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Enamel demineralization, as a type of frequently-occurring dental problem that affects both
the health and aesthetics of patients, is a concern for both dental professionals and
patients. The main chemical composition of the enamel, hydroxyapatite, is easy to be
dissolved under acid attack, resulting in the occurrence of enamel demineralization.
Among agents for the preventing or treatment of enamel demineralization, amorphous
calcium phosphate (ACP) has gradually become a focus of research. Based on the
nonclassical crystallization theory, ACP can induce the formation of enamel-like
hydroxyapatite and thereby achieve enamel remineralization. However, ACP has poor
stability and tends to turn into hydroxyapatite in an aqueous solution resulting in the loss of
remineralization ability. Therefore, ACP needs to be stabilized in an amorphous state
before application. Herein, ACP stabilizers, including amelogenin and its analogs, casein
phosphopeptides, polymers like chitosan derivatives, carboxymethylated PAMAM and
polyelectrolytes, together with their mechanisms for stabilizing ACP are briefly reviewed.
Scientific evidence supporting the remineralization ability of these ACP agents are
introduced. Limitations of existing research and further prospects of ACP agents for
clinical translation are also discussed.
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INTRODUCTION

Enamel demineralization is one of the most common dental problems which could appear as
white spot lesions (WSLs) in the early stage and even progress into cavities if effective
interventions are not taken in time (Julien et al., 2013). In the normal oral environment,
hydroxyapatite on the enamel surface contacts saliva and maintains the balance of dissolution
and redeposition (Sollböhmer et al., 1995; Featherstone, 2004), hydroxyapatite could be
dissolved into calcium and phosphorus ions while calcium and phosphorus ions in saliva
could crystallize directionally and orderly, forming the enamel-like hydroxyapatite structure on
the surface of the enamel (Dorozhkin, 1997). When the oral hygiene condition is poor, plaque
biofilms form and adhere onto the enamel surface decomposing sugars, producing organic acids,
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and resulting in an acidic pH environment around the enamel.
Under this circumstance, the dissolution-redeposition balance
of hydroxyapatite is broken. The dissolution of hydroxyapatite

occurs faster than the deposition of calcium and phosphorus
ions, which eventually leads to the occurrence of enamel
demineralization.

FIGURE 1 | Schematic diagram of ACP stabilizers and how they stabilize the ACP. (A) Amelogenin stabilizes calcium and phosphorus ions with its N-terminal; (B)
Casein phosphopeptides stabilize calcium and phosphorus ions with the -Ser(P)- Ser(P)- Ser(P)-Glu-Glu- sequence; (C) Chitosan derivatives stabilize calcium and
phosphorus ions with functional groups; (D) Carboxymethylated poly-amidoamine (PAMAM) stabilizes calcium and phosphorus ions with carboxyl groups; (E)
Polyelectrolytes stabilize calcium and phosphorus ions with functional groups.
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Based on the etiology of enamel demineralization, the
strategies to prevent or treat enamel demineralization
include: 1) Using antibacterial agents such as mouthwash or
toothpaste containing antibacterial drugs (Hefti and Huber,
1987; Afennich et al., 2011; Hossainian et al., 2011; Rösing
et al., 2017; Ahmed et al., 2019; Bijle et al., 2019; Guven et al.,
2019; Karadağlıoğlu et al., 2019; Shang et al., 2020) which
could inhibit the accumulation and adhesion of cariogenic
bacteria on the enamel surface to reduce the acid production
from plaque biofilms; 2) Using fluorinated agents such as
fluoride mouthwash (Chow et al., 2000; Songsiripradubboon
et al., 2014; Larsson et al., 2020) and fluoride varnish (Gontijo
et al., 2007; Marinho, 2009; Perrini et al., 2016), which could
not only inhibit cariogenic bacteria but release fluorine, co-
crystallize with calcium and phosphorus ions to form
fluorapatite on the enamel surface (Margolis and Murphy,
1986; Zandim-Barcelos et al., 2011).

