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Knee meniscus injuries are the most frequent causes of orthopedic surgical procedures in
the U.S., motivating tissue engineering attempts and the need for suitable animal models.
Despite extensive use in cardiovascular research and the existence of characterization data
for the menisci of farm pigs, the farm pig may not be a desirable preclinical model for the
meniscus due to rapid weight gain. Minipigs are conducive to in vivo experiments due to their
slower growth rate than farm pigs and similarity in weight to humans. However,
characterization of minipig knee menisci is lacking. The objective of this study was to
extensively characterize structural and functional properties within different regions of both
medial and lateral Yucatan minipig knee menisci to inform this model’s suitability as a
preclinical model for meniscal therapies. Menisci measured 23.2–24.8mm in
anteroposterior length (33–40mm for human), 7.7–11.4mm in width (8.3–14.8mm for
human), and 6.4–8.4mm in peripheral height (5–7mm for human). Per wet weight,
biochemical evaluation revealed 23.9–31.3% collagen (COL; 22% for human) and
1.20–2.57% glycosaminoglycans (GAG; 0.8% for human). Also, per dry weight,
pyridinoline crosslinks (PYR) were 0.12–0.16% (0.12% for human) and, when normalized
to collagen content, reached as high as 1.45–1.96 ng/µg. Biomechanical testing revealed
circumferential Young’s modulus of 78.4–116.2MPa (100–300MPa for human),
circumferential ultimate tensile strength (UTS) of 18.2–25.9MPa (12–18MPa for human),
radial Young’s modulus of 2.5–10.9MPa (10–30MPa for human), radial UTS of
2.5–4.2MPa (1–4MPa for human), aggregate modulus of 157–287 kPa (100–150 kPa
for human), and shear modulus of 91–147 kPa (120 kPa for human). Anisotropy indices
ranged from 11.2–49.4 and 6.3–11.2 for tensile stiffness and strength (approximately 10 for
human), respectively. Regional differences in mechanical and biochemical properties within
the minipig medial meniscus were observed; specifically, GAG, PYR, PYR/COL, radial
stiffness, and Young’s modulus anisotropy varied by region. The posterior region of the
medial meniscus exhibited the lowest radial stiffness, which is also seen in humans and
corresponds to the most prevalent location for meniscal lesions. Overall, similarities between
minipig and human menisci support the use of minipigs for meniscus translational research.
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INTRODUCTION

Damage to the knee meniscus can result from trauma or age-
related degeneration; meniscal lesions are the most common
intra-articular knee injury and account for the most frequent
cause of orthopedic surgical procedures in the U.S. (Salata et al.,
2010). Specifically, up to 20% of orthopedic procedures involve
surgery on the meniscus, leading to approximately 850,00
patients per year (Logerstedt et al., 2010). The medial
meniscus is about 4-times more likely to be damaged and
undergo surgery compared to the lateral meniscus (Baker
et al., 1985). Additionally, the meniscus is a fibrocartilaginous
tissue that is nearly avascular and, thus, is generally not amenable
to repair. Differences in injury prevalence between medial and
lateral menisci can result from differences in structural properties
and, thus, functionality, making it important to consider these
properties during every step of developing new therapies, such as
tissue engineered menisci.

Options for the management of meniscal injuries vary with
respect to disease severity and type, ranging from physical
therapy to invasive surgical intervention (Herrlin et al., 2007;
Maffulli et al., 2010; Katz et al., 2013). Meniscectomy, the partial
or complete removal of the knee meniscus, can relieve pain but is
reserved for cases in which meniscus repair is unlikely (e.g., tears
in the avascular portion) (Barber-Westin and Noyes, 2014; Xu
and Zhao, 2015). Removal of either meniscus greatly predisposes
a patient to osteoarthritis (Rangger et al., 1997). Thus, novel
regenerative solutions for knee meniscus repair and replacement
are required. Toward demonstrating efficacy of novel meniscal
therapies, appropriate animal models will be needed to traverse
the regulatory process. These animals should have menisci with
morphological, biomechanical, and biochemical properties that
are comparable to humans; similarities in gait, joint anatomy, and
joint biomechanics should also be considered to facilitate
translation (Donahue et al., 2019).

