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The collection and analysis of biological samples are an effective means of disease
diagnosis and treatment. Blood sampling is a traditional approach in biological
analysis. However, the blood sampling approach inevitably relies on invasive
techniques and is usually performed by a professional. The microneedle (MN)-based
devices have gained increasing attention due to their noninvasive manner compared to the
traditional blood-based analysis method. In the present review, we introduce the materials
for fabrication of MNs. We categorize MN-based devices based on four classes: MNs for
transdermal sampling, biomarker capture, detecting or monitoring analytes, and bio-signal
recording. Their design strategies and corresponding application are highlighted and
discussed in detail. Finally, future perspectives of MN-based devices are discussed.
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INTRODUCTION

Blood sampling has become a common method in modern medical diagnosis due to its high
efficiency and low cost. Many biometric tests are based on blood samples. However, the invasive
sampling methods always accompanied subcutaneous acupuncture or finger pricks that usually lead
to a decrease in patient compliance (Ayala et al., 2009). Meanwhile, blood sampling usually has to be
performed by professionals. Although numerous efforts have been made in minimizing professional
requirements during operation, the pain and discomfort still exist in the frequent finger-prick
sampling with easy-to-use glucose meters. In addition, irregular operation and usage of unsterilized
needles may pose a risk of blood-borne transmission of various biohazard pathogens (Sagoe-Moses
et al., 2001). The disposal of sharp solid waste after blood sampling is also a problem.

Dermal interstitial fluid (ISF) is a portion of the fluid that seeps into the interstitial tissues from
the arterial ends of capillaries. ISF acts as an intermediary between cancer cells and the circulatory
system. Previous studies have proved that the composition and concentration of electrolytes, small
molecules, and proteins in ISF are similar to those in plasma (Kool et al., 2007; Halvorsen et al., 2017;
Niedzwiecki et al., 2018). Furthermore, some of the systemic and skin-derived metabolite biomarkers
in ISF are unique (Muller A. C. et al., 2012; Niedzwiecki et al., 2018). Therefore, ISF is considered a
promising alternative biofluid source with a lot of health-related information. The microneedle-
based devices provide a noninvasive way to access this information.

The skin, the body’s largest organ, is a rich resource supply of ISF. However, the extraction of thisfluid is
restricted by a skin barrier. The stratum corneum, which is 15–20 μm thick, effectively prevents foreign
substances from penetrating the skin (Dervisevic et al., 2020). Microneedles (MNs) are miniaturized
needles with few hundreds of microns in length (Waghule et al., 2019). They can traverse the epidermis
corneum and further insert into the viable epidermis while escaping from contacting any pain-sensing
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neurons or dermal blood vessels (Larraneta et al., 2016b). The first
MNconceptwas proposed byGerstel and Place in 1970 (Gerstel et al.,
1976), while its blooming started until the 1990s after the
development of micro- and nanofabrication techniques (Ventrelli
et al., 2015). Since then, MNs have been fabricated using various
materials with different physicochemical properties (Ali et al., 2019).
The application of MNs initially focused on transdermal delivery of
drugs (Kathuria et al., 2018) and vaccines (Creighton andWoodrow,
2019). Then, the study ofMNs has been explored inmany other areas
including blood sampling (Xue et al., 2018), biosensing (Tasca et al.,
2019), cosmetic (Yang J. et al., 2019), and cancer therapy (Moreira
et al., 2019). MN-based devices have many fascinating properties,
such as painless and minimal invasiveness, which show a great
potential in point-of-care testing (POCT).

In general, MN-based devices can be classified into four
categories according to their functional purposes (Figure 1):
1) MNs are used for transdermal sampling only with the
corresponding materials analyzed by external methods 2) the
MN array is designed to capture biomarkers selectively; 3)
MNs are integrated in a sensor to detect or monitor the
analytes within the skin; and 4) MNs are used for bio-signal
recording platforms.

In the present review, we focus on the recent advances of
microneedle-based devices. The four categories of MN-based
devices and their applications are highlighted and discussed in
detail. Finally, the future perspectives of MN-based devices are
summarized.

MICRONEEDLES FOR TRANSDERMAL
SAMPLING

Four types of MNs (solid MNs, hollow MNs, porous MNs, and
swelling MNs) have been used for transdermal sampling
(Figure 1A). The properties of MNs for transdermal sampling
are summarized in Table 1.

Solid MNs and hollow MNs, made by silicon, glass, and
stainless steel, are usually used for transdermal sampling
(Tariq et al., 2021). Normally, these types of MNs were
punctured on the skin with the ISF collected by a vacuum
pump or a well-absorbent film sucking to withdraw the tissue
fluid for subsequent analysis (Wang et al., 2005; Nalbant and
Boyaci, 2019). For example, Kolluru et al. (2019) designed a two-
component system composed of a strip of paper on the back of
stainless steel MN arrays. First, the MN arrays break the skin
barrier and create micropores that allow the ISF to flow to the skin
surface, in which the ISF can ultimately be sucked and reserved in
the paper strips due to the capillary force. The optimized paper
strip–stainless steel MN array is capable of >2 µl of ISF collection
within 1 min safely and conveniently on a rat skin in vivo.
Nicholas et al. (2018) integrated an enzyme-based colorimetric
glucose sensor to a single hollow MN device and achieved rapid
determination of glucose concentration in simulated ISF with
physiological relevancy. The sharp tip of hollow MNs could help
the MNs to better penetrate the skin. Through the capillary effect
inside the skin, the uptake of ISF within 5 s is demonstrated.

FIGURE 1 | Schematic illustration of categories according to the design strategies of MNs. (A) Transdermal sampling. (B) Biomarker capture. (C)MNs sensor. (D)
Bio-signal recording.
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Solid MNs and hollow MNs have greatly facilitated
transdermal sampling. Nonetheless, instrumental assistance
and multi-step operations are usually required to maintain a

negative pressure during the preparation of MNs, which limits
their application. Additionally, glass- or silicon-based MNs often
suffer from brittleness, which poses a potential safety risk to

TABLE 1 | Properties of MNs for transdermal sampling.