In addition to the above strategies, the enamel biomimetic
remineralization strategy, which bases on the natural enamel
crystallization process (Cölfen and Mann, 2003), is being
studied extensively due to its biomimetic mineralization
capability (Chen et al., 2015; Wang et al., 2017). According
to the nonclassical crystallization theory, the crystallization
processes of natural enamel could be interpreted as the
following steps: 1) Calcium and phosphorus ions
aggregating together to form amorphous calcium phosphate
(ACP); 2) Amelogenin stabilizing ACP into clusters; 3) ACP
then directionally arranging to form bundles of
hydroxyapatite, then gradually forming enamel crystal, and
finally forming enamel prism (Beniash et al., 2009; Yang et al.,
2010; Kwak et al., 2016). To mimic the crystallization process
of natural enamel and to achieve remineralization of
demineralized enamel, ACP needs to be stabilized and then
crystallizes directionally and orderly to form the enamel-like
hydroxyapatite. In this review, we mainly focused on how
different agents stabilize ACP and their remineralization
effects on enamel demineralization.

AMELOGENIN AND ITS ANALOGS

Amelogenin (Amel) plays an important role in the formation
of natural enamel (Wright et al., 2011; Moradian-Oldak, 2012;
Ruan and Moradian-Oldak, 2015). Amelogenin could interact
with calcium and phosphorus ions through the tyrosine
enrichment segment on its N-terminal and stabilize calcium
and phosphorus ions to an amorphous state (Figure 1A). The
C-terminal of Amel could guide ACP to crystallize into
hydroxyapatite directionally (Tsiourvas et al., 2015). There
are studies using chitosan to load amelogenin and form the
chitosan-amelogenin gel (CS-Amel gel) and using this gel
system for reconstruction of demineralized enamel. The CS-
Amel gel could stabilize calcium and phosphorus ions into
ACP, guide ACP to form the enamel-like crystals which bind
closely with natural enamel crystals (Ruan et al., 2013; Ruan
et al., 2014). In addition to the direct application of
amelogenin, there are studies focused on the

remineralization effect of amelogenin analogs. Zhong et al.,
2021 self-assembled the N-terminal tyrosine segment of
amelogenin to form leucine-rich amelogenin peptide
(LRAP) and evaluated the stabilizing and directional
guiding abilities of LRAP to calcium and phosphorus ions
in mineralizing solutions. LRAP could stabilize calcium and
phosphorus ions into ACP effectively and guide ACP to grow
along its C-axis into bundles of hydroxyapatite crystals. Wang
combined a phase conversion lyase (PTL) which mimics the
function of the N-terminal of amelogenin with a synthetic
peptide chain which has the function of the C-terminal of
amelogenin to form amyloid amelogenin analog (PTL/
C-AMG) (Wang Y et al., 2020). The PTL/C-AMG could
combine calcium and phosphorus ions to form
hydroxyapatite and promote the extension growth of
hydroxyapatite crystals on the surface of natural enamel
and eventually forms a highly ordered hydroxyapatite
structure with mechanical properties similar to that of
natural enamel. Lv and colleagues synthesized a short-chain
polypeptide (QP5) based on the amino sequence of
amelogenin and proved the stabilizing ability of QP5 to
calcium and phosphorus ions. They verified the
remineralization ability of QP5 to initial enamel
demineralization in an in vitro enamel demineralization
model and further confirmed its remineralization ability
and potential for clinical transformation in a rat caries
model (Lv et al., 2015; Han et al., 2017).