Engineered meniscal tissues are expected to experience
complex loading patterns within the knee. For example,
human medial menisci have been shown to have mechanical
properties that vary by topographical location (Sweigart et al.,
2004). Additionally, knee menisci have anisotropic tensile
properties, or different mechanical properties when tested in
circumferential versus radial directions; this difference in
mechanical properties stems from circumferentially aligned
collagen fibers that convert compressive forces into tensile
hoop stresses. It is posited that tissue engineered implants
should closely resemble the native tissue toward restoring
function in vivo; thus, acquisition of complete design
parameters from native tissue is crucial. Furthermore,
engineered implants would require testing in a large animal
model to show safety and efficacy prior to human trials
(Donahue et al., 2019). Although characterization studies of
human and farm pig knee menisci have been conducted
(Sweigart et al., 2004; Sweigart and Athanasiou, 2005; Takroni
et al., 2016) and bovine cells have been used to tissue engineer
menisci (Huey and Athanasiou, 2011; Hadidi and Athanasiou,
2013; Gonzalez-Leon et al., 2020), neither farm pig nor bovine
models may be suitable for preclinical testing due to these animals

being vastly different from humans in terms of weight. More
frequently, animal models such as the goat, sheep, dog, and rabbit
have been used for meniscus studies (Chevrier et al., 2009;
Deponti et al., 2015; Bansal et al., 2017; Brzezinski et al.,
2017). An emerging large animal model is the minipig, which
has been proposed as a possible model that can be incorporated
into future guidance documents for meniscus repair (Donahue
et al., 2019), but data on the knee menisci of minipigs are lacking.

The minipig model, specifically the Yucatan breed, is often
used in biomedical research (Khoshnevis et al., 2017, 2020;
Poupin et al., 2019; Melnick et al., 2020) and has been gaining
popularity in orthopedic research and musculoskeletal science
(Cone et al., 2017; Bansal et al., 2020; Kremen et al., 2020;
Nordberg et al., 2021). Yucatan minipigs share physiological
similarities with humans. For example, minipig neural
vascularization patterns, central nervous system physiology,
and weights are comparable to humans (Vodička et al., 2005;
Walpole et al., 2012; Moriguchi et al., 2013; Kim et al., 2015);
additionally, adult pig menisci have been shown to have similar
vascularization patterns to humans (Peretti et al., 2004). In
contrast to farm pigs, minipigs are more suitable for long-term
studies because their smaller size leads to reductions in needs
related to handling, housing, surgery, anesthesia, and food
(Mardas et al., 2014). Particularly important is that the
minipig weight gain throughout a study is not as drastic as
farm pigs. For example, a Yucatan minipig weighs
approximately 20–30 kg at sexual maturity (5–6 months old)
and has a typical growth rate of 3–5 kg per month, while
Yorkshire/Landrace hybrid pigs at sexual maturity
(5–6 months) weigh well over 100 kg and continue to grow at
10–20 kg per month (Swine Models Premier BioSource). Because
the Yucatan minipig provides physiological similarities to
humans, requires less resources for surgery and handling, and
change less over a study’s period as compared to farm pigs, its
potential as a large animal model for meniscus research should be
investigated, particularly through characterization of
morphological, mechanical, and biochemical properties of
native tissue.

This work characterized the medial and lateral knee menisci of
Yucatan minipigs through extensive analyses of structure-function
relationships within the native tissue. Minipig knee menisci were
investigated by gross morphology, histology, mechanical testing
under tension and compression, and biochemical analyses.
Furthermore, motivated by topographical differences in
properties in human menisci, different regions of the minipig
menisci were examined for mechanical anisotropy and degree of
collagen crosslinking to provide greater insight on the native
tissue’s function. Because skeletally mature minipigs are similar
in weight to humans and because regional differences in
mechanical properties have been observed in human menisci,
we hypothesized that 1) gross morphological dimensions of
minipig menisci would fall within human menisci ranges, 2) as
with humans, regional differences in mechanical properties would
be observed in the minipig menisci, and 3) regional differences in
mechanical properties would correspond to differences in collagen,
glycosaminoglycan (GAG), and crosslink content. The data here
will serve to advance our understanding of the regional structure-
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function relationships of minipig knee menisci, to provide
benchmarks to assist the creation of novel regenerative solutions
for human meniscal lesions, and to provide critical information
regarding the suitability of theminipig as amodel for investigations
of the knee meniscus.

