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Biofabrication, specifically 3D-Bioprinting, has the potential to disruptively impact a wide
range of future technological developments to improve human well-being. Organs-on-
Chips could enable animal-free and individualized drug development, printed organs may
help to overcome non-treatable diseases as well as deficiencies in donor organs and
cultured meat may solve a worldwide environmental threat in factory farming. A high
degree of manual labor in the laboratory in combination with little trained personnel leads to
high costs and is along with strict regulations currently often a hindrance to the
commercialization of technologies that have already been well researched. This paper
therefore illustrates current developments in process automation in 3D-Bioprinting and
provides a perspective on how the use of proven and new automation solutions can help to
overcome regulatory and technological hurdles to achieve an economically scalable
production.
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1 INTRODUCTION AND BACKGROUND

Tissue engineering has played an important role in the field of regenerative medicine and biomedical
engineering for many years. Through the targeted interaction of cells, suitable carrier materials, and
growth stimuli, it is possible to produce a variety of tissue substitutes (Nerem and Sambanis, 2007) as
well as in vitro models for preclinical studies (Godbey and Atala, 2002; Hirt et al., 2014). Anthony
Atala, for example, succeeded in producing a human bladder and implanting it in a patient as early as
1999 (Atala et al., 2006). However, traditional tissue engineering methods often depend on the use of
molds and cores and are thus restricted in their geometric freedom. Moreover, these methods are
labor intensive and difficult to reproduce, which is not practical in the context of an economically
scalable production, neither it is regarding standardization in terms of governmental regulation
guidelines.

A promising technology to enable reproducibility and scalability while maintaining high quality
and standardization is 3D-Bioprinting. In conventional additive manufacturing processes, 3D-
Printing is used for rapid prototyping on the one hand and to move from mass production to mass
customization on the other (Bak, 2003; Berman, 2012). In contrast, the use of 3D-Bioprinting in
combination with further automation steps is intended to enable scalable and standardized
production of printed tissue or microfluidic models to replace labor intensive handcraft. It also
provides the capability to use digital models that can be easily adapted to individual needs for
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functional human tissue substitutes or replicas such as liver, skin
or bones. 3D-Bioprinting covers a wide range of different
processes and technologies that differ fundamentally in terms
of the method of transferring bioink from the cartridge to a
substrate or a previously printed layer. Besides procedural
differences 3D-Bioprinting methods offer some common
significant advantages. They allow the use of sensor-based
control and regulation of the printing process and thus enable
online quality monitoring, which offers great added value in
terms of achieving reproducible printing results with a high
shape-fidelity, printing resolution and cell viability. Sensor
integration and online quality assessment (QA) has the
potential to pave the way for standardized manufacturing
platforms. In conjunction with robotic process automation,
this could enable the industrially scalable production of clean
meat or Organs-on-Chips (OoCs) through 3D-Bioprinting. In
addition, real-time recording of sensor data and corresponding
online quality control can provide a foundation for the
certification of Advanced Therapy Medicinal Products
(ATMPs), which is critical for the approval of clinical
applications.

Bioprinting technology can be looked at from two different
perspectives, a rather technical one or an economical one. The
former is subject of current research and technical advantages are
widely observed. The economic consideration, however, is often
disregarded. Therefore, online QA and further automation,
suitability for scalable production of printed tissue and
standardization are often ignored. This paper places current
automation solutions in the context of scalable biofabrication,
considers transferable processes from other industries, and provides
a perspective on the fully automated use of 3D-Bioprinting processes
to move from handcraft to standardized production.

2 HARDWARE, SENSORS AND
AUTOMATION POTENTIALS IN
3D-BIOPRINTING
Increased automation of bioprinting processes, for example,
enables online quality control and live adjustments, as well as
scalability of the printing processes, leading to an improvement of
the current state from both an economic and medical perspective.
Thus, the following chapter presents an overview of the most
common hardware components regarding already established
bioprinting automation, future automation potentials and
procedural interfaces for further automation as well as
transferrable technologies from other industries.

2.1 ANALYSIS OF THE AUTOMATION
POTENTIAL OF THE MOST PROMINENT
HARDWARE COMPONENTS
To identify automation potentials and find currently applied
automation solutions, hardware components and process steps
need to be observed and analyzed. Due to the wide range of
different systems and printing methods those differ. Yet there are

fundamental similarities that can be schematically illustrated
cumulatively (Figure 1).