CASEIN PHOSPHOPEPTIDES

Casein phosphopeptides (CPP) are casein extracts from milk
which could markedly increase the apparent solubility of calcium
phosphate ions by forming ACP (Reeves and Latour, 1958).
Researchers found that the main active sequence of CPP, the
phosphoserine - glutamate cluster (-Ser(P)- Ser(P)- Ser(P)-Glu-
Glu-), could stabilize calcium and phosphate ions and form the
CPP stabilized ACP complex (CPP-ACP) (Adamson and
Reynolds, 1996) to avoid the spontaneously crystallizing, phase
conversing and precipitating of calcium and phosphorus ion
(Shen et al., 2001) (Figure 1B). Reynolds soaked artificially
demineralized enamel in CPP-ACP solution and found that
CPP-ACP could remineralize the subsurface demineralization
of enamel effectively. The mechanism may be that CPP can
maintain a high concentration of calcium and phosphorus
ions in the solution to infiltrate into the subsurface lesion area
to achieve efficient enamel remineralization (Reynolds, 1997).
The team further validated the preventive effect of CPP-ACP on
enamel demineralization in a rat caries model (Reynolds et al.,
1995). With the U.S. Food and Drug Administration and other
regulatory agencies confirming the biosafety of CPP-ACP
(Cochrane et al., 2010), CPP-ACP is added into oral health
care products such as Tooth Mousse (GC, Tokyo, Japan) (Rees
et al., 2007) and Tooth Mousse Plus (CPP-ACPF, GC, Tokyo,
Japan) (Hamba et al., 2011; Bataineh et al., 2017; Olgen et al.,
2021). These agents have been gradually used in clinical practice
and have been studied in a number of clinical trials
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(Sitthisettapong et al., 2015; Güçlü et al., 2016; Munjal et al., 2016;
Thierens et al., 2019). However, the remineralization ability of
CPP-ACP and CPP-ACPF for WSLs remains unknown.
Researchers suggested that CPP-ACP and CPP-ACPF may
have the ability to prevent and treat WSLs, but their effects
are not significantly greater than using fluoride agent alone
(Pithon et al., 2019; Wang D et al., 2020). In addition, casein
related allergy in certain populations also limits the clinical use of
CPP-ACP and CPP-ACPF.

POLYMERS

In addition to the aforementioned amelogenin and its analogs
and CPP, some kinds of polymers can also stabilize calcium
and phosphate ions, including chitosan derivatives, poly-
amidoamine and polyelectrolytes.

Chitosan Derivatives
Chitosan derivatives, such as carboxymethyl chitosan (CMC)
and phosphorylated chitosan (Pchi) could bind calcium ions
through chelation reaction of carboxyl groups and calcium ions
and then bind phosphate ions to form ACP (Figure 1C). The
recrystallization of demineralization enamel is realized by the
ordered crystallization of ACP to form enamel-like
hydroxyapatite crystals (Zhang et al., 2014; Zhang et al.,
2018). Zhu combined carboxymethyl chitosan (CMC) and
lysozyme (LYZ) to stabilize ACP and formed the CMC/LYZ-
ACP nano-gel, which can regenerate prism-like remineralized
enamel layer on the surface of eroded enamel to realize the
remineralization (Zhu et al., 2021). Song successively added
CaCl2 and K2HPO4 into Pchi solution to construct the Pchi-
ACP nano-complex. X-ray diffraction and selective electron
diffraction results confirmed the amorphous state of the nano-
complex. And the results of scanning electron microscopy and
micro-CT proved that the Pchi-ACP nano-complex could
realize the remineralization of demineralized enamel (Song
et al., 2021).

Poly-Amidoamine
Poly-amidoamine (PAMAM) was first synthesized by
Tomalia in the 1980s (Tomalia et al., 1985). PAMAM
contains a large number of amide groups that have the
similar function to peptide bonds so that PAMAM could
simulate functions of a variety of proteins and peptides
(Svenson and Tomalia, 2012). PAMAM can have
mineralization property through the modification of
carboxyl groups. The carboxyl-modified PAMAM
(PAMAM-COOH) could combine calcium ions through
carboxyl groups and further attract phosphate ions to
stabilize calcium and phosphate ions into ACP (Khopade
et al., 2002; Zhou et al., 2007; Zhou et al., 2013)
(Figure 1D). ACP could form enamel-like hydroxyapatite
orderly on the surface of demineralized enamel through the
crystallization guidance of PAMAM-COOH (Chen et al.,
2013). Another study found that PAMAM-COOH can
induce calcium and phosphorus ions to grow and

crystallize along the z-axis on the surface of demineralized
enamel, and the microhardness of the remineralized enamel is
comparable to that of the natural enamel (Chen M et al.,
2014).

