resampled signals may not reflect the
underlying physics of the original signal. Re-parameterization
with higher-order interpolation methods may help prevent
distortion of the original signal in these cases. However, such
techniques applied to sparsely sampled data present the risk of
introducing artifacts if signals are not sufficiently sampled to
resolve critical features.

While not a limitation, the arc-length corridor method is agnostic
to the physical context of the data. To that end, anthropomorphic
scaling, which is commonly applied to data collected from human
volunteer or post-mortem human subject trials to account for
variation between subject weight, height, and other dimensions,
was not performed. Anthropomorphic scaling, such as the equal
stress equal velocity method, impulse-momentum approach
(Petitjean et al,, 2015) or even more advanced techniques (Sun
et al,, 2016), would generally reduce variability between signals and
result in tighter corridors. If required, anthropomorphic scaling can
be considered prior to performing corridor generation using the
methodology presented in this work. However, care must be taken to
ensure that scaling is appropriately applied to avoid the risk of
combining data from incongruous subjects. Additionally, while
anthropomorphic scaling tends to reduce the variability of the
dataset, it is important to note that the dataset no longer
represents the subject population, but rather the variability with
respect to a specific set of human dimensions.”

CONCLUSION

This paper has presented a method of computing the
characteristic average and bio-fidelity response corridors based
on arc-length re-parameterization. Compared to the existing
corridor creation techniques, the method presented in this
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NOMENCLATURE

C Correlation score used for signal registration

Cgap Cross-correlation of signal a onto signal b

A Penalty function used for signal registration

A Penalty factor used to control warping during signal registration
h; (s) Warping function for signal i

1 Number of warping control points

max (), min () The maximum and minimum values in a signal component

Statistical Arc-Length Response Corridors

7 Number of input signals

S; Arc-length of signal i

S Normalized arc-length, uniformly sampled and shared by all signals

SD () Sample standard deviation

Xi, Yi Horizontal and vertical components of signal i

Xi j> ¥i,j The 7™ point of the horizontal and vertical components of signal i
Xi }A/i Scaled horizontal and vertical components of signal i

X, ¥ Mean of a signal component

X% ( p) The chi-square distribution with two degrees of freedom
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