MATERIALS AND METHODS

Animals, Knee Meniscus Gross
Morphology, Histology, and Macroscopic
Characterization
Kneemenisci were obtained from eight healthy, skeletally mature,
16–18-month-old male and female Yucatan minipigs that were
sacrificed due to reasons unrelated to this study. Themenisci were
excised and subsequently frozen in PBS-containing protease
inhibitors 10 mmol/L N-ethylmaleimide and 1 mmol/L
phenylmethylsufonyl fluoride (Sigma) at −20°C. Menisci were
thawed and photographed, and the dimensions were measured

using ImageJ (NIH; Figures 1A,2) before dividing each meniscus
into three regions (anterior, central, posterior). Pieces for
mechanical testing and biochemical analysis were resected
from the white-red zone of each region (Figure 1B), while
histology samples comprised of a cross section taken from the
central region of each meniscus. For histology, construct samples
were fixed in 10% neutral buffered formalin, then embedded in
paraffin and sectioned at 5 μm. Safranin-O/fast green, picrosirius
red, and hematoxylin and eosin (H&E) stains were conducted to
visualize GAG, collagen, and cell distributions, respectively
(Figure 3).

Tensile and Compressive Testing
Tensile properties were assessed using uniaxial, strain-to-failure
testing in circumferential and radial directions. Samples were cut
into rectangular strips and photographed, and the dimensions
were measured with ImageJ. Samples were then clamped within a
uniaxial testing machine (Instron model 5,565) and subjected to a
1% s−1 strain rate until failure. Young’s modulus (EY) was
calculated from the linear portion of the stress-strain curve,

FIGURE 1 | Gross morphology measurements and division of minipig knee menisci for mechanical and biochemical analyses. (A) Arrows indicate the locations
where measurements were taken for anteroposterior length, regional width, and peripheral height. (B) Each meniscus was cut into three regions (anterior, central,
posterior). Subsequently, each section was cut into layers from which tensile (circumferential and radial directions), compressive (creep indentation), biochemistry, and
mass spectrometry samples were collected.
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and ultimate tensile strength (UTS) was calculated from the
maximum stress.

Compressive properties were assessed via creep indentation
testing of punches measuring 3 mm in diameter and placed into
an automated indentation machine while submerged in
phosphate buffered saline (PBS), as previously described
(Brown et al., 2018; Espinosa et al., 2021b). Briefly, tissue
punches were tested using a 0.5 mN tare load followed by a
0.04–0.05 N test load to maintain ~10% applied strain. The loads
were applied to the surface of specimens through a 1.0 mm
diameter, flat-ended, porous tip, perpendicular to the surface
at the center of the sample. The sample surface is assumed to be a
semi-infinite half space, which allows the single measurement
point to be representative of the whole sample. The tissue was
allowed to reach creep equilibrium while the deformation was
recorded over time. Using the analytical solution for the
axisymmetric Boussinesq problem with Papkovich potential
functions, preliminary estimations of the aggregate modulus of
the samples were obtained. Using the linear biphasic theory
followed by a finite element model, intrinsic biomechanical
properties of the samples such as aggregate modulus, shear
modulus, Poisson’s ratio, and permeability were calculated
(Athanasiou et al., 1995; Elder et al., 2010).

Analysis of Tissue Biochemical Content
Biochemistry samples were weighed wet, then frozen and
lyophilized to acquire dry weights. Collagen content was
measured with the use of a Sircol standard (Biocolor) and a
modified chloramine-T colorimetric hydroxyproline assay
(Cissell et al., 2017). GAG content was quantified using the
Blyscan Glycosaminoglycan assay kit (Biocolor). All
quantification measurements for collagen and GAG content
were performed with a GENios spectrophotometer/
spectrofluorometer (TECAN).

Quantification of pyridinoline crosslink content was
performed via a liquid chromatography mass spectrometry
(LC-MS) assay (Naffa et al., 2019). Lyophilized samples were
hydrolyzed in 6N HCl at 105°C for 18 h. After evaporation, dried
hydrolysates were resuspended in 25% (v/v) acetonitrile and 0.1%
(v/v) formic acid in water, centrifuged at 15,000 g for 5 min, and
the supernatant was transferred to a LCMS autosampler vial.
Liquid chromatography was carried out on a Cogent Diamond
Hydride HPLC Column (2.1 mm × 150 mm, particle size 2.2 μm,
pore size 120 Å, MicroSolv) and a pyridinoline standard (BOC
Sciences) as previously described (Gonzalez-Leon et al., 2020).