MN
type

MN material Manufacturing
method

Sampling
mechanism

Sampling
amount/efficiency

Reference

Solid Glass Glass pulling Pressure-driven
convection

1–10 µl ISF Wang et al.
(2005)

Polycarbonate — Capillary action — Sato et al.
(2011)

Stainless steel Laser cutting Capillary action >2 µl of ISF in 1 min Kolluru et al.
(2019)

Stainless steel Micromachining Capillary action 2.9 μl of ISF in 30 s Kim et al. (2021)

Hollow Stainless steel Laser cutting Inherent pumping
mechanism

Up to 20 and 60 μl from humans
and rats, respectively

Miller et al.
(2018)

Silicon Micromachining Capillary action — Mukerjee et al.
(2004)

Glycidyl methacrylate, trimethylolpropane
trimethacrylate, and triethylene glycol dimethacrylate

Micromolding Capillary action Extracted simulated ISF
within 5 s

Nicholas et al.
(2018)

Porous Cellulose acetate Phase inversion Capillary action 1.33 mg ISF in 10 min Liu et al. (2020)
PSF, PDA, and PEG Phase inversion Capillary action 1.41 mg ISF in 10 min Liu P. et al.

(2021)
PDMS Mold casting and salt

leaching
Pressure-driven
convection

0.019 µl/min (80 min after
insertion: 0.080 µl/min)

Takeuchi et al.
(2022)

Swelling Acrylate-based hydrogels Micromolding Diffusion 6 µl of ISF in 10 min Laszlo et al.
(2021)

MeHA Micromolding Diffusion 1.4 mg ISF in 1 min Chang et al.
(2017)

MeHA Micromolding Diffusion 3.82 µl of ISF in 3 min Zheng et al.
(2020)

GelMA Micromolding Diffusion 1.9 mg after 5 min Zhu et al. (2020)
PVA/CS Micromolding Diffusion — He R. et al.

(2020)

PDMS, dimethylpolysiloxane; PSF, polysulfone; PDA, polydopamine; PEG, poly(ethylene glycol); MEMS, microelectro-mechanical system; MeHA, methacrylated hyaluronic acid; GelMA,
gelatin methacryloy; PVA, polyvinyl alcohol; CS, chitosan.

TABLE 2 | Properties of MNs for biomarker capture.

MN material Manufacturing method Target biomarker Recognition
mechanism

Sampling
amount/efficiency

Reference

Gold-coated
silicon

Deep reactive ion etching AF-igg Immunoaffinity — Corrie et al. (2010)

Gold-coated
silicon

Deep reactive ion etching Dengue Virus NS1
Protein

Immunoaffinity 8 µg/ml Muller D. A. et al.
(2012)

Polystyrene Micromolding Il-6 matricellular protein
periostin

Immunoaffinity 0.33 pg/ml Wang Z. et al.
(2021)Immunoaffinity —

Al Micromachined,
electrochemical anodization

E2 Immunoaffinity 0.5–1,000 ng/ml
(<1 min)

Kang et al. (2020)

PEG and PEGDA Micromolding TNF-α, IL-1β, IL-6 Immunoaffinity — Zhang et al. (2019)
Glass and ETPTA Micromolding LPS Immunoaffinity 0.0064 EU/ml Yi et al. (2021)
Poly(lactide) Micromolding miR-210 Watson−Crick base pairing ~6.5 μl in 2 min Al Sulaiman et al.

(2019)
AuNWs, PMVE,
and MA

Micromolding EBV Cf DNA Double spatial-orientated recognition 93.6% Yang B. et al.
(2019)

AuNWs, PMVE,
and MA

Micromolding EBV Cf DNA Double spatial-orientated recognition and
reverse iontophoresis

95.4% Yang et al. (2020)

ETPTA, ethoxylated trimethylolpropane triacrylate; LPS, lipopolysaccharide; EBV Cf DNA, Epstein–Barr virus cell-free DNA; AuNWs, Au Nanowires; PMVE, polymethyl vinyl ether-alt; MA,
maleic acid.
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patients and causes environmental hazards (Sivamani et al., 2007;
Larraneta et al., 2016a). One solution to the aforementioned
issues is to replace glass/silicon with porous polymers in MN
fabrication. Porous polymer–based MNs exhibit various
distinctive advantages including desirable biocompatibility,
ease of processing, large cavity, and three-dimensional
connected porous structure. Liu et al. (2020) developed a
phase inversion route to prepare various polymer-based MNs
using cellulose acetate (CA), polysulfone (PSF), polyethersulfone
(PES), polylactic acid (PLA), etc. with high porosity and
interconnected pore structures. The resultant porous
polymer–based MNs can extract ISF rapidly. Liu P. et al.
(2021) have demonstrated a facile and effective method for
interconnected structured and hydrophilic porous polymer
MN modification. The coating layer of PDA provides new
sites for polymers post-functionalization, which is beneficial
for further PEG modification on the polymer matrix. The
imported PEG improved the porous structure hydrophilicity
and enhanced the molecular resistance effect. In addition, this
method could be promoted to other polymer materials such as
PLA and PVDF. The strategy provides a new idea for the
fabrication of hydrophilic and anti-adhesion porous polymer
MNs. Takeuchi et al. (2022) developed a fluidic system that
directly interferes with the porous MNs, in which a capillary
pump was utilized inside the microfluidic chip for continuous ISF
sampling. In detail, the developed device connects a standard
microelectromechanical system (MEMS)-fabricated microfluidic
chip with porous flexible MNs of PDMS. It achieved continuous
flow control of phosphate-buffered saline (PBS). The
development of the device is beneficial for long-term health

monitoring applications based on minimally invasive and
continuous bio-sampling.

