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The human being’s locomotion under the barefoot condition enables normal foot function
and lower limb biomechanical performance from a biological evolution perspective. No
study has demonstrated the specific differences between habitually barefoot and shod
cohorts based on foot morphology and dynamic plantar pressure during walking and
running. The present study aimed to assess and classify foot metrics and dynamic plantar
pressure patterns of barefoot and shod people via machine learning algorithms. One
hundred and forty-six age-matched barefoot (n = 78) and shod (n = 68) participants were
recruited for this study. Gaussian Naïve Bayes were selected to identify foot morphology
differences between unshod and shod cohorts. The support vector machine (SVM)
classifiers based on the principal component analysis (PCA) feature extraction and
recursive feature elimination (RFE) feature selection methods were utilized to separate
and classify the barefoot and shod populations via walking and running plantar pressure
parameters. Peak pressure in the M1-M5 regions during running was significantly higher
for the shod participants, increasing 34.8, 37.3, 29.2, 31.7, and 40.1%, respectively. The
test accuracy of the Gaussian Naïve Bayesmodel achieved an accuracy of 93%. Themean
10-fold cross-validation scores were 0.98 and 0.96 for the RFE- and PCA-based SVM
models, and both feature extract-based and feature select-based SVM models achieved
an accuracy of 95%. The foot shape, especially the forefoot region, was shown to be a
valuable classifier of shod and unshod groups. Dynamic pressure patterns during running
contribute most to the identification of the two cohorts, especially the forefoot region.
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1 INTRODUCTION

The human being’s locomotion under the barefoot condition enables normal foot function and lower
limb biomechanical performance from a biological evolution perspective (D’Août et al., 2009;
Lieberman, 2012). Previous studies have found that foot morphology is different for the habitual
shod and barefoot cohorts (D’Août et al., 2009; Shu et al., 2015). Functional performances of lower
limbs during gait are affected by foot morphology (Zhang and Lu, 2020; Xiang et al., 2020a; Xiang
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et al., 2020b). Lieberman et al. (2010) demonstrated that barefoot
runners with forefoot strike could decrease impact force
compared to shod runners with the rearfoot strike pattern.
Foot intrinsic muscle and longitudinal arch function may be
affected for the habitually shod population (Lieberman, 2012;
Davis et al., 2017). The barefoot population also presented a lower
injury incidence in the ankle and knee joints than their shod
counterparts (Altman and Davis, 2016). In a given year, 79% of
shod runners suffered from running-related injuries (van Gent
et al., 2007).

On the other hand, opponents argue that without the
protection and cushioning function provided by modern
shoes, the injury incidence of the foot and calf will be
increased (Altman and Davis, 2016). Cushioning shoes have
been highly researched in recent years (Sinclair et al., 2016;
Chan et al., 2018; Hannigan and Pollard, 2019). Both
instantaneous loading rate and peak tibial acceleration were
significantly increased in barefoot running, providing no
footwear midsole support, and cushioning, compared with
cushioned shoes (Sinclair et al., 2016; Agresta et al., 2018).
Barefoot running has gained popularity in recent years.

However, runners transitioning to barefoot running are more
prone to injury than the habitual barefoot population (Altman
and Davis, 2016). Therefore, understanding foot biomechanical
differences between barefoot and shod folks could help to
decrease the injury rate among novice barefoot runners.

Plantar pressure is the salient parameter in gait evaluation and
injury detection (Fernández-Seguín et al., 2014; Maiwald et al.,
2018). Bergstra et al. (2015) found that running with minimalist
running shoes increased the plantar pressure in the forefoot
region compared to conventional running shoes. Given the
gait differences cause by the shod habit, there is still a lack of
understanding of the unique gait patterns of barefoot and shod
people and how these differences are attributed to gait function
performance and injury prevention.

