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Using biological materials to synthesize metallic nanoparticles has become a frequently
preferred method by researchers. This synthesis method is both fast and inexpensive. In
this study, an aqueous extract obtained from chickpea (Cicer arietinum L.) (CA) leaves was
used in order to synthesize silver nanoparticles (AgNPs). For specification of the
synthesized AgNPs, UV-vis spectrophotometer, Fourier transform infrared
spectroscopy (FT-IR), X-ray diffraction analysis (XRD), transmission electron
microscopy (TEM), scanning electron microscopy (SEM), electron dispersive X-ray
(EDX), and zeta potential (ZP) analyses data were used. Biologically synthesized
AgNPs demonstrated a maximum surface plasmon resonance of 417.47 nm after 3 h.
With the powder XRD model, the mean crystallite dimension of nanoparticles was
determined as 12.17 mm with a cubic structure. According to the TEM results, the
dimensions of the obtained silver nanoparticles were found to be 6.11–9.66 nm. The
ZP of the electric charge on the surface of AgNPs was measured as −19.6 mV. The
inhibition effect of AgNPs on food pathogen strains and yeast was determined with the
minimum inhibition concentration (MIC) method. AgNPs demonstrated highly effective
inhibition at low concentrations especially against the growth of B. subtilis (0.0625) and S.
aureus (0.125) strains. The cytotoxic effects of silver nanoparticles on cancerous cell lines
(CaCo-2, U118, Sk-ov-3) and healthy cell lines (HDF) were revealed. Despite the increase
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of AgNPs used against cancerous and healthy cell lines, no significant decrease in the
percentage of viability was detected.

Keywords: cytotoxic activity, green synthesis, nanomaterials, food pathogens, nanomedicine, SEM-EDX

FIGURE 1 | Graphical illustration of the study.

TABLE 1 | Instrument conditions.

Instrument Condition

SEM-EDX (EVO 40 LEQ) Mag: 500–60.00 K X; EHT: 20.00 kV; WD: 11–12 mm; Signal A: SE1
TEM (Quanta) 1–100 nm
XRD (Rad B-DMAX II) Dedector: SC-70; Solid phase; 2-theta (deg): 37.96; FWHM (deg): 1.17; Count (deg): 184; X-Ray: 40 kV, 15 mA
Zeta-sizer (Malvern Ins.Ltd.) Zeta Deviation (mV): 5.81; Viscosity (cP): 0.8872; Conductivity (mS/cm): 0.00843; Dispersant Dielectric Constant: 78.5;

Temperature (°C): 25; Count Rate (kcps): 93.3
FT-IR ATR (Perkine Elmer ONE) Strong Ratio Spectrum Magnitude Universal Atr Double
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INTRODUCTION

Nanotechnology is revealing new perspectives for the
diagnosis and cure of numerous deadly autoimmune and
chronic disorders like cancer (Kafshdooz et al., 2018; Yadi
et al., 2018). Nanoparticles have become the main subject of
scientific works in the last few decades because of their diverse
properties, like different catalytic behaviors, chemical stability,
and electric conductivity (Patra and Baek, 2016).
Nanoparticles have become an indispensable source of

biological research due to their structural and dimensional
similarities to biological molecules. Nanoparticles are
considered antimicrobial agents because they show good
antibacterial properties resulting from their extensive
surface area and volume that provides desired contact with
the bacterial cell (Kumar et al., 2016). These properties allow
nanoparticles to be used in diagnostic, cell labeling, biomarker,
drug delivery, cancer therapy, and water purification
applications (Mousavi et al., 2018; Kumari et al., 2019;
Kowsalya et al., 2021).

In recent years to examine the morphological properties of
nanoparticles, laser CVD, physical adsorption, and emulsion
polymerization techniques are commonly being used.
However, these technologies require the usage of stabilizing/
reducing harmful chemicals or non-biologically degradable
agents (Jayaprakash et al., 2017). For this reason, it is
preferred to produce nanoparticles with fast, low-cost “green
synthesis” procedures that do not use toxic solvents or pollute
the environment, instead of current traditional methods
(Hussain et al., 2016; Jayaprakash et al., 2017; Bandeira
et al., 2020). Living organisms in nature can convert metal
salts into nanoparticles by reducing them. In this context,
scientific studies have focused on synthesizing these
nanomaterials from non-artificial sources like plants
(Aktepe and Baran, 2021), bacteria (Javaid et al., 2018),
fungi (Molnár et al., 2018), algae (Parial et al., 2012),
seaweeds (Chellapandian et al., 2019), and viruses (Mohmed
et al., 2017).