Another emerging good candidate for transdermal sampling is
swelling MNs, which generally consist of cross-linked polymer
networks and enable one-step ISF extraction without the aid of
extra devices. Hydrogels are biocompatible and biodegradable.
They are able to cause minimal tissue damage and little
environmental threat after disposal (Herrmann et al., 2021).
Chang et al. (2017) developed a methacrylated hyaluronic acid
(MeHA)-based swellable MN platform, which can extract ISF
efficiently for rapidly metabolic analysis. The MeHA patch could
penetrate into the skin by a thumb press, extracting ≈1.4 mg ISF
within 1 min, while maintaining structure integrity without
leaving residues in the skin. A gelatin methacryloyl (GelMA)-
based MN patch was developed in an 11 × 11 array fashion by a
micromolding approach for minimally invasive ISF sampling
(Figure 2) (Zhu et al., 2020). The properties of the patch
could be adjusted by varying the GelMA prepolymer
concentration and the crosslinking time. The swelling ratios of
resulting patches are between 293 and 423%, and compressive
moduli are between 3.34 and 7.23 MPa. The developed GelMA
MN patch exhibits an efficient extraction of ISF. Laszlo et al.
(2021) proposed two hydrogel-based MN arrays for dermal ISF
proteomics sampling. The developed MN patches could restore
their initial shape even after multiple mandatory washing steps to
erase un-crosslinked polymers. Such a property could prevent
signal-inhibiting effects and chromatographic interferences. The
in vitro and in vivo biocompatibility was demonstrated. The
collection of dermal ISF in vivo is also studied for subsequent
proteomic applications. Zheng et al. (2020) developed a new

FIGURE 2 | Preparation of the GelMAMN patch. (A) Schematic of the MN preparation process. GelMA aqueous solution (aq) was poured into a PDMSmold. After
centrifugation and UV cross-linking, the patch was dried and demolded. (B,C) SEM images show the side view of the GelMA MN array and (D,E) SEM images from the
top view. Aligned conical needles were formed with an approximate height of 600 µm and a bottom diameter of 300 µm. Scale bar: 500 µm in (B) and (D) and 100 µm in
(C) and (E). (F) Picture of the GelMA MN patch containing an 11 × 11 array of MNs over a 1 cm × 1 cm area. Reproduced with permission (Zhu et al., 2020).
Copyright 2020, Wiley.
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osmolyte-composited swellable hydrogel MN for skin ISF
extraction. The developed MN patch is composed of osmolytes
such as maltose and hydrogels such as methacrylated hyaluronic
acid. During extraction, the maltose would dissolve in the matrix
and provide an osmotic pressure to enhance the diffusion rate of
ISF to the hydrogel matrix. The microneedle prepared with the
optimized formula could extract 7.90 µl ISF from pig ear skin and
3.82 µl ISF from mouse back skin within 3 min in vitro.

MICRONEEDLES FOR BIOMARKER
CAPTURE

The MN array designed for biomarker capture is an emerging
approach in modern medical diagnosis. As shown in
Figure 1C, MN systems for biomarker capture usually

contain identification elements or probes for the selection
and capture of analytes.

As shown in Table 2, the recognition mechanism of MNs for
biomarker capture is mainly immunoaffinity. The recognition
element is usually an antibody, oligonucleotide, or other proteins
that can bind to a specific molecular motif. Thus, the target
analyte can be effectively separated from the complex biological
matrix. Figure 3A shows a typical example about this
mechanism. The nanoporous MNs were functionalized with
an antibody to selectively capture estrogen (E2) (a
preeclampsia biomarker), following insertion into the skin,
thereby enabling PE diagnosis by measuring biomarker
concentrations based on the immunoassay method (Kang
et al., 2020). To provide ultra-dense binding sites for the
extraction and detection of trace amounts of the target analyte
in the subcutaneous ISFs, a uniform nanopore structure was

TABLE 3 | Properties of MN-based sensor.

Analysis
approach

Analysis object Detection/continuous
monitoring

Test subject References

Electrochemical Glucose Detection ISF samples Strambini et al. (2015)
Glucose Continuous monitoring Mice Liu Y. et al. (2021)
Glucose Continuous monitoring Artificial ISF Bollella et al. (2019c)
Glucose Continuous monitoring Phosphate-buffered saline Invernale et al. (2014)
Glucose Continuous monitoring Buffered saline Ribet et al. (2018)
Glucose Continuous monitoring Volunteers Sharma et al. (2016)
Glucose Continuous monitoring Volunteers Kim et al. (2019)
Glucose Continuous monitoring Healthy volunteers and T1D Sharma et al. (2018)
Glucose Continuous monitoring Rabbit Lee et al. (2016)
Glucose Continuous monitoring Mice Chen et al. (2015)
Lactate Detection Sensor-enclosing device Wang Y. et al. (2020)
Lactate Detection Mice Li Q. et al. (2021)
Lactate Continuous monitoring Artificial ISF Bollella et al. (2019a)
H2O2 Real-time monitoring Living HeLa cells Zhou et al. (2017)
H2O2 Real-time monitoring Mice Jin et al. (2019)
Potassium Detection Chicken and porcine skin Parrilla et al. (2019)
Urea Detection Artificial ISF and alginate epidermal/skin

mimic
Senel et al. (2019)

Alcohol Real-time monitoring Artificial ISF and mice skin Mohan et al. (2017)
Organophosphate Detection Mice skin Mishra et al. (2017)
Phenoxymethylpenicillin Real-time monitoring Volunteers Rawson et al. (2019)
Beta-lactam antibiotics Continuous monitoring Volunteers Gowers et al. (2019)
Levodopa Continuous monitoring Artificial ISF and mice skin- Goud et al. (2019)
Glucose, lactate Detection Solution Calio et al. (2016)
Glucose, lactate Detection Porcine kidney Samper et al. (2019)
Glucose, lactate Detection Artificial ISF Bollella et al. (2019b)
Myoglobin, troponin Detection Solution Miller et al. (2016)
HB, glucose, and lactate Detection Artificial ISF Teymourian et al.

(2020)
Glucose, uric acid, and cholesterol Detection Solution Gao et al. (2019)

SERS Glucose Detection Skin phantom Yuen and Liu (2014)
Glucose Detection Mouse Ju et al. (2020)
MB Detection Skin phantom Linh et al. (2021)
pH Detection Agar gel skin phantom and human skin Park et al. (2019)

Colorimetric Glucose Detection Simulated ISF Nicholas et al. (2018)
Glucose Detection Mouse Zeng et al. (2020)
Glucose Detection Mice Wang Z. et al. (2020)
pH, glucose, uric acid, and
temperature

Detection/monitoring Rabbit He et al. (2021)

T1D, participants with type 1 diabetes; HB, β-hydroxybutyrate; NO, nitric oxide; MB, methylene blue.
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created on the tissue-penetrating aluminum (Al) MN array by
controlled anodic oxidation. The immuno-functionalized
nanoporous MN patch’s rapid, sub-nanogram-level sensing
ability was verified by in vitro E2 detection tests and in vivo
skin tests of experimental animals with response signals obtained
within 1 min.