Machine learning algorithms are widely used in sport-
specific movement recognition and gait biomechanics
(Halilaj et al., 2018; Cust et al., 2019). It can successfully
identify and classify gait characteristics based on plantar
pressure variables (Bennetts et al., 2013; Li et al., 2020).
Naïve Bayes classifiers greatly simplify learning based on
Bayes’ rule and assuming that the attributes are

FIGURE 1 | Foot morphology measurement and parameters (A) and Foot pressure measurement and plantar region division (B).
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conditionally independent given the class (Rish, 2001).
Physical activity and falls could be detected using wireless
sensors embedded with the Naïve Bayes algorithm (Yang et al.,
2010). The support vector machine (SVM) found the optimal
separating hyperplane that maximizes the margin of
separation between categories through a decision boundary
(Vapnik, 1998). In SVM, the input matrix was transformed
into a high dimension space using the different types of kernel
algorithms, including linear and non-linear methods (Fukuchi
et al., 2011). Wu and Wang (2008) reported that the SVM
algorithms combined with principal component analysis
(PCA)-based feature extract techniques could be used to
classify gait patterns based on ground reaction force.
Spatiotemporal features depicted good performance in
identifying young and elderly gait pattern differences via
SVM classifiers with a linear kernel (Taylor et al., 2013).
Based on foot-ankle kinematics and kinetics data, SVM can
classify runners with different running experience levels (Suda
et al., 2020). The study from Clermont et al. (2017) separated
and classified the competitive and recreational runners via the
SVM model using lower limb kinematics as input data.

To the best of our knowledge, even though the present
evidence illustrates the differences between habitually barefoot
and shod groups, no study has demonstrated the specific
differences between them based on foot morphology, and
dynamic plantar pressure during walking and running.
Traditional questionnaires on shoe-wearing habits are
subjective and cannot provide objective foot shape and
functional information. In contrast, machine learning with
population-based foot shape and plantar pressure measures
can be used to classify habitually barefoot and shod groups
more broadly from an adapted biomechanics perspective. The
primary objective of this study was to assess and classify foot
shape and dynamic plantar pressure patterns between barefoot
and shod populations via the Naïve Bayes and SVM algorithms. It
was hypothesized that shod and unshod cohorts could be
separated, and the differences between groups would be
primarily related to the plantar pressure beneath the big toe
and first-fifth metatarsals (M1-M5).

2 MATERIALS AND METHODS

2.1 Participants
One hundred and forty-six age-matched barefoot (n = 78) and
shod (n = 68) participants were recruited for this study. The
anthropometric parameters included age: 21.3 years, mass:
68.7 ± 6.3 kg, height: 1.73 ± 0.06 m and BMI: 23.0 ± 1.3 kg/
m2 for the barefoot population and age: 22.1 years, mass: 71.2 ±
6.1 kg, height: 1.76 ± 0.04 m and BMI: 22.9 ± 1.4 kg/m2 for the
habitual shod population. The BMI of all included participants
was within the normal range (BMI 18.5–25 kg/m2). The
experimental and data collection protocol was approved by
the local Ethics Committee (RAGH20170306). The unshod
population was from southern Indian volunteers exhibiting
habitual barefoot gait since birth, and the shod cohort was
from China. All participants were free from lower limb injury

in the previous 6 months and were informed of the
experimental protocols, objectives, and requirements, and
informed written consent was obtained from participants
before the experiment.