Statistical Analysis
For each biomechanical, biochemical, and morphological test, n =
5–7 samples were used. To identify outliers within groups, a
ROUT test was applied using GraphPad Prism software; no
outliers were identified. A Shapiro-Wilk test was applied using
alpha = 0.01 to confirm that data within groups were normally
distributed. Data were first analyzed using a Student’s t-test
comparing aggregated data from all regions of the medial and
of the lateral menisci to discern differences between the two sides.
This level of analysis was motivated by literature showing that
properties within medial and lateral menisci are different across

multiple species. Next, a single factor analysis of variance
(ANOVA) or Kruskal–Wallis test was used when appropriate
to determine, for each meniscus, whether the properties differed
by region; the levels consisted of anterior, central, and posterior
regions. A Tukey’s HSD post hoc test was performed when
merited. All statistics were performed with p < 0.05. All data
are presented as means ± standard deviations. For all figures, a
connecting letters report shows statistical significance as
indicated by groups not sharing the same letters.

RESULTS

Gross Morphology and Histology
The Yucatan minipig medial and lateral menisci were semi-lunar
and wedge shaped (Figures 2, 3), with anteroposterior lengths of
23.2 and 24.8 mm, respectively; no significant difference in length
was found between the two groups (Table 1). Significant

FIGURE 2 | Gross morphology of Yucatan minipig knee menisci.
Articulating surfaces and side profiles of medial and lateral menisci are shown.
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difference was observed in width; medial meniscus width ranged
from 7.7 to 10.2 mm across its regions while lateral meniscus
width ranged from 8.4 to 11.4 mm. The posterior region was
significantly wider than other regions for bothmenisci. Peripheral
height also differed significantly; the medial and lateral meniscus
peripheral heights varied from 6.4 to 6.6 mm and 6.4–8.4 mm,
respectively. The anterior and posterior regions of the lateral
meniscus exhibited significantly higher peripheral heights when
compared to the central region; there were no significant
differences in peripheral heights among medial meniscus regions.

Tissue Biomechanics
Biomechanical data revealed no significant differences in
circumferential Young’s modulus between medial and lateral
menisci or among their regions, which ranged from 99.4 to
114.1 MPa in the medial meniscus and 78.4–116.2 MPa in the
lateral meniscus (Figure 4A); additionally, circumferential UTS
ranged from 18.2 to 25.9 MPa, though no significant difference
among regions in either meniscus was shown (Figure 4B).
Radial Young’s modulus was not significantly different
between menisci and ranged from 2.5 to 10.9 MPa; however,
the anterior region of the medial meniscus was significantly
higher than the medial posterior region. No significant

differences among regions in the lateral meniscus were
observed (Figure 4C). UTS in the radial direction ranged
from 2.5 to 4.2 MPa. There were no significant differences
between menisci or among regions within either meniscus
(Figure 4D).

Compressive mechanical testing showed a significant
difference in permeability values between medial and lateral
menisci; however, no significant differences were observed
among regions in either meniscus for the values of aggregate
modulus, shear modulus, permeability, and Poisson’s ratio
(Figure 5). Aggregate and shear modulus values ranged from
157 to 287 kPa and 91–147 kPa, respectively; both moduli
trended highest in the anterior region of each meniscus and
trended lowest in the posterior region.

Tissue Biochemistry
A significant difference in hydration percentages was observed
between medial and lateral menisci, which ranged from
64.0–67.8% (Table 1). Biochemical analysis showed collagen
(COL) and GAG throughout both menisci, with
concentrations per wet weight (WW) ranging from
23.9–31.3% COL/WW and 1.20–2.57% GAG/WW, respectively
(Figures 6A,C). There were no significant differences between

FIGURE 3 | Histological staining of Yucatan minipig knee menisci. Cross sections of menisci stained for collagen (picrosirius red), GAG (Safranin-O), and cell
content (H&E) are shown.
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menisci in collagen content normalized to wet weight or dry
weight (DW). Significantly less COL/WW was observed in the
anterior region of the medial meniscus compared to its other
regions, while no significant differences among regions in the
lateral meniscus were observed. COL/DW in the medial meniscus
was significantly higher in the posterior region compared to the
anterior; no significant differences in COL/DW were found
among regions in the lateral meniscus (Figure 6B). Significant
differences between menisci were observed for GAG/WW and
GAG/DW. In the medial meniscus, the anterior region had
significantly more GAG/WW and GAG/DW than the
posterior region; no significant differences in GAG/WW or
GAG/DW were seen among regions in the lateral meniscus
(Figures 6C,D).

Pyridinoline (PYR) crosslink content normalized toWWwas
not significantly different between medial and lateral menisci
and ranged from 0.38 to 0.58 ng/µg. The central region of the
medial meniscus contained significantly more PYR/WW
compared to the anterior; there were no significant
differences in PYR/WW content among lateral meniscus
regions (Figure 6E). In addition, there were no significant
differences in PYR/DW between menisci or among their
regions (Figure 6F). Finally, PYR/COL ranged from 1.45 to
1.96 ng/µg and was not significantly different between medial
and lateral menisci (Figure 6G).