Apart from immunoaffinity, Watson–Crick base pairing has
also been applied in MN systems for biomarker capture. Al
Sulaiman developed alginate–peptide nucleic acid-coated MNs
that are capable of sequence-specific capture of target miRNAs by
Watson–Crick base pairing (Figure 3B) (Al Sulaiman et al.,
2019). Attaching PNA oligomers to the hydrogel’s fibers
enables specific sampling, purification, and release of the only
nucleic acid fragments that are complementary to the PNA
sequence. By simply adapting the PNA sequence, this system
can be applied in any miRNA of interest.

Yang B. et al. (2019) provide another way of biomarker capture
by MNs. They employed hydrogel MN patch for fast and easy in
situ capture of Epstein–Barr virus cell-free DNA (EBV Cf DNA)
from ISF in 15 min with a capture efficiency as high as 93.6%
(Figure 3C). Detection of EBV Cf DNA was achieved by
electrochemical recombinase polymerase amplification
implemented wearable flexible microfluidics, with a detection
limit of 3.7 × 102 copies/μl. Animal experiments support the
effectiveness of MNs for EBV Cf DNA capture. Later, they

combined reverse iontophoresis and MN techniques and
engineered a wearable epidermal detection system for rapid
sensing of EBV Cf DNA (Yang et al., 2020). On account of
the additive extraction effect of reverse iontophoresis and MNs,
the engineered platform successfully separated cell-free DNA
targets from ISF within 10 min, with a maximum capture
efficiency of 95.4% and a threshold of 5 copies per µl.
Captured cell-free DNA is directly used in the developed
electrochemical microfluidic biosensor with a detection limit
of 1.1 copies/µl.

Until now, MN arrays for capturing biomarkers have been
reported by many groups. Corrie et al. (2010) first designed a
MN-based device that captures circulating biomarkers in skin
fluids in a painless manner with high specificity. They grafted a
hetero-bifunctional PEG to the gold-coated microprojections,
which reduced the unspecific protein binding and provided a
spot for capturing attachment proteins. High specificity and high
sensitivity antibody capture, extraction, and analysis have been
achieved. Using the similar method, their groups realized the
capture of dengue virus NS1 protein (Muller D. A. et al., 2012),
recombinant P. falciparum rPf HRP2, and total IgG from the
complexed matrix (Lee et al., 2014). Wang Z. et al. (2021)
reported that functional biomolecules (such as antibodies)
modified MNs that could penetrate the stratum corneum and
periosteum, enabling the selective capture of protein biomarkers

FIGURE 3 | (A) Schematic diagram of immuno-functionalized MN patch for PE diagnosis by detecting E2 biomarker at the sub-nanogram level. Reproduced with
permission (Kang et al., 2020). Copyright 2020, Elsevier. (B) Schematic representation of the hydrogel-coated microneedle platform during sampling of the interstitial
fluid. Reproduced with permission (Al Sulaiman et al., 2019). Copyright 2019, American Chemical Society. (C) Schematic workflow of the assay, with MN patches
sampling (I) and a POCT electrochemical microfluidic platform (II). Reproduced with permission (Yang B. et al., 2019). Copyright 2019, American Chemical Society.
(D) Schematics of an aptamer-decorated porous MN array. The biomarkers could be captured by probes on the MNs. Reproduced with permission (Yi et al., 2021).
Copyright 2021, Elsevier.
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in the local ISF in a concentration-dependent manner. Due to the
hydrophobic interaction between polystyrene and nonpolar
residues on the protein, this interaction effectively traps the
hydrophobic structures in antibodies and proteins and binds
them to the polystyrene surface. Zhang et al. (2019) developed
photonic crystal (PhC) barcodes integrated in encoded MNs for
detecting ISF biomarkers. PhC barcode–loaded flexibleMNs were
elegantly fabricated by replication of dynamic ferrofluid casting
micropatterns. When the prepared MNs are inserted into the
skin, they could enrich certain biomarkers into their PhC
barcode–modified probes. Therefore, sandwich
immunocomplexes can be formed after the addition of
corresponding fluorescent tags. The relative level of the
biomarkers could be read out by the fluorescence signals of
the barcode; at the same time, the types of biomarkers could
be clearly discriminated by the reflection peaks of the PhC
barcode.

It is worth noticing that aptamers can be potentially applied in
MN arrays for biomarker capture. Aptamers are recognized as
single-stranded oligonucleotides in 25–80 base length that exhibit
specific binding affinity toward targets including amino acids,
drugs, and protein biomolecules. In comparison with protein
antibodies, aptamers have several advantages such as small size,
strong binding affinity, high specificity, desirable
biocompatibility, good stability, and lesser immunogenicity,
making them widely used in the field of biomedicine (He F.
et al., 2020; Ni et al., 2021). Aptamer-modified porous MN arrays
are proposed to enable in situ enrichment and detection of
biomarkers in ISF by Yi et al. (2021) (Figure 3D). Porous MN
arrays were made by replicating negative molds containing SiO2

microspheres and UV-curable ethoxylated trimethylolpropane
triacrylate (ETPTA). Since the MN array combines advantages of
aptamers and porous structures, its surface area is remarkably
increased to 6.694 m2/g, so a large amount of aptamer probes
(0.9459 μM) can be fixed. Furthermore, due to capillary forces,
the MN array can extract ISF into its porous structure.
Subsequently, biomarkers are captured and detected without
sample post-processing.

MICRONEEDLE SENSOR FOR DETECTING
OR MONITORING ANALYTES

MN-based sensors have been employed widely for detecting or
monitoring a diverse range of analytes as listed in Table 3.

Microneedle-Based Electrochemical
Sensor
As displayed in Table 3, the detection mechanism of a majority of
MN-based sensors relies on electrochemical sensing technology.