2.2 Data Collection and Processing
the foot shape of each participants’ right foot was scanned
using the Easy-Foot-Scan (OrthoBaltic, Kaunas, and
Lithuania). The resolution, smooth factor, and hole filling
parameters were set as 1.0, 30, and 100 mm, respectively
(Xiang et al., 2018). Participants normally stand with
shoulder width between their legs while scanning
(Figure 1A). The plantar pressure was collected from a
Novel EMED® force plate (Novel GmbH, Munich,
Germany) fixed in the middle of a 15 m gait path with the
same surrounding dimensions in the gait laboratory
(Figure 1B). The frequency of recording the dynamic
plantar pressure pattern was 100 Hz. Before the data
collection, each participant spent 5 mins on the lab setting
familiarization. A self-selected gait speed was adopted for each
participant during plantar pressure collection to enable the
natural gait patterns. Walking and running speeds were 1.3 ±
0.3 m/s and 3.0 ± 0.4 m/s for barefoot people and 1.2 ± 0.2 m/s
and 3.0 ± 0.4 m/s for shod participants. A mid-gait protocol
was used for both walking and running sessions (Wearing
et al., 1999). Specifically, the fourth step was captured for each
trial, followed by four steps after striking the pressure plate.
More details of this experimental protocol can be reviewed in
our previous study (Mei et al., 2019). Data were discarded if the
participant presented any gait adjustment or the foot was not
in full contact with the force plate for each trial. Finally, four
successful trials with the right foot striking on the force plate of
each session were obtained for further data processing. The
mean of four trials for each participant was used for further
analyses.

Foot morphology parameters included foot length, foot
width, heel width, the distance between the hallux and the
second toe (hallux distance), the angle between the hallux
and the second toe (hallux angle), and arch index. Those six
variables were inputted for the naïve Bayes classifier. The hallux
angle is the angle created by the deviation of the hallux away
from the tangent line connecting the medial heel and medial
forefoot. Details of calculating the hallux distance and angle are
shown in our previous study (Shu et al., 2015). We evaluated the
arch index as the midfoot divided by the whole foot regions
except the toes (Mei et al., 2019). With the assistance of the
Novel data processing software (Munich, Germany), the
pressure data were collected, including 11 regions within the
foot plantar surface, specifically: big toe (BT), other toes (OT),
M1-M5, medial midfoot (MM), lateral midfoot (LM), medial
rearfoot (MR) and lateral rearfoot (LR), and with further details
in our previous study (Mei et al., 2019). Peak pressure can well-
represent foot loading characteristics during walking and
running and is the most commonly used plantar pressure
parameter in previous studies. Therefore, peak pressure was
recorded in this study. So, 22 features were considered for the
use of the SVM algorithm.
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2.3 Data Preprocessing and Machine
Learning Approaches
2.3.1 Feature Extraction and Selection
The PCA algorithm was used for dimensionality reduction
and feature extraction from raw plantar pressure data. The
explained variance ratio for each principal component (PC)
from 22 variables 1) and 1st and 2nd PCs classed for barefoot
and shod groups 2) are depicted in Figure 2. The eigenvalues
that explain the percentage of cumulative variance were set as
90%. Eleven PCs features were extracted for the SVM
classifier.

A recursive feature elimination (RFE) method was used for
variable selection. During the selection of the optimal number
of features, SVC with a linear kernel was used as the estimator.
To obtain an unbiased accuracy for the feature selection and
keep the un-seen test data, the feature raking was integrated
into a five-fold cross-validation procedure (Dindorf et al.,
2021). After recursively ranking the features’ importance, 16
features were left preserving the highest cross-validation
accuracy obtained from the whole 22 features (as shown in
Figure 3A). These variables include BT, M2, M4, MM, LM,

MR, and LR in walking plantar pressure pattern and BT, M1-
M5, LM, MR, and LR in running gait. t-Distributed Stochastic
Neighbor Embedding (t-SNE) is a great tool to visualize high-
dimensional data in a two-dimensional space by minimizing
the Kullback-Leibler divergence. t-SNE visualization of 16
variables for the classification of barefoot and shod groups
are shown in Figure 3B.

FIGURE 2 | Explained variance percentage by each PC (A) and plot of 1st and 2nd PCs for barefoot and shod groups (B).

FIGURE 3 | The number of features selected alter cross-validation score (A), t-SNE visualization of selected 16 features (B). Orange color denotes features from
walking and green color indicates features from running.

TABLE 1 | Participant and foot shape information.