Anisotropy
For the assessment of anisotropy, tensile properties of each region
in both medial and lateral menisci were collected from two testing
directions–circumferential and radial. Circumferential values
were then divided by radial values to produce an anisotropy
index. A significant difference between medial and lateral menisci
was observed for tensile Young’s modulus but not for UTS. The
Young’s modulus anisotropy index ranged from 11.2–49.9 and
was significantly different among regions in the medial meniscus;

the posterior region of the medial meniscus was significantly
higher than other regions in the medial meniscus, while there
were no significant differences among regions in the lateral
meniscus (Figure 7A). UTS anisotropy levels ranged from
6.3–11.2 and no significant differences between menisci or
among regions in either meniscus were found (Figure 7B).

DISCUSSION

The objective of this study was to characterize the knee
menisci of Yucatan minipigs because the minipig has been
proposed as a large animal model for translational cartilage
and meniscus research. This was performed through an
extensive analysis of structure-function relationships within
the native tissue by region, which was motivated by known
regional differences in human menisci. The data may provide
design criteria to tissue engineers who aim to create repair and
replacement technologies for the knee meniscus and to
researchers that aim to test novel meniscal technologies in
large animals. Notably, previously unexplored characteristics,
such as the degree of collagen crosslinking within minipig
menisci, were elucidated using an LC-MS assay. With regard
to the hypothesis that gross morphological properties would
be comparable to human menisci ranges, it was found that the
regional width and peripheral height of minipig menisci fell
within human ranges. Additional hypotheses that regional
differences in mechanical properties would be observed and
that regional differences in mechanical properties would
correspond to differences in structural characteristics were
also supported by the data. Support for these hypotheses is
significant because the data imply that analogous products
designed for human menisci would likely be functional in the
minipig, allowing for human meniscal products to be tested in
this animal.

TABLE 1 | Morphological properties of minipig menisci. Student’s t-test showed a significant difference between medial and lateral menisci in hydration, width, and
peripheral height values. For comparison of regions within each meniscus, Tukey’s HSD test showed significant differences among regions for both menisci in width,
while the lateral meniscus exhibited differences in peripheral height values among its regions. Values marked with different letters within each category are significantly
different among groups (p < 0.05), n = 7–8 per group. Human values of morphological properties from the literature are shown for comparison (Proffen et al., 2012; Takroni
et al., 2016).

Meniscus Region Hydration
(%)

Average
hydration

(%)

Antero-posterior
Length (mm)

Width
(mm)

Average
Width (mm)

Peripheral
height
(mm)

Average Peripheral
Height (mm)

Medial
(Minipig)

Anterior 65.8 ± 2.7 64.0 ± 2.8B 23.2 ± 1.3 8.6 ± 0.8B 8.8 ± 0.9B 6.6 ± 0.7 6.5 ± 0.8B

Central 62.3 ± 3.3 7.7 ± 0.9B 6.4 ± 1.0
Posterior 64.2 ± 1 10.2 ± 0.6A 6.6 ± 0.9

Lateral
(Minipig)

Anterior 68.5 ± 2.5 67.8 ± 3.5A 24.8 ± 2.4 9.4 ± 0.7B 9.7 ± 0.9A 7.9 ± 0.7A 7.5 ± 1.3A

Central 67.8 ± 3.5 8.4 ± 0.9B 6.4 ± 0.8B

Posterior 67.1 ± 4.9 11.4 ± 1.1A 8.4 ± 1.4A

Medial
(Human)

Anterior N/A 70–75 39.8 ± 3.7 8.5 ± 0.6 10.6 ± 0.8 5.5 ± 0.3 5.8 ± 0.3
Central 8.3 ± 0.5 5.0 ± 0.5
Posterior 14.8 ± 0.8 7.0 ± 0.7