FIGURE 2 | UV-vis absorption spectra of CA-AgNPs.

FIGURE 3 | (A–D) SEM images of CA-AgNPs in different scanning areas.
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In many nanoparticle studies, gold (Au) (Hatipoğlu, 2021),
silver (Ag) (Baran, 2019; Umaz et al., 2019; Baran et al., 2021b),
zinc (Zn) (Jayappa et al., 2020), nickel (Ni) (Din et al., 2018), iron
(Fe) (Devatha et al., 2016), platinum (Pt) (Ramkumar et al.,
2017b), selenium (Se) (Abu-Elghait et al., 2021), titanium (Ti),
and palladium (Pd) (Gioria et al., 2020) are frequently used
metals. Especially silver (Ag) is known to be an important
metal suppressing the growth of bacteria. The Ag ion can
prevent cell division and DNA replication (Ramya and
Subapriya, 2012). Owing to their small dimensions, silver
nanoparticles (AgNPs) bind to cell membrane proteins and
catalyze the formation of reactive oxygen species (ROS) in
bacterial cells. Thus, they cause cell death due to oxidative
stress (Hoseinnejad et al., 2018; Alkhalaf et al., 2020;
Hasanzadeh et al., 2021).

The most important advantage of choosing plants as a
resource in the biological synthesis of nanoparticles (NPs) is
that they contain many naturally occurring reducing agents such
as flavonoids, reductases, phenolic acids, and dehydrogenases,
which have a key role in the synthesis of magnetic nanoparticles
(MNPs) (Shumail et al., 2021).

In this study considering the properties of plants, the
synthesis and stabilization of silver nanoparticles were

achieved by reducing Ag metal salt by using chickpea (Cicer
arietinum L.) (CA) leaf extract. Plant-based synthesized
AgNPs were investigated for their effectiveness against
pathogens, microorganisms, and cancerous and healthy cell
lines (Figure 1).

MATERIALS AND METHODS

Materials
In the study, CA leaves obtained from Büyük Çelikli Village of Sur
County of Diyarbakır were used. AgNO3 (99.8% purity), colistin,
vancomycin, and fluconazole were commercially purchased from
Sigma Aldrich. E. coli ATCC 25922, P. aeruginosa ATCC27853,
B. subtilis ATCC 11774, S. aureus ATCC 29213, and C. albicans
were used to test the antimicrobial activities of AgNPs.
Cytotoxicity tests (MTT) related to cell lines (CaCo-2/human
colon epidermal adenocarcinoma; U118 MG/human brain
glioma cells; SK-OV-3/human ovarian cancer cell line; HDF/
human dermal fibroblasts) were performed in the Dicle
University Central Research Laboratory.

Herbal Extraction Process
Green leaves of CA were washed with deionized distilled water to
remove residues and dehydrated at 25 ± 2°C. A total of 250 g of
ground plant material was mixed with deionized pure water
(500 ml) and boiled in a flask. After boiling, the cooled extract
was filtered with a membrane filter (0.45 μm).

Plant-Based Synthesis of Silver
Nanoparticles
Firstly, an aqueous solution of 5 mM AgNO3 with solid AgNO3

was prepared. The CA extracts (500 ml) and 100 ml of AgNO3
were allowed to react in a glass vessel (1:5 ratio) at room
temperature. Maximum absorbance of biologically synthesized
AgNPs was determined by wavelength scanning (UV-vis
spectroscopy) at various time periods (15, 30, 45, 60, 120, and
180 min) depending on the color change. At the end of the
synthesis, the solution, which became a dark color depending
on time, was subjected to centrifugation (6000 rpm, 20 min). The
purpose of this process is to separate the synthesized
nanoparticles from plant residues. The solid fraction obtained
at the end of centrifugation was washed several times with
distilled water and the resulting residue (AgNPs) was dried in
an oven at 60°C for 72 h.

Instrumentation
The maximum absorbance of synthesized AgNPs was measured
at the 300–800 nm wavelength range with a spectrophotometer
(Agilent CARY 60). Size, morphology, crystal structure, surface
distribution, and zeta potential (ZP) values of AgNPs were
revealed by scanning electron microscopy (SEM) (EVO 40
LEQ), transmission electron microscopy (TEM) (Quanta), field
emission scanning electron microscopy (FE-SEM) (Quanta
FEG240), electron dispersive X-ray (EDX) (Quanta FEG 240),
X-ray diffraction analysis (XRD) (Rad B-DMAX II), and

FIGURE 4 | TEM results of CA-AgNPs.
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Zetasizer (Malvern Ins. Ltd.). The crystal dimension of AgNPs
was calculated according to the D = Kλ/(β cosθ) equation (Asadi
et al., 2018; Baran et al., 2018). In addition, Fourier transform
infrared spectroscopy attenuated total reflectance (FT-IR ATR)
was used to identify the functional groups present in the CA
extract, and the functional groups responsible for the reduction at
the end of the reaction test analysis conditions of used
instruments are given in Table 1.