Barefoot Shod t-statistic p

Height (cm) 172.9 ± 5.7 176.0 ± 4.2 −3.78 <0.01*
Mass (kg) 68.7 ± 6.3 71.2 ± 6.1 −2.42 0.02*
BMI (kg/m2) 23.0 ± 1.3 22.9 ± 1.4 0.02 0.98
Hallux distance (mm) 25.3 ± 12.1 5.9 ± 6.3 11.84 <0.01*
Hallux angle (°) 0.6 ± 4.4 −8.6 ± 4.7 12.30 <0.01*
Foot length (mm) 259.2 ± 13.0 257.0 ± 11.6 1.08 0.28
Foot width (mm) 120.0 ± 11.6 111.1 ± 13.1 4.37 <0.01*
Heel width (mm) 62.8 ± 4.8 59.7 ± 3.6 4.40 <0.01*
Arch index 0.2 ± 0.02 0.2 ± 0.02 1.22 0.22

Note: * represents p < 0.05.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org March 2022 | Volume 10 | Article 8432044

Xiang et al. Foot Automatic Classification

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


2.3.2 SVM and Naive Bayes Classifiers
Logistic regression, K nearest neighbor, SVM, Naïve Bayes,
decision tree, random forest, and XGBoost were adopted as
classifier candidates. In this study, we selected SVM to classify
plantar pressure and Gaussian Naïve Bayes to identify foot
metrics differences between unshod and shod cohorts based
on the performance of 10-fold cross-validation. All variables
were standardized during the data preprocessing to a mean of
0 and a standard deviation of 1. Data were split to 70% for
training and validation and 30% for testing.

The SVM algorithm constructs a hyperplane that aims to
separate between classes in the present dataset by maximizing the
margin using support vectors. Feature extraction and selection
were performed separately for the SVM algorithm based on the
present plantar pressure data. To avoid the limitation of the linear
kernel, a Gaussian radial basis kernel was selected for the
SVM model.

Regularization combats overfitting by making the model
coefficients or weights smaller. More regularization causes
lower training accuracy and higher test accuracy
(underfitting), and vice versa. A larger C during
regularization can lead to overfitting. Specifically, the soft
margin parameter of C means the trade-off between margin
width and misclassification rate (Fukuchi et al., 2011). A small
gamma in the SVM model leads to smoother boundaries, and a
larger gamma leads to more complex boundaries. In order to
balance the accuracy of the model and avoid overfitting-
underfitting problems, hyperparameter tuning using k-fold
gride search cross-validation (GridSearchCV) was performed.
A C-parameter was chosen as 1 from the range of C: {0.01, 0.1, 1,
10, and 100}, gamma was selected as 0.1 from the range of
gamma: {0.0001, 0.001, 0.01, 0.1, and 1}.

To assess the ability of the classifier in predicting categories, 10-
fold cross-validation was employed (Fukuchi et al., 2011). Training

FIGURE 4 | The peak pressure of barefoot and shod cohorts during walking (A) and running (B). Note: * represents p < 0.05.

TABLE 2 | The classification report of SVM classifiers.

Number of
observations

Cross- validation
accuracy

Accuracy Precision Recall F1-
score

Matthews
correlation
coefficient

Naïve Bayes Validation
dataset
Barefoot 53 0.89 0.89 0.91 0.90 0.78
Shod 49 0.90 0.88 0.89
Test dataset
Barefoot 25 0.93 1.00 0.88 0.94 0.87
Shod 19 0.86 1.00 0.93

SVM Validation
dataset

PCA-based SVM
model

Barefoot 54 0.96 0.93 1.00 0.96 0.92
Shod 48 1.00 0.92 0.96

RFE-based SVM
model

Barefoot 51 0.98 0.98 0.98 0.98 0.96
Shod 51 0.98 0.98 0.98
Test dataset

PCA-based SVM
model

Barefoot 24 0.95 0.96 0.96 0.96 0.91
Shod 20 0.95 0.95 0.95

RFE-based SVM
model

Barefoot 27 0.95 0.93 1.00 0.96 0.91
Shod 17 1.00 0.88 0.94

Note: SVM, support vector machine; PCA, principal component analysis; RFE, recursive feature elimination.
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and validation data were separated into ten subsets to determine the
cross-validation performance. Nine subsets were used for training the
classifier for each validation, and one subset was used for testing.
Accuracy, precision, recall, F1-score, and the Matthews correlation
coefficient were employed to evaluate classifiers’ performance.