Solid MNs are commonly used in MN-based electrochemical
sensors. First, the materials used for MN fabrications are highly
conductive and thus can be directly used for analyte monitoring
to construct enzyme-free electrochemical biosensors. Li et al.
(2020) developed a MN-based electromagnetic generator with a
magnetized MN-array for monitoring human motion. The

magnetized MNs in triboelectric–electromagnetic hybrid
generators were employed as the frictional layer of
triboelectric generator (TEG) and served as the bendable
magnetic poles of electromagnetic generator (EMG). Gold
(Calio et al., 2016; Senel et al., 2019; Zhang et al., 2020; Zhao
et al., 2020) and platinum (Zhou et al., 2017; Chinnadayyala et al.,
2018a; Zhao et al., 2020) were usually used to fabricate MNs due
to their good conductivity. An attractive glucose sensor using a
nafion and platinum black-coated MN electrode array in three-
and two-electrode configuration was reported (Chinnadayyala
et al., 2018a). An enzyme-free electrochemical sensing platform
based on a Pt-MN electrode functionalized with Au nanoparticle
(Au-NP)-decorated polydopamine nanospheres (PDA-NSs) was
explored in in vitro and in vivo detection of lactate in different
biological samples (Li Q. et al., 2021). Goud et al. (2019)
developed a MN sensing platform that relied on parallel
simultaneous independent enzymatic-amperometric and
nonenzymatic voltammetric detection of L-DOPA using
different microneedles on the same sensor array patch. As a
significant alternative of noble metal materials, carbonic materials
or compositions were widely used for construction of MNs.
Skaria et al. (2019) used micromolding techniques to construct
solid MN sensors using poly(lactic acid)/carboxyl-multiwalled
carbon nanotube (PLA/f-MWCNT) composites. Jin et al. (2019)
developed a conductive MN patch for transdermal H2O2

electrochemical biosensing. The MN surfaces was modified
with hybrid materials of Pt nanoparticles and reduced with
graphene oxide (rGO) nanostructures that serve as an active
H2O2 sensing modulus (Figure 4A). The detection sensitivity of
MN electrodes was significantly improved by Pt/rGO, and MN
was used as a painless transdermal tool for in vivo access.

Second, the solid MNs often functionalized with enzymes to
convert analytes into detectable electrochemical signals. Oxidase
(GOx) (Chen et al., 2015;Wang et al., 2021a) was commonly used
to monitor glucose by converting glucose into gluconic acid and
hydrogen peroxide H2O2. A flavin adenine dinucleotide glucose
dehydrogenase/6-(ferrocenyl)hexanethiol/highly porous gold
(FAD-GDH/FcSH/h-PG) MN-based biosensor was fabricated
for minimally invasive sensing of glucose in artificial
interstitial fluid (Bollella et al., 2019c). In addition, lactate
oxidase (LOX) enzyme was also explored to develop MN-
based electrochemical sensors. Bollella et al. (2019a) developed
a mediated pain-free MN-based biosensor for the continuous
monitoring of lactate in the ISF (Bollella et al., 2019a).
Functionalization of the Au-MWCNTs/poly methylene blue
(MB) platform with LOX enzyme by drop casting procedure
enabled the continuous monitoring of lactate in artificial
interstitial fluid and in human serum. Other enzyme MN
electrochemical biosensors were also reported. Gold MNs
(AuMNs) functioned with an epoxy- and ferrocene-functional
polymeric mediator and covalently immobilized urease was used
for urea sensing (Senel et al., 2019). Mohan et al. (2017) developed
a skin-worn MN sensing device for the minimally invasive
electrochemical monitoring of subcutaneous alcohol.

Hollow MNs could also be used for electrochemical
sensing in which the transducers are integrated into the
back of the hollow MN array to detect the substance (Jina
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et al., 2014). Strambini et al. (2015) prepared a self-powered
painless MN biosensor for a highly accurate analysis of
glycemia in ISF. The enzymatic glucose biosensor was
coupled to the backside of the needle patch for a self-
powered glucose analysis (in vitro) in the ISF with high
accuracy, high reproducibility, and excellent linearity
(0–630 mg/dl) in real time. Hollow MN-based sensors were
also prepared by traditional electrochemical sensing element
embedment in the hollow MNs. Compared to
aforementioned MNs, this approach provides additional
protection for the sensing elements. For example, MN-
based organophosphorus hydrolase (OPH) sensors were
reported for minimal-invasive measurement of transdermal
threat compounds, organophosphate (OP) (Mishra et al.,
2017). The sensor relied on the efficient biocatalysis of
OPH on a MN-modified carbon paste array electrode and
used fast square wave voltammetry (SWV) of the
p-nitrophenol product of the enzymatic catalytic reaction
of OPH to measure the OP with good selectivity. Teymourian
et al. (2020) presented a MN platform for real-time ketone
body monitoring based on a β-hydroxybutyrate (HB)
dehydrogenase enzymatic reaction. This amperometric
sensor for dual analytes is realized by filling the hollow
microneedle tip with an appropriate electrode material,
where simultaneous HB/glucose detection was performed.
Zhao et al. (2020) constructed a MN-based glucose
biosensor system with a hollow pyramidal MN array
template (Figure 4B). The device is composed of three
silk/D-sorbitol pyramidal MNs that immobilized platinum
(Pt), silver (Ag) wires, and glucose oxidase (GOD) during
fabrication. The silk/D-sorbitol complex provided a bio-
friendly environment for the enzyme reaction. The
mechanical breaking strength could be adjusted by varying
the silk to D-sorbitol ratio, thus ensuring that the
microneedles can penetrate the skin. The enzymatic
amperometric response is linearly related to the glucose

concentration. Even at 37°C, the microneedles showed high
stability during long-term monitoring and storage.

In addition to solid and hollow MNs, some groups attempt to
employ porous MNs for electrochemical sensors. By combining a
sponge-like porous PDMS matrix with a hyaluronic acid (HA)
coating, the prepared MNs exhibited desirable mechanical
properties, and the MNs were able to penetrate the skin and
are flexible after insertion into the skin (Takeuchi et al., 2020). It
was noteworthy that the reported MN arrays successfully
extracted ISF not by capillary action but by repetitive
compression. The results demonstrated the applicability of
flexible MNs for continuous glucose monitoring.