Antimicrobial Activities of Silver
Nanoparticles
Growth inhibition of plant-based AgNPs on Gram-positive (B.
subtilis; S. aureus) and Gram-negative (E. coli; P. aeruginosa)
strains and yeast (C. albicans) was determined using a 96-well
microplate with minimum inhibition concentration (MIC)
method. Mueller Hinton broth and cell culture growth
medium (Roswell Park Memorial Institute medium/ RPMI)

FIGURE 5 | (A) FT-IR spectra data of CA leaf extract. (B) FT-IR spectra data of synthesized CA-AgNPs.
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were added to the wells for the growth of bacteria and yeast. The
AgNP solution was added to the wells with the culture medium
and microorganisms to determine the MIC value. Firstly, 100 µL
of mixed culture medium was taken from the wells each time and
transferred to the next well. Then the microorganism solutions
adjusted according to the 0.5 McFarland standard were added to
the microplates and incubated at 37°C/24 h. The minimum
concentration without growth after incubation was determined
as the MIC value (Baran et al., 2020). Commercially purchased

standard antibiotics (colistin, vancomycin, and fluconazole) and
1 mM AgNO3 solution were used to compare the growth
inhibitory activities of AgNPs on pathogen microorganisms.

Evaluation of Viability Suppressor Activities
of AgNPs by the MTT Method on Cell Line
Seeding in a 96-Well Plate
The MTT method was performed to determine the plant-based
AgNP ratio of cytotoxicity (viability suppressor) on cancerous
and healthy cell cultures. T-75 T-flasks were used to prepare
the culture medium. CaCo-2, HDF, and U118 cell lines were
cultivated in DMEM solution. The human ovarian cancer cell
line (SK-OV-3) was incubated in RPMI solution. Prepared
cultures were incubated at 5% CO2, 37°C, and 95% air and
humidity conditions. When the cells reached about 80%
confluency in the hemocytometer measurement, cell
cultures were suspended at different concentrations and
transferred to microplates (96-well) for incubation
(overnight). At the end of the period, the cultured cell lines
were treated with nanoparticles at different concentrations
(25, 50, 100, and 200 μg/ml) and incubated for 2 days. In
the next step, the MTT solution was transferred to the
microplate wells and incubated for 3 h, and then DMSO
was added and kept at room temperature for 0.25 h. The
absorbance (540 nm) of the microplates was measured with
MultiScan Go (Thermo).

By using the below formula, the percentage viability of the cell
lines was calculated.

% viability = U/C*100 (Vickers, 2017).

FIGURE 6 | Elemental composition of AgNPs with EDX analysis.

FIGURE 7 | XRD patterns of biosynthesized AgNPs.
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U: Absorbance of cells treated with AgNPs.
C: The absorbance values of control cells.

RESULTS AND DISCUSSION

UV-Visible Spectroscopic Analysis
The color change was observed after the CA leaf extracts with
AgNO3 solution were left to react in a container. The UV-vis
spectrum of AgNPs appeared to change from light green to purple
(Figure 2). Because of the surface plasmon resonance, AgNPs
gave a peak at a specific absorbance value of about 417.47 nm.
Similarly, some researchers reported that the absorption
spectrum of AgNPs is between 425–461 nm (Udayasoorian
et al., 2011).

Evaluation of SEM and TEM Data
SEM, FE-SEM, and TEM images of synthesized AgNPs are given in
Figures 3, 4. According to these results, it was seen that the
nanomaterial was mostly spherical, nano-sized, and in clusters

that were not in direct contact with each other. This indicates the
stabilization of the AgNPs. It was reported that AgNPs have a
spherical morphology and nano-dimensions in similar studies
(Ramkumar et al., 2017a; Pallela et al., 2018). The biosynthesized
nanoparticles are expected to have stronger antimicrobial activity, on
account of their relatively small size. In the particle measurement
done with TEM, it was seen that the sizes of AgNPs were
approximately between 6.11–9.66 nm and the average size was
approximately 7.83 nm (Figure 4). In some studies, using
different materials, the sizes of AgNPs were reported to be
between 2–95 nm (Nguyen et al., 2018; Behravan et al., 2019).