Polyelectrolytes
Polyelectrolytes are a class of polymorphs with ionizable units,
which could ionize into charged polymorphs and counter-ions
with opposite charge in aqueous solution (Koetz and Kosmella,
2007) such as polyacrylic acid (PAA), polyallylamine (PAH),
polyaspartic acid (PASP), et al. PAA has rich carboxyl groups to
combine with calcium ions to form the -COO-/Ca2+ structure
(Huang et al., 2008), so that PAA can stabilize ACP (Gower,
2008; Dey et al., 2010) (Figure 1E). Qi added calcium and
phosphorus ions into the PAA solution to construct the PAA-
ACP complex and verified the stability of the PAA-ACP
complex by solution turbidity analysis and dynamic light
scattering. Scanning electron microscopy, transmission
electron microscopy, infrared spectroscopy and X-ray
diffraction analyses proved the remineralization ability of
PAA-ACP (Qi et al., 2018). Our group used PAA to stabilize
amorphous calcium phosphate, and then loaded PAA-ACP
with aminoated mesoporous silicon nanoparticle (aMSN) to
form the PAA-ACP@aMSN delivery system. The PAA-ACP@
aMSN was proved to have the ability to promote enamel
remineralization and surface microhardness analysis and
X-ray diffraction analysis showed that the remineralization
layer induced by PAA-ACP@aMSN had comparable
mechanical property and crystal texture to natural enamel
(Hua et al., 2020). PAA-ACP could also act as a dental
adhesive filler to endow adhesives with enamel
remineralization ability (Wang et al., 2018). Other
polyelectrolytes like polyallylamine (Niu et al., 2017; Yang
et al., 2017), polyaspartic acid (Zhou, et al., 2021),
polyglutamic acid (Sikirić, et al., 2009; Terauchi, et al., 2019)
could alsostabilize calcium and phosphorus ions but the
treatment or prevention effect of these polyelectrolyte-
stabilized ACPs for enamel demineralization remains to be
further investigated.

ACP PARTICLES

As a kind of amorphous substance, ACP is easy to spontaneously
transform into apatite crystal in an aqueous solution from the
thermodynamics point of view (Eanes et al., 1965; Chow et al.,
1998). Therefore, in addition to the application of stabilizers to
stabilize ACP in an amorphous state, another way to stabilize
ACP is to store the prepared ACP in an anhydrous dry granular
state to form ACP particles. Since the 1990s, ACP particle has been
gradually used as a bioactive additive in the studies of tooth
remineralization (Skrtic and Eanes, 1996). ACP particle could act
as a bioactive filler of dental filling resin to endow the filling resin with
the ability of continuous releasing of calcium and phosphorus ions to
promote the formation of hydroxyapatite (Skrtic et al., 2004).
However, the uncontrollable agglomeration of ACP particles in
the resin affects the mechanical properties of resin such as
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TABLE 1 | Comparison of the remineralization performance of ACP agents with other products.

Authors Study type Agents Interventions Evaluation methods Results Conclusions

Aras et al.
(2020)

In vitro Fluoride gel, CPP-
ACP, CPP-ACPF,
NovaMin-Fluoride,
Xylitol-HAP-Fluoride,
Ozone-Fluoride

Following manufacturer’s
instructions for 30 days

DIAGNOdent There were significant
differences in the scores
before and after the
remineralization procedure
in all experimental groups.
CPP-ACPF provided
significantly more
remineralization than other
experimental groups.

Remineralization of
demineralized areas was
achieved in all experimental
groups. The highest degree
of remineralization
according to the
DIAGNOdent scores before
and after the procedure was
observed in the CPP-ACPF
group.

Farzanegan
et al. (2018)

In vitro 0.05% NaF and
0.05% ACP solution

1 min/day for 10 weeks Microhardness tester Microhardness of samples
in NaF and ACP groups
both had significantly
improved after the
treatment. No significant
differences were found
neither between the fluoride
and ACP, nor the fluoride
and control groups.

Both 0.05% NaF solution
and 0.05% ACP solution
enhanced the enamel
microhardness ad are
suitable for treatment of
white spot lesions.