In general, the 3D-Bioprinting process chain can be distinguished
in print preparation, the printing procedure, and post-printing tissue
maturation (Figure 1). Print preparation covers the entire path from
3D design, to the generation of a data set for path calculation of the
subsequent print path, to material synthesis and cell cultivation as
well as the final bioink formulation. In the post-printing phase, the
printed 3D structure is typically cultivated in an incubator,
conditioned and is then available for further use, e.g., for OoCs,
implantation or further examination of the tissue for research issues.
Within the printing process which comprises fluid handling,
robotics and control engineering to transfer bioink from the
cartridge to a substrate or previously printed layer, a preparatory
phase, the actual printing phase and the post-processing of the
printed object can be subdivided in terms of automation. All these
three phases offer automation potentials, and due to smooth
transitions between the phases, not all components can
necessarily be assigned to one phase. After hardware initialization
and typically a system-depend cleaning protocol, the preparatory
phase starts. There, the previously designed 3D data and the bioink
are loaded into the printing system and the print cartridge,
respectively. One or more bioinks are then deposited layer by
layer according to the predefined print path. The way in which
the material is applied and the shaping of the 3D structure are highly
dependent on the specified bioprinting method and strategy (Duarte
Campos and Blaeser, 2021). The most frequently used technologies
and strategies are either dependent on traditional deposition
techniques (extrusion- or inkjet-based) or optics-/light-based
(stereolithography or laser-assisted) (Choudhury et al., 2018).
Independent of the system, online process monitoring and
control as well as QA-methods are taking on an increasingly
important role during the printing process. The use of Artificial
Intelligence (AI) for camera-based detection and evaluation of
anomalies (Jin et al., 2021), bio-chemical quality control (Tröndle
et al., 2019) and amonitoring system with direct print path feedback
and correction (Armstrong et al., 2019) are just a few examples. AI
could help to combine and accel those technologies even further. The
post-processing phase includes all steps that take place after printing
and before cultivation in the incubator, e.g. robotic transportation of
the printed object and intermediate storage in a magazine for OoC-
applications. Further examples of the current state and future
potentials regarding the print-process automation are presented
and discussed in the following chapters.

In addition to the general view and the former illustration
(Figure 1), it is useful to get an overview of the different printing
methods to connect them with hardware, sensors and control
components. Table 1 shows in a structured way which process
steps, components as well as sensors and actuators are applicable
for which 3D-bioprinting method with regard to process automation.

The assignment shown here is not complete due to clarity
reasons, but reflects the most important elements and a large part
of the sensors and actuators for 3D-Bioprinting. Components
that appear repeatedly in different print elements are listed only
once, including their associated sensors and actuators. This
provides a reasonable reference in a clear framework to the
topic of automation and automation potentials. In addition to
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the above, from a technological cell biological point of view,
further consideration of biosensors would be interesting, for
example, in order to be able to draw conclusions about cell
expression and contraction as well as proliferation and
metabolic activities. Equally, from a manufacturing
perspective, control and regulation, further sensors, e.g. for
recording micro-vibrations, or safety-relevant elements such as
end stops can be considered.

2.2 Currently Applied Sensor and
Automation Concepts in 3D-Bioprinting
The term 3D-Bioprinting first emerged in scientific articles in the
early 2000s, while the first bioprinter according to today’s
understanding, a modified standard inkjet printer, originates
from 2003 (Wilson and Boland, 2003). The first patents on
bioprinting appeared in a similar time frame between 2001 and
2003 (Bicudo et al., 2021). Since its beginnings, the technology has
already evolved greatly, advancing from a niche technology further
and further into a wide variety of sectors to fulfill prerequisites for
commercial applications (Combellack et al., 2018). During this
development, automation is also becoming increasingly important
in the context of process-driven research of 3D-Bioprinting in
order to meet standardized, scalable and economic constraints
(Santoni et al., 2021). Modern 3D-Bioprinting itself requires a
certain level of automation to be functional, which leads to the
current state of the art. The use of basic sensors, actuators and
robotics as well as simple process monitoring measures is evident
from the description of the different processes (Vanaei et al., 2021).