Lateral
(Human

Anterior N/A 33.3 ± 3.5 11.5 ± 0.4 11.6 ± 0.2 6.4 ± 0.9 6.3 ± 0.4
Central 11.6 ± 0.5 6.3 ± 0.5
Posterior 11.7 ± 0.3 6.2 ± 0.8
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Morphological features of the Yucatan minipig menisci were
measured to assess the similarity between native minipig and
human tissue; morphologically similar tissues between species
could allow for translation of surgical techniques in addition to
engineered meniscus implants. This study found minipig menisci
to be comparable to human menisci, which measure
33.3–39.8 mm in anteroposterior length, 8.5–14.8 mm in
peripheral height, and 5–7 mm in regional width, respectively.
For example, values measured for the minipig menisci
dimensions were within ranges seen in human menisci for 2
out of 3 properties - average peripheral height and average
regional width (Erbagci et al., 2004; Takroni et al., 2016); the
lateral minipig meniscus trended higher in anteroposterior length
than the medial meniscus and is approximately 28% shorter in
length than the lateral human meniscus (Yoon et al., 2011).
Despite this difference, minipig anteroposterior lengths are
comparable to other animal models that have been used in
knee meniscus research such as sheep, goats, and farm pigs
that measure 22–26 mm on average (Proffen et al., 2012;
Brzezinski et al., 2017). Additionally, the minipig and human

both exhibit higher peripheral height values in the lateral
meniscus compared to the medial side (Table 1). The
posterior regions of both minipig menisci were significantly
wider than their respective anterior and central regions,
similar to human menisci; the posterior region of the lateral
minipig meniscus, the widest by average in this study, was only
2% smaller than the average width reported for the lateral
meniscus in the human. Additionally, comparable to what is
seen in humans (Chevrier et al., 2009; Fedje-Johnston et al.,
2021), histology of minipig meniscus cross sections showed a
collagen network throughout the tissue, a positive staining for
GAG, and cells dispersed throughout the tissue (Figure 3).
Overall, minipig knee menisci provide gross morphological
similarities to humans in terms of their peripheral height and
regional width, which could allow for the ready implantation and,
eventually, translation of engineered tissues for their repair or
replacement.

The knee meniscus functions by developing tension when
under compressive load, highlighting the importance of both
mechanical properties for the meniscus. It was found that there

FIGURE 4 | Tensile properties of Yucatan minipig knee menisci. (A,B)
Young’s Modulus and UTS of medial and lateral menisci are shown for the
circumferential and radial directions, respectively. No significant difference
was seen in circumferential stiffness and strength; (C,D) radial stiffness in
the anterior region of the medial meniscus was significantly higher than the
posterior region, though no significant difference was seen in radial tensile
strength. All data are presented as means ± standard deviations. Statistical
significance is indicated by bars not sharing the same letters within the same
meniscus; additionally, horizontal dotted lines on the Y-axis represent human
meniscus values from the literature for comparison to the minipig (Tissakht and
Ahmed, 1995; Makris et al., 2011).

FIGURE 5 | Compressive properties of Yucatan minipig knee menisci.
(A–D) Aggregate modulus, permeability, shear modulus, and Poisson’s ratio
are shown for medial and lateral menisci, respectively. Student’s t-test
showed a significant difference between medial and lateral menisci in
permeability values. One-factor ANOVA showed no significant differences in
any compressive property among regions of the same meniscus. All data are
presented as means ± standard deviations. Statistical significance is indicated
by bars not sharing the same letters within the same meniscus; additionally,
horizontal dotted lines on the Y-axis represent human meniscus values from
the literature for comparison to the minipig (Sweigart et al., 2004; Makris et al.,
2011; Morejon et al., 2021).
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were no significant differences in tensile stiffness and strength in
the circumferential or radial directions between medial and
lateral menisci (Figure 4). Additionally, no significant
differences in circumferential tensile properties among
meniscus regions were observed, replicating what is seen in
humans; at their peak, minipig meniscus circumferential
stiffness and strength are 81 and 138% of the peak values
recorded in humans, respectively (Tissakht and Ahmed, 1995).
Radial stiffness of minipig menisci were on par to those of human
menisci; values averaged across both medial and lateral menisci
and regions were 8.3 MPa for the minipig and 10.8 MPa for
humans (Tissakht and Ahmed, 1995) (Figure 4C). In terms of
compressive properties, only permeability was significantly
different between medial and lateral menisci; this difference
between menisci was not seen in human tissue in a study that
measured compressive properties using stress-relaxation
(Morejon et al., 2021). Additionally, the homogeneity seen
among regions in Yucatan minipig menisci (Figure 5) is not
reflected in the human, albeit a similar trend was identified; the
anterior region of the human medial meniscus is stiffer than its
central and posterior regions, and is 80% as stiff as the anterior
region of the medial meniscus in the Yucatan minipig (Sweigart
et al., 2004). Biomechanical properties crucial to meniscus
functionality, such as circumferential and radial tensile
properties, were comparable between minipigs and humans;