Farzanegan
et al. (2019)

In vitro 0.05% ACP, 0.5%
ACP and 0.05%
fluoride solutions

1 min/day for 10 weeks Colorimeter There was no significant
difference among 0.05%
ACP, 0.5% ACP and
0.05% fluoride solutions.
And a significant different
was noted between these
solutions and distilled
water.

ACP is as effective as
fluoride in the color
improvement of WSLs.

(Oliveira et al.
(2014)

In vitro CPP-ACP, CPP-
ACPF, 1.1% NaF
dentifrice

Following manufacturer’s
instructions for 30 days

QLF 1.1% NaF dentifrice
showed greater
remineralization than CPP-
ACP and CPP-ACPF.

The 1.1% NaF dentifrice
demonstrated overall
greater remineralization
ability.

Behrouzi et al.
(2020)

In vitro CPP-ACPF,
Remin Pro

Following manufacturer’s
instructions for 20 weeks

Microhardness tester The hardness of samples in
CPP-ACPF and Remin Pro
groups significantly in-
creased, but there was no
statistic difference between
CPP-ACPF and Remin Pro
groups.

CPP-ACPF and Remin Pro
can efficiently increase the
hardness of incipient enamel
lesions.

Yadav et al.
(2019)

In vitro Bio-minF, CPP-
ACPF

Twice a day, 4 min per
time for 6 weeks

Spectrophotometer,
DIAGNOdent

Bio-minF, and CPP-ACPF
showed significant
recovery of color change
and fluorescence loss. Bio-
minF had higher
fluorescence recovery
value than CPP-ACPF and
showed similar color
change value to CPP-
ACPF.

Both Bio-minF and CPP-
ACPF could remineralize
artificial enamel caries and
showed improvement in
color change and
fluorescence loss.

Kamath et al.
(2017)

In vitro Nano-HA, CPP-
ACPF, TCP

3 min/day for 14 days DIAGNOdent, SEM, EDX SEM evaluation showed
favorable surface change in
all groups. DIAGNOdent
and EDX readings was
statistically nonsignificant
among groups.

All agents showed
comparable remineralization
potential.

Tahmasbi
et al. (2019)

In vitro 0.05% NaF, CP-
ACPF, Remin Pro
paste

Once a day, 5 min per
time for 14 days

Microhardness tester 0.05% NaF was more
efficient than Remin Pro
and CPP-ACPF. Remin Pro
and CPP-ACPF were not
significantly difference from
the control group.

NaF mouthwash had the
greatest efficacy for
prevention of enamel
demineralization compared
with Remin Pro and CPP-
ACPF.

(Continued on following page)
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bonding strength and bending strength, so that ACP particles are
only suitable for materials with low requirements on mechanical
properties, such as pit and fissure sealant (Skrtic et al., 2004; Dunn,
2007). In 2011, Xu synthesized nano ACP (NACP) by spray drying
method for the first time and mixed it into dental resin as filler. The
NACP modified dental resin could release calcium and phosphorus
ions in an acidic environment, and the mechanical properties of the
resin are even better than commercial dental resinmaterials (Xu et al.,
2011). Since then, a large number of studies added NACP to dental
materials such as orthodontic bonding resins, sealants, resin-modified
glass ions and other materials, and verified their calcium and

phosphorus ion release ability and enamel remineralization ability
(Chen C et al., 2014; Ma et al., 2017; Liu et al., 2018; Xie et al., 2019;
Gao et al., 2020; Ibrahim et al., 2020).

ACP AGENTS VERSUS OTHER
REMINERALIZATION AGENTS

In addition to ACP agents, there are many other enamel
remineralization agents such as fluorine containing agents,
hydroxyapatite preparations and tricalcium phosphate. In vitro and

TABLE 1 | (Continued) Comparison of the remineralization performance of ACP agents with other products.

Authors Study type Agents Interventions Evaluation methods Results Conclusions

Jo et al.
(2014)

In vitro 1000ppm F, CPP-
ACP,and fTCP
containing
toothpaste

Twice a day for 2 weeks QLF-D Biluminator Fluorescence greatly
increased in the fTCP and
CPP-ACP groups
compared with the fluoride
and control groups.

fTCP and CPP-ACP seem
to be more effective in
reducing WSLs than 1000
ppm F containing
toothpastes.