Microneedle-Based Surface-Enhanced
Raman Scattering Sensor
Surface-enhanced Raman scattering (SERS) is noninvasive
spectral technology, which is the result of enhanced sensitivity
of Raman spectral fingerprint and local surface plasmon
resonance (Xu et al., 2019; Shrivastav et al., 2021). The
quantification of samples could be realized without sample
pretreatments such as dilution or centrifugation, the
processing speed is fast, and the measurement is in real-time.
The bottleneck problem that SERS directly applied to skin
detection is that the penetration depth of the Raman laser is
about 200 m under the skin (Krafft et al., 2009), while the depth
required for clinically relevant analytics is 700 m. MNs are a good
tool to address this issue. Yuen and Liu (2014) used MNs for in
situ SERS measurements in skin phantoms first. They fabricated
Ag-coated MNs as SERS probes for sensitive detection of target
molecules at depths beneath 700 μm, simulating the absorption
and scattering of light by human skin. Ju et al. (2020) also used
silver nanoparticles (Ag NPs) to enhance Raman signals.
Following the incorporation of 1-decanethiol to the surface of
Ag-coated array, the sensors were calibrated in the 0–20 mM
range in a skin model and then tested in a streptozotocin (STZ)

FIGURE 4 | (A) Schematics for illustration of the transdermal H2O2 electrochemical biosensor on the basis of the conductive MN patch with Pt/rGO surface.
Reproduced with permission (Jin et al., 2019). Copyright 2019,Wiley. (B) Schematics for the working mechanism of silk/D-sorbitol microneedle electrodes. Reproduced
with permission (Zhao et al., 2020). Copyright 2019, Royal Society of Chemistry.
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FIGURE 5 | (A) Schematic diagram of the transdermal detection of glucose in vivo using the F-PMMAMN array based on surface-enhanced Raman spectroscopy.
Reproduced with permission (Ju et al., 2020). Copyright 2020, American Chemical Society. (B) Scheme of the NFMN-SERS sensor for an intradermal detection. The
inset image shows the flower-like nanostructures formed on the MN structure. Reproduced with permission (Li H. et al., 2021). Copyright 2021, Elsevier.

FIGURE 6 | Schematically illustrated the formulation and mechanism of the GCC-MN patch for naked eye monitoring of glucose concentrations. Reproduced with
permission (Zeng et al., 2020). Copyright 2020, Elsevier.
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mouse model for an in vivo quantitative study of glucose in type I
diabetes (Figure 5A). The results demonstrated that the
functional polymethyl methacrylate (F-PMMA) MN array
enabled the direct measurement of glucose in the ISF within
minutes and maintained its structural integrity.

In addition to Ag NPs, Au NPs have also been employed for
enhancement of the Raman signal in MN-based sensors. Park
et al. (2019) reported a SERS probe using MN arrays as a
noninvasive sensing platform for ISF. The arrays of MNs were
made from a commercial polymer binder and coated by
plasmonic Au nanorods modified by a pH-sensitive 4-
mercaptobenzoic acid. The sensor could monitor pH values in
the range of 5–9 and could detect pH values in agar skin models
and in human skin in situ. Li H. et al. (2021) prepared a
biomimetic NFMN-SERS substrate for sensitive and fast
intradermal sensing. Nanoflower structures were fabricated on
the basis of hydroxyapatite nanostructures as SERS substrates,
and Au nano-islands were synthesized on the petals of
nanoflowers, creating highly dense hot spots for the SERS
effect (Figure 5B). The petals facing close in the nanoflower
structure further generated a plasmonic coupling effect for
sensitivity improvement. The developed finite-difference time-
domain-SERS sensor is expected to be applied for various
intradermal sensing, especially for chemical biomarkers in
interstitial fluids of skin.

Microneedle-Based Colorimetric Sensor
The colorimetric sensors possess advantages including being easy
to operate and not needing expensive or complex equipment
(Wang et al., 2021b). Especially, the signal changes can be easily
monitored for field analysis and bedside diagnosis.

Some groups reported a MN-based colorimetric sensor for
glucose detection. Nicholas et al. (2018) reported a single hollow
MN sensing device that used an enzyme-based colorimetric
principle to achieve fast measurement of glucose
concentrations in simulated ISF. The glucose sensor was
integrated into the paper matrix as a backplane and connected
to the hollow MN. The device was capable of rapid extraction of
simulated ISF within 5 s and was able to produce a color change
related to glucose concentration within 30 s. Zeng et al. (2020)
described a minimally invasive colloidal crystal MN patch for
macro blood glucose monitoring. Glucose-responsive colloidal
crystal (GCC) MNs were constructed on a polymer core that
supported the GCC shell for glucose sensing (Figure 6). The GCC
MN patch can convert glucose concentration to a reversible color
change discernible to the naked eye within 5 min. Being
demonstrated in a mouse model of type-1 diabetes, the GCC-
MN patch simultaneously realized ISF extraction, glucose
sensing, and the resulting glucose-related color changes. An
integrated sampling and display of transdermal colorimetric
MN patch was also developed (Wang Z. et al., 2020). The
color rendering of 3,3’,5,5’-tetramethylbenzidine (TMB) was
triggered by a cascade of enzymatic reactions of glucose
oxidase and horseradish peroxidase (HRP) induced by
excessive glucose. The upper layer of HRP was biomineralized
with calcium phosphate, which increased pH-responsive
properties, improving sensitivity and preventing nonspecific

reactions. The colorimetric sensor enables minimally invasive
extraction of mouse ISF and rapidly converted glucose levels into
visible color changes.

In addition to glucose, MN-based colorimetric sensors have
been successfully used for rapidly detecting protein bio-markers
in dermal ISF (Jiang and Lillehoj, 2020). Sample collection is
facilitated by a hydrophilic hollow MN array that autonomously
extracts ISF by surface tension and delivers it to antibody-based
lateral flow test strips. The potential enhancement mechanism
was elucidated through experimental studies, and a simple gold
enhancement treatment was employed to improve the detection
sensitivity. For proof-of-concept, the device was used to detect a
biomarker of malaria infection, the histidine-rich protein 2 of P.
falciparum. The device was able to detect a target protein
concentration as low as 8 ng/ml. Each test could be completed
within 20 min and did not require additional equipment. MN-
based colorimetric sensors for detection of multiple health-
related biomarkers have also been reported by He et al.
(2021). The biosensor displayed color changes in response to
changes in biomarker concentrations such as pH, glucose, uric
acid, and temperature, which could be read directly with the
naked eye or captured by a camera for semi-quantitative
measurements. The colorimetric dermal tattoo biosensor has
been demonstrated to simultaneously detect multiple
biomarkers in vitro, ex vivo, and in vivo, and to monitor
changes in the concentration of biomarkers over a long period
of time (at least 4 days). Such capacity shows great potential for
long-term health monitoring.