FIGURE 6 | Biochemical properties of Yucatan minipig menisci. (A–F)
Collagen, GAG, and pyridinoline crosslink content are shown normalized to
wet and dry weights, respectively, in addition to (G) crosslinks normalized to
collagen content. Student’s t-test shows significant differences between
medial and lateral menisci in GAG content. One-factor ANOVA showed
pyridinoline crosslinks normalized to collagen content was significantly higher
in the central region of the medial meniscus compared to its posterior region;

(Continued )

FIGURE 6 | no significant differences were seen among regions in the lateral
meniscus. All data are presented as means ± standard deviations. Statistical
significance is indicated by bars not sharing the same letters within the same
meniscus; additionally, horizontal dotted lines on the Y-axis represent human
meniscus values from the literature for comparison to the minipig (Herwig
et al., 1984; Takahashi et al., 1998; Makris et al., 2011).

FIGURE 7 | Anisotropy index of Yucatan minipig meniscus tensile
properties. (A,B) Anisotropy indices are shown for tensile Young’s modulus
and UTS, respectively. Student’s t-test showed a significant difference in
Young’s modulus anisotropy values between menisci. One-factor
ANOVA showed the posterior region of the medial meniscus was significantly
more anisotropic in tensile stiffness than its other regions, while no significant
differences were seen among regions of the lateral meniscus. All data are
presented as means ± standard deviations. Statistical significance is indicated
by bars not sharing the same letters within the same meniscus; additionally,
horizontal dotted lines on the Y-axis represent human meniscus values from
the literature for comparison to the minipig (Makris et al., 2011).
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because of this, it is plausible that a meniscus implant with
mechanical properties akin to those of human menisci can
survive within the minipig knee environment during
translational studies.

For humans, longitudinal tears occur more often in the medial
posterior meniscus when compared to the anterior region (Skaggs
et al., 1994). It has been suggested that the posterior region of the
human medial meniscus bears more load than the anterior region
and, thus, experiences larger radial stresses that lead to
longitudinal tears (Ahmed and Burke, 1983). In the minipig,
this study showed that the posterior region exhibited significantly
lower radial stiffness than the anterior region (Figure 4C), which
also corresponded to differences in composition (Figure 5). Thus,
although there are currently no data on meniscal tears in
minipigs, the data here would suggest that, with its lower
mechanical properties, the minipig may share similarities with
humans in having menisci that are more prone to injuries in the
medial posterior region. The mechanical data obtained here may
further be supported by differences in structure, such as the
density or thickness of radially aligned collagen fibers (Skaggs
et al., 1994), which warrant additional structural studies.

Because regional differences in mechanical properties of knee
menisci have been identified in humans and other species such as
cows, farm pigs, rabbits, and baboons (Skaggs et al., 1994;
Tissakht and Ahmed, 1995; Sweigart et al., 2004), it is crucial
to investigate the biochemical composition of minipig menisci
toward understanding their mechanical function. Minipig and
human menisci share similar levels of hydration, with 67.8%
hydration in the anterior region of the minipig lateral meniscus
being just under the literature value of 72% for human menisci
(Makris et al., 2011). Collagen accounts for 23.9–31.3% per wet
weight of minipig meniscus tissue (Figure 6B), and human
menisci contains 22% COL/WW (Herwig et al., 1984). In
terms of GAG content, values in the minipig meniscus
reached as high as 2.73% GAG/WW (Figure 6C), which is
approximately 3-times higher than in humans (Herwig et al.,
1984). Notably, the posterior region of the medial meniscus
contained significantly less GAG per wet and dry weights than
the anterior region. Although there were no significant
differences in compressive properties among regions in the
medial meniscus, the posterior region had the lowest aggregate
and shear moduli values. Overall, minipig meniscus collagen and
GAG content were on par with or slightly exceeded levels seen in
the human.

In addition to measuring collagen and GAG content,
quantifying pyridinoline crosslinks is crucial to understanding
the structure-function relationship of the minipig knee meniscus
because these crosslinks have been shown to correlate with tensile
properties of menisci and other collagenous tissues (Chan et al.,
1998; Williamson et al., 2003; Eleswarapu et al., 2011).
Pyridinoline crosslink content normalized to dry weight
trended highest in the central region of the medial minipig
meniscus and was measured at approximately 0.16%, which is
higher than levels obtained in human menisci using an HPLC
fluorescence detection assay at 0.12% (Takahashi et al., 1998). It
should be noted that values in the present study were obtained
using an LC-MS method, which has been shown to be more