Bhadoria
et al. (2020)

In vitro CPP-ACPF, fTCP Twice a day, 2 min per
time for 10 days

Microhardness tester fTCP shows significantly
higher increase in mean
microhardness when
compared to CPP-ACPF
and control group.

f-TCP showed
comparatively more
remineralization potential
than CPP-ACPF.

Brochner
et al. (2011)

RCT CPP-ACP and
fluoride containing
toothpaste

Once a day for 4 weeks QLF A statistically significant
regression of the WSL was
disclosed in both study
groups compared to
baseline, but there was no
difference between the
groups.

The application of CPP-ACP
could resulte in a reduced
area of the lesions after
4 weeks but the
improvement was however
not superior to “natural”
regression with daily use of
fluoride toothpaste.

Huang et al,
(2013)

RCT CPP-ACPF and
PreviDent fluoride
varnish

CPP-ACPF group: twice
a day for 8 weeks;
Varnish group: a single
application at the start of
the study.

Visual assessment The mean improvements
assessed by the
professional panel were
21%, 29%, and 27% in the
CPP-ACPF, fluoride
varnish, and control
groups, respectively.

CPP-ACPF and PreviDent
fluoride varnish do not
appear to be more effective
than normal home care for
improving the appearance
of white spot lesions over an
8-week period.

Akin and
Basciftci,
(2020)

Clinical
controlled
trial

0.025% NaF rinse
and CPP-ACP

Following manufacturer’s
instructions after
brushing teeth with F
containing toothpaste for
6 months

Image processing with
AutoCAD for quantitative
analysis

The area of the white spot
lesions decreased
significantly in all groups.
The success rate of CPP-
ACP was significantly
higher than that of NaF.

The use of CPP-ACP can be
more beneficial than fluoride
rinse for postorthodontic
Remineralization.

Singh et al.
(2016)

RCT Fluoride toothpaste,
fluoride varnish with
fluoride toothpaste,
CPP-ACP with
fluoride toothpaste,

Subjects were advised to
brush twice daily with
fluoride toothpaste for 1,
3,6 months.

DIAGNOdent, Visual
assessment

The mean visual and
DIAGNOdent scores at
various time intervals of
observations were
decreased more when
fluoride varnish and CPP-
ACP were used in addition
to daily use of fluoride
toothpaste, but the
differences were not
statistically significant.

The use of fluoride varnish
and CPP-ACP in addition to
twice daily use of fluoride
toothpaste had no
additional benefit in the
remineralization of post-
orthodontic WSLs.

varnish application: a
single application at the
start of the study.
CPP-ACP application:
twice daily after brushing
teeth

CPP-ACP, casein phosphopeptide- amorphic calcium phosphate; CPP-ACPF, casein phosphopeptide- amorphic calcium phosphate with fluoride; HAP, hydroxyapatite; QLF,
quantitative light-induced fluorescence; TCP, tricalcium phosphate; SEM, scanning electron microscope; EDX, energy dispersive X-ray; fTCP, fluoride tricalcium phosphate; RCT,
randomized controlled trial.
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in vivo studies have been conducted to compare the remineralization
performance of ACP agents and other agents (Table 1). However, the
conclusion varied among these studies. Some studies found that ACP
agents have better remineralization effect than other agents, while
others suggested that the remineralization effect of ACP agents is
similar to or no better than other agents. Whether the ACP agents
have better remineralization properties than other agents needs to be
further investigated in the future research.