Recent publications even already show single advanced
technologies relying on QA methods for process prediction and
adaptation (Rimann et al., 2016; Narayanan et al., 2018; Riba et al.,
2020; Armstrong et al., 2021; Elbadawi et al., 2021). The goal of the
latest research and development by universities, bioprinting
companies, and companies in the life science and food
industries are all-in-one platforms. These are designed to enable
the use of multiple materials, tools for further processing and
process monitoring, and the use of AI (Santoni et al., 2021). The
described advances are mostly in the early stages and not ready yet
for commercialization on a large and economic scale.

2.3 Most Promising Sensor and Automation
Solutions from other Industries to Optimize
3D-Bioprinting
In other industries process automation is well known and broadly
applied. It is also a well-researched subject area itself that is still
constantly evolving. The following subsections present learncases
from other industries that offer great potential to be applied to 3D-
Bioprinting automation in the future. Of course, the elements and
technologies use to overlap in the individual sectors, which is why
hereafter themost advanced andmost frequently used arementioned
in each case.

2.3.1 Food Industry
In the food industry, process automation solutions have been used in
a variety of ways for many years. Gripping and transport systems as
well as monitoring and ensuring a sterile working environment have

FIGURE 1 | General 3D-Bioprinting process chain and illustration of hardware components with examples for the use of QA-Sensors towards live anomaly
detection for process control (reprinted (adapted) with permission from (Jin et al., 2021). Copyright 2021 American Chemical Society) as well as the use of ROI imaging for
bio-chemical quality control (Tröndle et al., 2019).
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TABLE 1 | Assignment of process steps, involved printing elements and hardware components to their applicable printing methods.

Process Steps Print
Element

Components Actuators Sensors Parameter Applicable to References

(Un)loading and
Transportation

Substrate
and/or
printed
structure

Gripper Pneumatics Pressure, Force Weight, Surface
texture

All (Liu and Chiu, 2017; Wang
and Hirai, 2018; Zhong et al.,
2019)

Adhesion Force
Mechanics
Magnet

Robotics Gantry robot Position sensor/
Potentiometer

Orientation/Position All (depending
on robotic
concept)

(Li and Liu, 2019; Santoni
et al., 2021; Tan et al., 2021)

Accelerometer AccelerationJoint robot/
Robotic-arm Gyroscope/

Rotation angle
sensor

Orientation/Position

Bioink
delivery

Microfluidic
bioink supply

Valves
(pneumatic,
electromagnetic)

Flow, Pressure,
Inductivity

Sensor-specific
parameters, Viscosity,
Cell viability

Inkjet,
Microvalve-,
Extrusion-
based
processes

(Chung et al., 2013; Ramiah
et al., 2020)

Spheroid-
delivery

Pneumatic,
mechanical

Optics, pressure Spheroid size,
pressure

Spheroid-
based
processes

(Moldovan et al., 2017; Ayan
et al., 2020)

Coating device Squeegee Optics Cell Viability Laser-based
bioprinting

(Kačarević et al., 2018;
Kingsley et al., 2019)

Hose system Cooling/Heating
element

Temperature Temperature All -

- Pressure Pressure
Optics Cell Viability

Pump/
Compressor

Mechanical,
Peristalic,
pneumatic

Pressure,
Temperature

Sensor-specific
parameters

Inkjet,
Microvalve-,
Extrusion-
based
processes

Ozbolat and Hospodiuk,
(2016)

Printing Bioink
dispenser

Reservoir Mixer - - Inkjet,
Microvalve-,
Extrusion-
based
processes

(Ng et al., 2017; Xu et al.,
2019)Cooling/heating

element
Temperature Temperature

- Optics
(transmission,
spectroscopy,
microscopy)

Cell Viability

Pressure Sensor-specific
parameterspH-sensor

CO2-sensor
Nozzle/printer
head

Valves
(pneumatic,
electromagnetic)

Flow, Pressure,
Inductivity

Sensor-specific
parameters, Viscosity,
Cell viability

Microvalve-
based
processes

Gu et al. (2018)

Membranes - - Inkjet
Cooling/heating
element

Temperature Temperature All

Piezoelement - Voltage DoD processes
Needle - - Inkjet,

Extrusion-
based
processes

Acoustics (no
nozzle)

- Voltage Acoustic
processes

Laser (no nozzle) - Voltage Laser-based
bioprinting

Light source/
laser

Laser - Pixel size/resolution,
Voltage

Stereo-
lithography
(SLA)