MICRONEEDLE-BASED DEVICE FOR
BIO-SIGNAL RECORDING

Both humans and animals produce regular electrical signals in
static and active states. Monitoring these biological signals, for
example, electromyogram (EMG), electrocardiogram (ECG), and
electroencephalogram (EEG), can help to understand human
pathology and physiology (Peng et al., 2016). Conventional
wet Ag/AgCl electrode could obtain biological signals with
relatively high resolution in clinical practice. However, several
disadvantages limit its further application. First, Ag/AgCl
electrodes always require skin preparation such as haircuts
and skin scrapes (Griss et al., 2000). Second, gel electrolytes
are often used to reduce the high impedance of the cuticle (Wang
et al., 2017). However, the gel may cause skin irritation or allergic
reactions that make the subject uncomfortable (Kato et al., 2006).
In addition, the gel dries out over time, which reduces the quality
of the recorded signal (Tallgren et al., 2005). Therefore, wet
electrodes are suggested to fail to long-term bio-signal
recording. Compared with wet electrodes, dry electrodes do
not require electrolytic gel, and thus can record biological
signals continuously (Baek et al., 2008; Fu et al., 2020).
However, the electrode-skin interface impedance (EII) is still
very high and sensitive to human movement (Yu et al., 2009;
Forvi et al., 2012).

As a kind of dry electrode, the MN array electrode (MAE) was
first proposed by Griss et al. (2000). MAE can penetrate the
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cuticle of human skin and eliminate the effect of cuticle on
impedance (Ren et al., 2020b). Meanwhile, MNs do not
require skin preparation for puncture and result in minimal
skin trauma (Kashaninejad et al., 2021). It has been shown
that MAE has a lower and more stable EII than commonly
used dry electrodes. Figure 7 schematically showed the
electrical equivalent circuit model of wet electrodes and MAE.
Here, Ew is the half-cell potential. The interface between the wet
electrode Ag/AgCl and the electrolytic gel could be simulated by
the parallel connection of capacitor Cd and resistor Rd. Rg

represents the electrical resistance of the gel used in the
experiment. Ese represents the potential difference between the
gel and the stratum corneum. The stratum corneum can also be
modeled by a capacitor Ce and a resistor Re in parallel. Ru

represents the resistance of the dermis and subcutaneous

tissue. The equivalent circuit of MAE is relatively simple.
Since the MNs are in direct contact with the epidermis, there
is only coupling between the electrodes and the conductive layers
within the skin, except for the conductive resistance of the dermis
and underlying tissue, described by the half-cell potential Em and
connected in parallel with the resistance Rm and the
capacitance Cm.

To date, MN-based devices have been successfully used in
ECG, EMG, and EEG recording (Chen et al., 2016; Pei et al., 2017;
Ren et al., 2018; Sun et al., 2018; Mahony et al., 2019; Satti et al.,
2021; Wang Y. et al., 2021). The properties of MNs for bio-signal
recording are summarized in Table 4. Due to the relatively
mature processing technology in semiconductor industries,
many MN materials are based on silicon. Silicon is the first
material used in MN fabrication due to its instinct excellent

FIGURE 7 | Schematic and electrical equivalent circuit model of wet electrodes and MAE, respectively.

TABLE 4 | Properties of MNs for bio-signal recording.

MN material MN
length/
µm

MN shape MN manufacturing
method

Application Reference

Silicon 300 Pyramidal Sawing and wet isotropic etching ECG Pei et al. (2017)
Silicon 200 Pyramidal Sawing and wet isotropic etching EEG Chen et al. (2013)
Silicon 300 Pyramidal Wet etching ECG, EMG,

and EEG
Forvi et al. (2012)

316L stainless steel and
gold, parylene

550 Square Etching ECG, EMG,
and EEG

Ren et al. (2020a), Satti
et al. (2020), Satti et al.
(2021)

Iron nanoparticles and
NdFeB microparticles

1,200 Pyramidal Magnetic field-induced spray self-assembly, thermal
curing, and electromagnetization

EMG Li et al. (2020)

Iron powder and epoxy
novolac resin

700 Pyramidal Magnetization-induced self-assembly ECG and EMG Chen et al. (2016)

Iron powder 700 Micro-stalagmite Magneto-rheological drawing lithography ECG, EMG
and EEG

Ren et al. (2018)

Titanium, SU-8 and gold 500 Small humps at
the bottom

Laser machining ECG and EMG Sun et al. (2018)

Hard epoxy resin 700 Rectangular
pyramid

Mold casting and computer numerical control ECG and EMG Hou et al. (2021)

Polyimide 400 Tip Two-step conformal molding technique, laser cutting,
metal sputtering, and electrochemical deposition of the
conducting polymer

EEG Li J. et al. (2021)

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org April 2022 | Volume 10 | Article 85113411

Lu et al. Microneedle-Based Device for Biological Analysis

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


mechanical strength, good biocompatibility, and the matureness
of micro-fabrication technologies (Li et al., 2018). Griss et al.
(2000) used silicon MN array for EEG signal recording in 2000.
Forvi et al. (2012) also employed silicon MNs that have good
performance in recording EEG, EMG and ECG, but silicon
electrodes need to be coated with metal to achieve a relatively
lower impedance. In addition, the silicon material is hard and
lacks flexibility, resulting in the unfitness of electrodes on the
body skin, and concomitant motion generated artifact signal
(Tachikawa et al., 2010). Wang et al. developed flexible
parylene-based MN electrode arrays with silicon MNs, which
could provide not only conformal but also robust contact (Wang
et al., 2017). Compared with wet electrode, a good impedance
density of 7.5 KΩ cm2 @10 Hz was attained. Flexibility of
P-MNEA contributes to recording stability, and P-MNEA
realizes credible EEG acquisition.