DISCUSSION

ACP agents have outstanding preventive and therapeutic capacity to
enamel demineralization due to their ability to form the enamel-like
hydroxyapatite on the surface of demineralized enamel (Kwak et al.,
2016). However, Since ACP is easy to agglomerate and is unstable in
an aqueous solution (Chow et al., 1998), the main challenge in
applying the ACP for enamel remineralization is its stabilization.
Many different materials that could stabilize calcium and
phosphorus ions, including amelogenin and its analogs
(Tsiourvas et al., 2015; Wang Y et al., 2020), casein
phosphopeptides (Cross et al., 2005), polymers like chitosan
derivatives (Zhu et al., 2021), carboxymethylated PAMAM (Chen
et al., 2013) and polyelectrolytes (Hua et al., 2020), have been used in
studies to stabilize calcium and phosphorus ions into ACP. Another
strategy is to store the ACP in a water-free state so that ACP particles
and NACP particles are formed (Betts et al., 1975; Xu et al., 2011).
The remineralization abilities of these ACP agents have been
confirmed in previous studies. However, except for CPP-ACP
and CPP-ACPF which has been commercialized (Reise et al.,
2021), most of the other ACP agents are still at in vitro
experimental stage. Tt is still uncertain whether these ACP agents
can achieve the remineralization of demineralized enamel in vivo. In
addition, most of the studies evaluated the remineralization ability of
ACP agents by measuring the hardness recovery of demineralized
enamel (Gokkaya et al., 2020), observing the mineral deposition on
demineralized enamel (Hua et al., 2020), or measuring the lesion
depth (Soares-Yoshikawa et al., 2021). None of the above-mentioned
evaluation methods can directly confirm whether ACP agents could
form the enamel-like hydroxyapatite. The biomimetic
remineralization ability of ACP agents needs further investigation.
To further promote the translation of ACP agents into clinical
application, basic studies with adequate evaluation methods as well
as relevant in vivo studies are still needed. In addition, whether ACP
agents have better remineralization effects compared to other agents
remains to be further explored.

ACP complexes are in the amorphous state of the liquid phase
(Chen et al., 2013;Niu et al., 2017;Qi et al., 2018; Song et al., 2021), and
ACP particles (Skrtic et al., 2004; Xu et al., 2011) are solid powders.
Neither the liquid nor the solid form is convenient for storage and
direct application in the oral environment. Studies has been conducted
to address the storage and application challenges of ACP agents:

1) Mouthwash. Studies used carriers like chitosan (Ruan et al., 2013)
and carboxymethyl chitosan (Zhu et al., 2021) to load ACP agents
and these delivery systems can be applied in the oral environment
in the form of mouthwash.

2) Toothpaste and tooth desensitizer. Another form of application of
the ACP agents is to make them into pastes. Our group used
mesoporous silicon nanoparticles to load ACP agents to achieve
the enrichment and storage of ACP and this delivery system can
be applied as the filler of toothpaste (Hua et al., 2020). CPP-ACP
agents can be used as desensitizers in the form of pastes (Pei et al.,
2013; Chandavarkar and Ram, 2015; Yang et al., 2018).

3) Resin product. Particulate forms of ACP have been incorporated
into resin products, like adhesives (Wang et al., 2018), pit and
fissure sealants (Utneja et al., 2018), varnishes (Schemehorn et al.,
2011) to achieve convenient applications that do not depend on
patient compliance.

Mouthwash form of the ACP agent is convenient to use, but the
relatively low concentration of ACP and its inability to persist on the
enamel surface for long periods lead to the limited effectiveness of
ACP agents to enamel remineralization. The paste-like application
form could effectively enhance the concentration of ACP and could
maintain a high concentration of ACP on the enamel surface during
application, but like mouthwash, it still has a short duration of
hydroxyapatite formation due to the effect of saliva flushing. ACP
agentsmodified resin products can releaseACP on the enamel surface
for a long period thus achieving the long-term prevention or
treatment of enamel demineralization. However, the effect of ACP
agent incorporation on the performance of these products like
mechanical performance and biocompatibility needs further
exploration. And the long-term stability of the ACP release from
these products should be considered in future studies.

CONCLUSION

Herein we summarize the strategies of stabilizing ACP. Calcium and
phosphorus ions can be stabilized to the ACP state using a variety of
methods, but the preventive and therapeutic effects of these ACP
agents on enamel demineralization still await further investigation.
There are threemain forms of storage and application of ACP agents,
namely mouthwash, toothpaste/tooth desensitizer, resin product.
However, due to the shortcomings of the above-mentioned forms
of ACP agents, more easy-to-use and long-lasting forms of ACP
agents remain to be further explored.
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