Kumar and Kim, (2020)
Projector

QA-Sensors - Pressure Sensor-specific
parameters, Cell
Viability, Droplet Size,
Morphology, Shape
fidelity, Number of
Cells per unit

All (Armstrong et al., 2021; Jin
et al., 2021;
Poologasundarampillai et al.,
2021)

Temperature
Volume
Optics

(Continued on following page)
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a major role in the standardized and automated implementation of
these measures (Ilyukhin et al., 2001; Holmes et al., 2013). For
example, in large-scale processing of fruits and vegetables on
plantations, non-invasive vacuum gripping systems are often used
for fast and reliable pick and place applications to manipulate
products and enable an end-to-end process chain (Blanes et al.,
2011; Morales et al., 2014). To ensure high product quality and
undamaged products, camera-based systems are used in combination
with actuators that, for example, perform an automated sorting
process (Bee and Honeywood, 2003; Bader and Rahimifard, 2020).
In fully automated operations this is followed by direct packaging of
the products according to specified standards. The processing of
many foods requires a clean and uncontaminated atmosphere, for
example to protect against the presence of salmonella. To meet the
specified regulations, various methods are used here depending on
the application (de Alwis and Fryer, 1990; Guzel-Seydim et al., 2004;
Oscar, 2005; Huang et al., 2008; Velugoti et al., 2011).

2.3.2 Conventional Printing and 3D-Printing
Conventional printing processes are multiparametric and highly
dynamic processes. For this reason, the use of sensors, actuators,
mechanics and a control unit, which represents the structure of a
mechatronic system (Tehrani et al., 2016), is highly advanced here in
order to be able to achieve high and consistent print quality.
Technologies for measuring and adjusting pressure, position,
temperature and air bubbles play a crucial role in industrial
printing applications and thus are broadly applied. To achieve
better results, increase productivity and reduce downtimes,
artificial intelligence methods are emerging more and more in
modern industrial printing machines (Neeb et al., 2019).

In terms of its characteristics and general structure, conventional
3D-Printing is very similar to 3D-Bioprinting. This allows a good
transfer of knowledge between the two technologies, so that 3D-
Bioprinting can benefit from the more advanced knowledge of 3D-
Printing. The focus here is specifically on material deposition

(MacDonald and Wicker, 2016; Lee et al., 2017), robot kinematics
(Qian et al., 2018; Jinghua et al., 2020), printing space and platform
(Sitthi-Amorn et al., 2015), optical QA-methods and a fully digitized
process chain or 3D-Printing factory (Rengier et al., 2010).

2.3.3 Artificial Intelligence
Artificial intelligence is entering everyday life more and more and
offers a variety of innovative and useful methods to solve problems
in an automated and intelligent way. Using machine learning, fast
and precise predictions can be made about process parameters and
results, and multi-dimensional sensor signals can be merged and
interpreted. In modern industrial production facilities, sensor data
fusion and predictive maintenance are already being used in the
field to compare target and actual data and have proven to be
accelerators here (Aliustaoglu et al., 2009; Hashemian, 2011; Indri
et al., 2019; Nazir and Shao, 2021; Pech et al., 2021). Nowadays,
medicine andmedical technology use image processingmethods to
segment and classify structures in order to draw conclusions about
diseases and the resulting therapies (Liu et al., 2019; Shi et al., 2021).

3 DISCUSSION

3.1 Potential Impact on 3D-Bioprinting
Between 2016 and 2021 the number of publications on the topic
automation in bioprinting and tissue engineering indicated a
strong increase in interest1. Individual publications show
groundbreaking results on how the use of automation
solutions can help to monitor and adjust crucial process
parameters and to draw conclusions about cell biological

TABLE 1 | (Continued) Assignment of process steps, involved printing elements and hardware components to their applicable printing methods.