2.4 Statistical Analysis
A Shapiro-Wilk test was performed to examine data
normality. The statistical difference between barefoot and
shod groups was checked using an independent t-test in
Python with the SciPy library. The significance level was
set at p < 0.05.

3 RESULTS

3.1 Foot Shape and Plantar Pressure
The foot and heel width are 120.0 ± 11.6 and 62.8 ± 4.8 mm in the
barefoot groups, corresponding with 111.1 ± 13.1 mm (p < 0.01)
and 59.7 ± 3.6 mm (p < 0.01) in the shod group (Table 1). Hallux
distance and hallux angle present significant differences
statistically (p < 0.01 and p < 0.01).

The boxplot of plantar pressure for the walking (A) and
running (B) between barefoot and shod groups is shown in
Figure 4. The independent t-test showed that peak pressure in

the barefoot group during walking was decreased significantly in
the M2 (33.0%), M4 (21.2%), MM (15.3%), LM (8.8%), MR
(24.7%), and LR (19.2%). For the shod group, peak pressure in the
M1-M5 during running was significantly higher than the
counterparts, increasing 34.8, 37.3, 29.2, 31.7, and 40.1%,
respectively. LM, MR and LR also presented the increased
peak pressure in the shod group (18.7, 53.3, and 50.8%,
respectively).

3.2 The Performance of Classifiers
Regarding the foot morphology of barefoot and shod populations,
the cross-validation accuracy of the Gaussian Naïve Bayes model
achieved an accuracy of 89%, while the accuracy of the test dataset
achieved was 93% (Table 2). For the resulting RFE-based SVM
model, the average 10-fold cross-validation score was 0.98, and
the PCA-based SVM model achieved a mean score of 0.96. Both
feature extract-based and feature select-based SVM models
achieved the test accuracy of 95%. The confusion matrixes of
the Gaussian Naïve Bayes and SVM models are presented in
Figure 5. The classification report is shown in Table 2.

4 DISCUSSION

Our study proposes a method that enhances routinely used
plantar pressure patterns by integrating with foot shape to

FIGURE 5 | The confusion matrix of training (A) and test dataset (B) of Naïve Bayes classifier; the confusion Matrix of test dataset for RFE-based SVM model (C)
and for PCA-based SVM model (D).
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broaden the classification of shod and barefoot individuals.
Plantar pressure is easily measured in gait labs and available in
many sports store fitting rooms. Additionally, modern phones
are now able to capture foot shape with downloaded apps and
our technique is designed to utilise this shape metric to
broaden prediction capability. The foot shape of barefoot
runners has been clearly documented to be a good predictor
in terms of hallux-spacing (Shu et al., 2015). Where our
method is advantageous is with amateur runners who are
wanting to attempt barefoot running but may not have the
appropriate foot shape and plantar pressure profile associated
with adapted barefoot runners. Our algorithm will highlight if
they share barefoot characteristics and can transition easily, or
do not fit the traditional barefoot profile, and should transition
with care.

The present study identifies unique foot morphology and
plantar pressure patterns between barefoot and shod cohorts via
the Naïve Bayes and SVM with the different feature selection
and extraction methods. Consistent with our hypothesis,
dynamic pressure during locomotion could be utilized to
separate and classify the barefoot and shod categories with
an accuracy of over 95%. Foot shape also is a critical index
for identifying these two groups. Focused on foot shape and
pressure to understand and classify them is more accurate and
appropriate. Furthermore, barefoot running has got popular in
recent years. Some runners may suffer injuries during
translating to barefoot running. However, these could not be
evaluated or directly measured. Using the machine learning
approaches in this study, we could identify people who could
and when translated loading patterns during running using foot
shape and function measures. Therefore, this method could help
identify if gait from a novice barefoot runner translates to
habitually barefoot gait.