Evaluation of FT-IR Analysis Data
The FT-IR spectroscopy analysis determined the functional
groups involved in the plant-derived reduction. The frequency
of all stretch in the range of 4500–500 cm−1 was recorded with
four scans at 1 cm−1 resolution. Figure 4 shows a comparison of
FT-IR spectra for the aqueous CA extract (Figure 5A) and
synthesized AgNPs (Figure 5B). When the biomolecules
involved in reduction during the formation of AgNPs were
examined (Figures 5A,B), the absorption peak at 1635 cm−1

corresponded to the C=O stretching vibration, indicating
the presence of amide. Because of the phenolic compounds
in the CA leaf extract, it can be concluded that the
absorption peak at 2122 cm−1 belongs to alkyne (C≡C)
groups while the absorption peak at 3331 cm-1 belongs to
O-H and N-H stretching (Atalar et al., 2021). Presumably,
these determined functional groups are responsible for the
reduction of metal ions (Mandal et al., 2015).

Evaluation of EDX Analysis Data
According to the EDX profile (Figure 6), it was confirmed that
the biosynthesized nanoparticles had silver in their composition.
It was also seen that the elemental composition of silver was high
(Figure 6). AgNPs showed a typical optical absorption peak at
about 3 KeV owing to the surface plasmon resonance (SPR). It
can be said that the other emerging peaks are because of
phytochemicals attached to the surface of AgNPs in the CA
leaf pulp (Punuri et al., 2012). Khamhaengpol and Siri (2017) and
Dada et al. (2019) also revealed the EDX silver peaks in
their work.

FIGURE 8 | Zeta potential data of AgNPs.

TABLE 2 | MIC results of AgNPs, AgNO3, and standard antibiotics (μg/ml).

Microorganisms AgNPs AgNO3 Antibioticsa

B. subtilis (Gram-positive) 0.0625 1.32 1
S. aureus (Gram-positive) 0.125 2.65 2
P. aeruginosa (Gram-negative) 1.0 1.32 4
E. coli (Gram-negative) 1.0 0.66 2
C. albicans (yeast) 0.5 0.66 2

aColistin: Gram-negative bacteria; Vancomycin: Gram-positive bacteria; Fluconazole:
Candida albicans.

TABLE 3 | The percentage viability rates of the cell lines suppressed with AgNPs.

Cell line Concentration µg/mL

25 50 100 200

U118 84.53117 72.77605 72.73556 73.18908
CaCo-2 99.74733 44.98866 38.54875 36.04794
Sk-ov-3 102.5666 91.0701 80.9948 70.88769
HDF 79.70489 77.31011 73.07289 61.86905
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XRD Analysis
The XRD spectrum model for the synthesized AgNPs is shown in
Figure 7. In XRD analysis results, peaks of 111o, 200o, 220o, and
311o, which coincide with 37.96, 44.29, 64.32, and 77.33,
respectively at 2θ, were sharp peaks representing the spherical
crystal structure of silver. The peaks indicated that the AgNPs
were cubic in structure. It has been reported in many studies that
these peaks belong to silver (Huang et al., 2019; Keskin et al.,
2021). The highest peak, 37.96, was taken as the peak
angle. The size of the nanomaterials was calculated as
approximately 12.17 nm according to the below equation
((Baran et al., 2021a).

D � Kλ/(β cos θ)

In the equation, D = the size of the particle, K = the constant
value (0.89), λ = the wavelength value of XRD (1.5418 Å), β = the
FWHM value of the high peak, and cosθ = the Braggθ angle of the
high peak.

Evaluation of Zeta Potential Analysis Data
The zeta potential analysis gives the electric charge on the surface
of the surrounded material. The high negative value of the zeta
potential prevents the particles from sticking together or
clumping together. This indicates the stability of the AgNP
colloid. On the other hand, nanoparticles with a significantly
lower negative charge can enter the cell more easily (58–60). The
zeta potential of the biosynthesized AgNPs was found to be
−19.6 mV (Figure 8). This value indicated that the AgNPs
were stable and uniformly distributed. The different zeta

potential values of AgNPs synthesized from various materials
have been reported previously (Ferreyra Maillard et al., 2018;
Amer et al., 2020).