precise and accurate than HPLC fluorescence detection methods
(Milićević et al., 2010; Wang et al., 2012; Bandeira et al., 2013;
Bielajew et al., 2020, 2021). Pyridinoline crosslink content, for
example, has been quantified using LC-MS techniques in bovine
articular cartilage, showing crosslink levels of 0.12% of total dry
weight, which were on par with values recorded in this study
(Espinosa et al., 2021a). The posterior region of the medial
meniscus contained significantly fewer crosslinks normalized
to collagen content compared to the central region
(Figure 6G), which may contribute to the low radial tensile
stiffness in the posterior region. Overall, the medial meniscus
contained regional variability in biochemical content while the
lateral meniscus was more homogeneous throughout; this is
reflected in the mechanical properties and anisotropy indices
of the medial meniscus.

The anisotropic organization of ECM within the meniscus is
crucial to the tissue’s function. Circumferential tensile stiffness
and strength of menisci have been reported to be approximately
10-fold higher than those of the radial direction in many species
(Fithian et al., 1990). Tensile anisotropy indices were also
measured, defined as circumferential tensile properties
normalized to those in the radial direction (Gonzalez-Leon
et al., 2020), in this study for Yucatan minipig menisci tensile
stiffness and strength. These ranged from 11.2–49.9 and 6.3–11.2,
respectively, and were similar to those previously reported
(Fithian et al., 1990). The medial meniscus however, contained
a significantly higher anisotropy index for tensile stiffness in its
posterior region compared to other regions (Figure 7A), likely
stemming from the low tensile properties in the radial direction.
It is worth noting, though, that radial tensile values in this region
of the minipig were still on par with those reported for the same
meniscal region in humans (Tissakht and Ahmed, 1995). In
summary, the posterior region of the minipig meniscus, thus,
has a higher degree of anisotropy, less crosslinked collagen, and
lower radial tensile properties compared to other medial regions;
these findings correspond to a region in the human medial
meniscus where more injuries have been reported (Skaggs
et al., 1994), showing the clinical relevance of using the
minipig as a large animal model.

While this study elucidated that minipig menisci
morphological, mechanical, and biochemical properties fall
within native human tissue ranges, it is important to note that
additional investigations into minipig meniscus properties could
further validate these findings. Meniscus structure-function
relationships have been shown to vary by zone (i.e., outer red-
red zone versus inner white-white zone) in pigs and other species
(Chevrier et al., 2009). Compressive properties and GAG content,
for example, have been shown to be higher in the inner white-
white zone of human and porcine menisci when compared to the
outer red-red zone (Nakano et al., 1997; Scott et al., 1997; Tanaka
et al., 1999); because this study collected biochemical samples
from the middle white-red zone, additional studies are warranted
to compare outer and inner zones. Furthermore, as this study
utilized menisci from both male and female minipigs, sex-specific
differences that may exist in meniscus properties were not able to
be elucidated. Identifying sex-based differences for meniscus
properties, should they exist, might allow for better
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understanding of meniscal function and pathophysiology in
humans; fibrocartilages such as the TMJ disc, for example,
have a higher frequency of injury in female patients when
compared to male patients (Warren and Fried, 2001).
Additionally, human meniscus characteristics such as GAG
content have been shown to decrease with age (Clark and
Ogden, 1983); investigation into minipig menisci at different
stages of development could provide further insight into
appropriate models to consider in preclinical research. These
factors, investigated with an adequate number of experimental
samples to generalize the findings, could thus provide crucial
insight into minipig meniscus structure-function relationships.

The prevalence and economic impact of meniscal injuries
motivate tissue engineers to create novel regenerative solutions.
For these new implant technologies to successfully translate from
the benchtop to the clinic they must first undergo extensive
preclinical testing in a large animal model. It is crucial to find
an appropriate animal model with similar structural, mechanical,
and biochemical characteristics to humans and, ideally, a docile
temperament to facilitate post-surgical care. Minipigs such as the
Yucatan breed have been proposed as animal models for studies
involving injuries to articular cartilage and the knee meniscus.
Engineered meniscal implants should aim to recapitulate native
tissue properties to increase their chances of survival in the native
knee’s biomechanical environment. The characterization this
study provides shows that the Yucatan minipig meniscus is
comparable to humans in terms of morphological, mechanical,

and biochemical properties. In addition, human meniscus injury
patterns were considered when identifying an analogous location
where they may occur in minipigs. These findings provide design
criteria for tissue engineers that aim to create regenerative solutions
to meniscal injuries and support use of the Yucatan minipig as a
large animal model for translating meniscal therapies.
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