Metal materials are also good candidate materials for MEA
fabrication. For example, MEAwithMNs with a length of 550 μm
could be constructed with a magnetization-induced self-assembly
approach (Wang Y. et al., 2021). The MNs could penetrate the
cuticle and reach the human epidermis for high-quality signal
recording. In addition, the appropriate MN penetration length
will not induce harm to the human dermis; therefore, painless
signal acquisition could be achieved. The improved performance
of MEA in EMG and ECG recordings has been demonstrated
experimentally in both able and amputee subjects. Inspired by the
edge of golden margined century plant leaf, a kind of flexible dry
biological electrode with MN structure was proposed (Figure 8)
(Li Y. et al., 2021). The red copper sheet with 100 µm in thickness
was selected as a material for the MN array due to its excellent
conductivity and processability. The results showed that
compared with the triangular MNs, the curved hook MNs
exhibited smaller penetration resistance, larger pullout force,
better damage resistance, and stronger bonding force with a
flexible substrate. Compared with Ag/AgCl wet electrode, the

flexible dry biological electrode with curved hook MN structure
showed better time domain and frequency domain performance
in EMG signal acquisition.

Apart from silicon and metal, polymers could also be
considered for MN electrodes. A novel MN array–based
dry electrode modified with a ring-shaped flexible
polyimide substrate matrix was fabricated by Li J. et al.
(2021), which was compatible with EEG signal recording
on hairy scalp. The loop structure allows the hair to be
passed through the MN attached to the back. The MN on
the “ring” can be pressed from behind to directly touch the
scalp. MNs with pointed tips, also based on polyimide, can
penetrate the cuticle, the outermost layer of the skin, enabling
low-impedance contact and minimal invasiveness. Satti et al.
(2020) introduced a rigid parylene-coated MN electrode array
for the construction of a portable ECG circuit, which was able
to monitor the process of ECG reducing the motion artifacts.
In comparison with the traditional Ag/AgCl electrodes, the
prepared MNE showed an increased stability and durability
for dynamically and long-termed monitoring ECG. The
microneedles could survive the compression force until
16 N and successfully penetrate skin tissue with an
insertion force as low as 5 N. The electrical properties of
the MNE were characterized using impedance spectroscopy
under the equivalent circuit model. The resultant wearable
wireless MNE demonstrated the potentials for ECG recording
with the reduction of the movement artifact noises in the
process of dynamic behaviors. A recent case was reported that
a flexible MAE with a Miura-ori pattern was constructed for
monitoring biosignals accurately and stably (Hou et al., 2021).
The mold was directly prepared using high-precision
machining. The mold was consisted of micro-level needle
tips and a matrix macro-level Miura-ori structure. The
flexible M-MAE patches were extruded with a further
PDMS mold pressing process. A series of tests of the EII

FIGURE 8 | Design of the flexible dry bioelectrode: (A) assembling diagram of a flexible dry bioelectrode; (B) schematic diagram of an electrode core structure; and
(C) optical picture of a flexible dry bioelectrode. Reproduced with permission (Li Y. et al., 2021). Copyright 2021, Elsevier.
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and flexibility supported this minimally invasive M-MAE with
outstanding biosignal sensing performance as the result of
smaller skin-electrode impedance and more stable sensing
signal output against bending. The M-MAE possessed benign
airiness due to air-permeable channels, facilitating to get rid
of sweat timely and stabilize signal output. The M-MAE
sensing patch also showed to have in situ practicability and
long-term stability to realize real-time biosignal recording of
ECG and EMGs.

FUTURE CHALLENGES AND
PERSPECTIVES

Challenges of Microneedle-Based Sensors
In the last decades, the advanced properties of MNs have driven
the development of MN biomedical applications. However, most
of the commercial MNs have focused on delivery of drugs and
vaccines (Chen et al., 2016; Lee et al., 2020). Nowadays, a few
studies have reported the clinical applications of MNs in
continuous glucose monitoring, but the study on MNs for
biological analysis is still in the laboratory stage. Thus, the
practical biological analysis applications of MNs still require
prolonged efforts from both industry and academia. There are
several areas for improvement. First, the cost and scale produce of
MNs limit their wide industrialization. Second, the invasive
sample collection always results in its disqualification for
clinical use. The risk of their disease transmission through ISF
also exists if they are not properly sterilized. Furthermore, some
metals such as nickel may result in severe allergic reactions.
Finally, the research on MN-based system mainly consists of in
vivo detection and in vitro detection. Pig skin is usually employed
as a model for in vitro detection because of its similar histological
and biochemical properties to human skin (Swindle et al., 2012).
However, pig skin shows a higher permeability than human skin,
and inherent interspecific variation and inter-batch variability
from skin may result in complicated interpretation of test results
(Luo et al., 2016). The in vivomodel is not ideal due to economic,
moral, and legal reasons (Grimm et al., 2019).

Prospective of Microneedle-Based Sensors
Simpler and more economical micromachining techniques are
needed to be developed to achieve a mass production of high-
precision MNs. The 3D printing technique holds great potential
for scalable MN production. MNs must be made of materials that

are harmless and nonirritating. Meanwhile, the MN-based
devices must be rigorously disinfected before clinical
application to get rid of the microorganisms’ contaminations
under the skin surface. Although metal or silicon MNs can
usually be easily hyperpyrexia sterilized, polymer MNs can be
rendered to deformation under such conditions, and alternative
sterilization methods are required. Additionally, due to the
complex composition of body fluid, the stability of the MN-
based sensors after contact with body fluid should also be
assessed. Therefore, further development of materials for the
preparation of microneedles is needed in the future. It is necessary
to develop easy-to-adjust and versatile in situ skin tools for MN
assessment. For example, multifunctional animal-free 3D tools
have proven their great potential for rapidly and economically
evaluating MN devices (Totti et al., 2019). More animal-free,
reproducible models will need to be developed in the future for
MN-based device verification, and more reliable clinical trials of
MNs are highly desirable well in the future. Overall, taking
advantage of enabling continuous monitoring in personalized
healthcare in a robust, reliable, and noninvasive approach, MNs
are a promising candidate to provide an avenue for modern
diagnosis through the transdermal route.
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