Process Steps Print
Element

Components Actuators Sensors Parameter Applicable to References

Build-up-
3D-structure

Build plate/
printing
platform

Cooling/heating
element

Temperature Temperature All (Gómez-Blanco et al., 2021;
Grigoryan et al., 2021)

Level control Level sensor,
flowt, volume

Sensor-specific
parameters

SLA

Optics -Incubator (nutrient
supply)

All
CO2-sensor CO2

Robotic axis See above See above All
Cleaning - Extraction

system
Pneumatics Pressure Pressure All -

Ultrasonic
transducer

Ultrasonic
transducer

- Frequency

Water bath Cooling/heating
element

Temperature Temperature

Scraper - - -
Storage Substrate

and/or
printed
structure

Incubator Cooling/heating
element

Temperature Temperature All -

Ventilation CO2-Sensor CO2

- Optics,
pressure, flow

Sensor-specific
parameters

1According to PubMed, publications on the terms “bioprinting automation” and
“tissue engineering automation” have increased from 20 in 2016 to 47 in 2021 per
year, accessed January 2022.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2022 | Volume 10 | Article 8550425

Lindner and Blaeser Process Automation in 3D-Bioprinting

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


characteristics or allow the printing of complex 3D structures
with hydrogels (Hinton et al., 2015; Shi et al., 2018; Armstrong
et al., 2019; Jin et al., 2021; Poologasundarampillai et al., 2021;
Yang et al., 2021). At the same time, the number of patents and
companies embracing 3D-Bioprinting continue to grow (Santoni
et al., 2021). However, no technology has yet achieved the major
breakthrough to commercial marketing and industrial
production for a broad mass (Ng et al., 2019). One reason for
this is the lack of interfaces between different process steps,
respectively the frequent interruption of the process chain by
human intervention for transport or inspection tasks.
Application-specific placement and transport systems, as often
used in the food industry (chapter 2.3.1), can act as an interface
and close the chain in a relatively simple way, thus enabling, for
example, large-scale production of OoCs. Even in 2011 a
publication showed the deficiencies of the simple use of 3D-
Bioprinters and argued with the requirement of an additional
sophisticated production line to enable commercial
biofabrication (Mironov et al., 2011). The smart use and
aggregation of sensor data is another way to facilitate the
commercial market entry of 3D-Bioprinting. Combined with
AI applications, this allows real-time data to be analyzed,
predictions to be made, and even parameter adjustments to be
made automatically. This not only leads to higher process
accuracy and productivity, but in the future can become the
foundation for standardization and therefore also the driving
force on the path to certification to meet regulatory guidelines for
medical therapies or food products (Li and Faulkner, 2017;
Haeusner et al., 2021; Schmidt et al., 2021). Current studies
predict, for instance, that clean meat could become part of the
everyday diet in a few years (Chriki and Hocquette, 2020; Lee
et al., 2020). Automation technology will play a major role in
making the transfer from laboratory applications to scalable
production and economically viable commercialization, thus
exploiting the technological potential of 3D-Bioprinting as far
as possible.

3.2 Challenges
Despite recent developments and an increased interest to use the
power and knowledge of process automation to advance 3D-
Bioprinting, the field has still a lot of room for further
improvement. Within the nature of a multiparametric process
with high standards towards every parameter and their
combination, 3D-Bioprinting is a rather complex application.
In addition to the high technological demands on the printing
system and the materials for implementing the actual procedure,
this places equally high standards on process automation and
technological development for process optimization. This results
in strict regulatory requirements for the approval of products,
high research expenditure and high costs. To overcome these
challenges multidisciplinary research should be conducted by
experts in cell biology, pharmacy and medicine, but equally by

engineers with knowledge in additive manufacturing, material
science, artificial intelligence and mechatronics.

3.3 CONCLUSION AND OUTLOOK

3D-Bioprinting, whether in the field of new regenerative medical
products as biomimetic and bionic cell-loaded implants, the
development of clean meat or for drug discovery via the use of
OoCs, has emerged as a novel innovative technology with great
potential for the future. This is demonstrated both by the recent
strong increase of interest from scientific institutions via rising
publication numbers as well as exponential increasing patent
registrations and industrial interest. Further research in the field of
3D-Bioprinting process automation, especially in the area of live
quality monitoring, is essential to overcome technological and
regulatory challenges. Progress from this and further developments
inAIwill be supported in the future by the smart combination and use
of already known sensor and control technologies that can be
burrowed from other sectors (e.g. food industry, conventional
printing and additive manufacturing industry) to fully exploit the
great potential of 3D-Bioprinting. Thus, the production of new
regenerative medicinal products, clean meat and OoCs for animal-
free drug development can be further advanced to make commercial
biofabrication more realistic from an economic and scalability
perspective.
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