Evaluation of Antimicrobial Properties of
AgNPs
The antimicrobial effects of AgNPs have become more important
due to microorganisms that cause disease in humans developing
resistance to conventional antibiotics. S. aureus, B. subtillis,
E. coli, and P. aeruginosa strains and C. albicans yeast are
pathogenic microorganisms frequently encountered in food-
borne diseases (Yang et al., 2017; Mostafa et al., 2018). It was
determined that the biosynthesized AgNPs significantly inhibited
the growth of these microorganisms even at low concentrations
(Table 2). It was observed that AgNPs strongly inhibited the
growth of S. aureus and B. subtilis when compared to other
microorganisms. Since silver has a strong tendency to interact
with phosphorus and sulfur atoms in the bacterial cell wall, it
interacts with the thiol and phosphorus groups in the bacterial
cell membrane, thereby disrupting the bacterial respiration
process. This causes the death of bacteria (Hamouda and
Baker Jr, 2000). On the other hand, since the cell wall of
Gram-positive bacteria has a hard polysaccharide layer, the
transition to the Gram-positive bacterial wall is more difficult
when compared to Gram-negative bacteria. Therefore, the
inhibitory activity of AgNPs in Gram-positive bacteria is
stronger than in Gram-negative bacteria (Tamboli and Lee,
2013). Thuc et al. (2016) reported that Gram-positive S.

FIGURE 9 | Evaluation of the percentage viability rates as a result of the cytotoxic effect of AgNPs 2 days after combining them with CaCo-2, U118, HDF, and Sk-
ov-3 cell lines.
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aureus has approximately 2–3 times higher resistance to AgNPs
than Gram-negative E. coli and P. aeruginosa (Thuc et al., 2016).
These effective inhibitory activities of AgNPs on different bacteria
strains and yeasts were also reported by many researchers
(Niknejad et al., 2015; Aygün et al., 2020).

Evaluation of Cytotoxic Activities of AgNPs
AgNPs obtained by biosynthesis of chickpea leaf extract were
applied to healthy cells (HDF) and three different cancer cell lines
(CaCo-2, U118, and Sk-ov 3), and the results obtained after 48 h
are shown in Table 3 and Figure 9. According to these results, it
was seen that there was no toxic effect in HDF with a survival rate
of 79.70% at a 25 μg/ml concentration. It was determined that the
most suppressed concentration of viability was on CaCo-2 cells at
200 mg/ml (Table 3). Despite the increase in the concentration of
AgNPs in other cancer cell lines, the increase in the percentage of
viability can be explained by the proliferative properties of AgNPs
for these cells (Morais et al., 2020).

It is known that AgNPs show strong oxidative properties
(Wongpreecha et al., 2018). AgNPs tend to settle in
biomolecules such as cell membranes and nuclei. They exert a
toxic effect by stimulating apoptosis with an increase in ROS after
localization (Gliga et al., 2014; Morais et al., 2020). The
concentration, exposure time, shape, size, charge, degree of
deposition, and chemistry of the surface composition can have
a significant impact on the toxicity of AgNPs (Swamy et al., 2015).
In studies conducted to examine the toxic effects of AgNPs on
CaCo-2 cells, it was reported that concentrations above
3.75–5.5 μg/ml showed toxic effects (Zein et al., 2020).
Inhibitory concentrations in Sk-ov-3 cells were reported to be
9.4 μg/ml (Fahrenholtz et al., 2017) and 29.36 μg/ml (Noor et al.,
2021). Zhang et al. (2010) reported that the 100 μg/ml
concentration of silver nanoparticles was toxic on cell viability
on HDF cell lines (Zhang et al., 2010).

CONCLUSION

In this study, green synthesis of silver nanoparticles (AgNPs)
was carried out using Cicer arietinum leaf extract in a low-cost,
environmentally friendly, simple, and fast method. No toxic or
hazardous substances were used in the biosynthesis. The rapid
and green synthesis of CA-AgNPs was successfully completed
using the available phytochemicals in Cicer arietinum leaf
extract as reducing agents. SEM and TEM images showed
that spherically symmetrical plant-based AgNPs were formed
due to their high stability. UV-vis absorption, XRD, and EDX
analyses confirmed the synthesis of silver nanoparticles. Various
microscopic analyses indicated that AgNPs had mostly spherical

morphology with an average size of about 7.83 nm. The
obtained analysis data showed that the smaller the size of the
nanoparticles, the greater their antimicrobial activity, and the
obtained AgNPs had strong antibacterial and anticandidal
activity even at very low concentrations. The cytotoxic
activities of CA-AgNPs were evaluated by the MTT method.
A 25 μg/ml concentration of CA-AgNPs suppressed healthy
cells by 20% and suppressed the viability of cancer cell lines
by 1–15%. As the concentration increased, the suppression rate
in cell lines other than U118 also increased. It was determined
that silver nanoparticles synthesized using plant material had a
high suppressive effect on the viability of CaCo-2 cells in parallel
with the increase in concentration. It is known that NPs can be
used in many commercial products for biological and medical
applications. According to the results obtained, it is thought that
CA-AgNPs can be used effectively as antimicrobial and
anticancer agents in the food industry and medical applications.
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