D’Août et al. (2009) demonstrated that barefoot populations
presented relatively longer and wider foot metrics than shod
cohorts. Furthermore, wider toe regions are also a significant
characteristic for habitual or native barefoot people (Hoffmann,
1905). Shu et al. (2015) illustrated that barefoot runners have a
bigger hallux to second toe distance and angle. This study proved
that barefoot and shod populations exhibited foot metrics are
differentiated and could be separated by the Naïve Bayes
classifier. Those differences were mainly in the forefoot (hallux
and metatarsal regions) and foot width.

The SVMmodel in this study was compared with other related
studies to evaluate the performance of the classification model
(Table 3). Several reports have shown that the SVM classifier is a
crucial tool for classification problems in sports medicine and

lower limb biomechanics (Xiang et al., 2022; Phinyomark et al.,
2015; Christian et al., 2016). In the previous studies, an
unsupervised PCA algorithm was commonly used in data
preprocessing for discovering the underlying low-dimensional
manifolds in high-dimensional datasets (Zdybał et al., 2020) and
for data extraction consideration (Wu and Wang, 2008; Taylor
et al., 2013; Clermont et al., 2017; Suda et al., 2020). Eleven low-
dimensional features were extracted in our study, explaining 90%
cumulative variance of the original data. However, intermediate-
and higher-order principal components (PCs) may also contain
variables to assess the classifiers’ performance (Phinyomark et al.,
2015). Furthermore, the extracted topological characteristics may
make the findings hard to understand and interpret by the
original dataset.

RFE generates the feature coefficients or importance values
based on the wrapper-type variable ranking algorithm. The
SVM-RFE approach was employed in this study, and variables
with the highest relevance got the highest ranking score
(Dindorf et al., 2021). It can be used to explore the internal
relationship between the original data and the results without
extra redundant information. This study found that both PCA
and RFE preprocessing methods can build a well-performed
classifier with the same accuracy. Future studies shall apply
machine learning (i.e., SVM) to identify foot-ankle
complexity and gait characteristics with appropriate
preprocessing techniques.

Previous studies (Eskofier et al., 2012; Bisele et al., 2017) have
identified unique low limb kinematics and kinetics characteristics
between barefoot and shod groups during running. Nevertheless,
data were collected from the habitually shod cohort.
Furthermore, the gait differences were primarily in the plantar
loadings following the foot shape (D’Août et al., 2009). This study
found the foot shape and plantar pressure differences between
habitual shod and barefoot cohorts statistically and from a
perspective of machine learning (i.e., SVM and naïve Bayes).
Foot functions are linked with morphology. The differential form
and function between groups could contribute to understanding
the mechanics of running-related injuries in novice barefoot
runners because they adopted similar loading patterns but
without midsole cushioning from footwear, compared with
habitually shod people. Furthermore, this study benefits
footwear selection as barefoot cohorts own different forefoot
shapes and higher peak pressure during running in the M1-
M5 regions.

Given the high running-related injuries in the modern day
(Dempster et al., 2021), barefoot running is expected to reduce
overall musculoskeletal injury risk as it is the natural way to run

TABLE 3 | Comparison of the performance of the SVM model in this study with relevant studies.

Study Subject Feature Classifier Target Accuracy (%)

Eskofier et al. (2012) 80 Kinematics and kinetics AdaBoost barefoot/shod 98.3
Chen et al. (2021) 12 Plantar pressure images ANN Walking speeds and durations 94
Terrier, (2020) 36 Center of pressure trajectory CNN Footstep recognition 99.9
This study 146 Plantar pressure SVM Barefoot/shod 95

Note: ANN, artificial neural network; CNN, convolutional neural network; SVM, support vector machine.
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biologically (Lieberman, 2012). Barefoot running increases
sensory feedback, neuromuscular control, and intrinsic foot
muscle strength (Altman and Davis, 2016). Previous studies
indicated that barefoot runners with forefoot strike patterns
generate smaller collision forces than shod runners presenting
rearfoot strike (Lieberman et al., 2010). Also, forefoot strikers
exhibited one peak ground reaction force compared with two
peak forces in rearfoot strikers during running (Lieberman,
2012). It is known that the habitual barefoot runners are
typically loading with a forefoot strike (D’Août et al., 2009;
Lieberman et al., 2010). The barefoot population also presents
more uniform loading distributions during gait (D’Août et al.,
2009). In this study, the plantar pressure during running was
significantly decreased in the barefoot group, especially in the
rearfoot. However, strike pattern was not part of the screening
factor while recruiting the participants, which should be
considered when explaining the findings of this study.

However, barefoot or minimalist shoes increase lower
extremity instantaneous loading rate, peak heel, and tibia
acceleration, compared with wearing cushioned shoes
(Sinclair et al., 2016; Agresta et al., 2018). The higher foot
and calf injury incidence was presented in the barefoot
runners (Altman and Davis, 2016). This study found that
the plantar pressure during running showed two typical
patterns between the unshod and shod groups. M1 and M5
showed significant differences statistically and are the crucial
features that contribute to the good performance of the
classifier. It is consistent with previous kinetics findings
(Lieberman et al., 2010; Bonacci et al., 2013) that the
impact loading in the barefoot running condition was
lower than that of the shod group. This finding may be
explained by the fact that the participants from the
barefoot group have habitually been barefoot since they
were born. Therefore, long-term unshod locomotion
decreases impact loading and promotes foot strengthening
(Miller et al., 2014; Davis et al., 2017).

Furthermore, immediately changing to barefoot or wearing
minimal shoes may cause increased injuries among habitually
shod runners (Altman and Davis, 2016). This study found that
barefoot and shod participants adopted differential loading
patterns, regardless of foot strike pattern. Peak pressure is
reduced for habitual barefoot runners compared with runners
running in cushioned shoes. However, plantar pressure and
lower limb loading are the same as shod runners for the novice
barefoot runner. Therefore, novice barefoot runners without
cushioned footwear protection undertake increased plantar
loading than habitual barefoot counterparts during running.
Foot pressure difference during running may be a potential
factor that causes a high injury rate among novice barefoot
runners or runners transitioning to barefoot running, especially
in the foot.

Despite the promising findings, this study had the main
limitations: the barefoot and shod participants came from
different socio-cultural backgrounds. This difference may
influence our results. Future studies should evaluate and
predict different injury risk factors between barefoot and
shod cohorts during gaits and shed light on the injury

mechanics for novice barefoot runners. Time and effort
are not considered the advantages of this study, as
collecting foot pressure and foot anthropomorphic data is
more time-consuming than a questionnaire method.
However, this study helps to mark the critical
biomechanical variables that contributed to classifying
barefoot and shod people, particularly foot pressure during
running. Classifying barefoot and shod people based on their
running using the SVM could accurately identify the gait
translation phase from shod running to barefoot running
than any other method.

5 CONCLUSION

In summary, the primary advantage of our method is the
inclusion of foot shape for broader classification (in addition
to plantar pressure). We have trained our model on a
population of foot shapes that represent habitually barefoot
and shod populations. Classifying feet based on consideration
of both shape and plantar pressure is likely to lead to better
shoe matching and guidance to practitioners on whether a
person’s foot aligns with a barefoot or shod profile. Foot
metrics could be identified through the Naïve Bayes
algorithm. Furthermore, this study utilized the SVM
classifier based on PCA feature extraction and RFE feature
selection methods to separate and classify the barefoot and
shod populations via walking and running plantar pressure
parameters. Forefoot shape could also classify barefoot and
unshod populations. Dynamic pressure patterns, especially in
the forefoot regions, contribute more to identifying these two
cohorts during running.
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