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Introduction: The pathological rare category of thyroid is a type of lesion with a low
incidence rate and is easily misdiagnosed in clinical practice, which directly affects a
patient’s treatment decision. However, it has not been adequately investigated to
recognize the rare, benign, and malignant categories of thyroid using the deep learning
method and recommend the rare to pathologists.

Methods:We present an empirical decision tree based on the binary classification results
of the patch-based UNet model to predict rare categories and recommend annotated
lesion areas to be rereviewed by pathologists.

Results: Applying this framework to 1,374 whole-slide images (WSIs) of frozen sections
from thyroid lesions, we obtained an area under a curve of 0.946 and 0.986 for the test
datasets with and without WSIs, respectively, of rare types. However, the recognition error
rate for the rare categories was significantly higher than that for the benign and malignant
categories (p < 0.00001). For rareWSIs, the addition of the empirical decision tree obtained
a recall rate and precision of 0.882 and 0.498, respectively; the rare types (only 33.4% of all
WSIs) were further recommended to be rereviewed by pathologists. Additionally, we
demonstrated that the performance of our framework was comparable to that of
pathologists in clinical practice for the predicted benign and malignant sections.

Conclusion: Our study provides a baseline for the recommendation of the uncertain
predicted rare category to pathologists, offering potential feasibility for the improvement of
pathologists’ work efficiency.
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Abbreviations: FS, frozen section; NG, nodular goiter; Negative, other BTL and NGWSIs were considered negative; other BTL,
other benign thyroid lesions (including thyroiditis and granulomatous thyroiditis in our research); PTC, papillary thyroid
cancer; positive, PTC, TAL, TFCN, and other TC WSIs were considered positive; TAL, thyroid adenomatous lesion; the rare
category, other TC, other BTL, TAL, TFCN, misclassified PTC and hard determined NG; other TC, other thyroid cancers
(including medullary thyroid carcinoma, undifferentiated carcinoma and poorly differentiated carcinoma in our research);
TFCN, thyroid fibrous calcified nodule; note, the magnification of microscope in the manuscript refers to the objective lens.
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INTRODUCTION

Thyroid cancer is one of the most common cancers worldwide,
which ranks seventh among females in the United States (Siegel
et al., 2021) and fifth in China (Zhang et al., 2021). The 2021
cancer statistics report released by the American Cancer Society
(ACS) shows that the incidence of thyroid cancer is about 14.1/
100,000 people, accounting for 93.8% of all endocrine system
malignancies (Siegel et al., 2021). In 2022, according to the latest
statistics on the national tumor situation in 2016, the National
Cancer Center concluded that the incidence of thyroid cancer in
China was 202,600, and the incidence rate was 14.65/100,000
people (Zheng et al., 2022). Its occurrence has been increasing in
recent years (Seib and Sosa, 2019; Zheng et al., 2022). Several
guidelines or consensus have been established for treating thyroid
cancer (Haugen et al., 2016; Filetti et al., 2019; Tuttle et al., 2019;
Ozgur et al., 2021), which depends on the accurate pathological
diagnosis of the disease. For example, the intraoperative frozen
section (FS) diagnosis is crucial in determining the surgical
strategy for thyroid cancer treatment. The 2015 American
Thyroid Association management guideline recommendation
also affirmed the significance of intraoperative FSs in
diagnosing classical papillary thyroid cancer (PTC) (Haugen
et al., 2016). However, rare tumor types and unevenly
processed specimens that can produce artifices can present a
challenge to the onsite pathologists, and they may have to defer
the intraoperative diagnosis to the paraffin section. The most
common type of thyroid is PTC (~83.6–98.2%), which is easy to
diagnose in most cases. The rare subtypes are difficult to diagnose
using hematoxylin and eosin staining, and they include the
following: follicular thyroid carcinoma (~0.9–10.8%),
medullary thyroid cancer (approximately 0.6–2.2%), and
undifferentiated carcinoma (approximately 0.1%) (Lim et al.,
2017; Zhao et al., 2019; He and Wei, 2021). Similar
phenomena exist in lung cancer (de Sousa and Carvalho, 2018;
Shirsat et al., 2021) and breast cancer (Jenkins et al., 2021), among
others. The pathological image data from the rare categories are
difficult to obtain because of their low incidence rate, which
results in low diagnostic consistency among pathologists and
improperly building a convolutional neural network (CNN)
model directly. Thus, recognizing the rare (or intermediate)
categories (Adamson and Welch, 2019) is a special and
inevitable question in the field of computational pathology
domain.

Based on the wide application of deep learning in industries, such
as convolutional neural networks (CNNs) and recurrent neural
networks (RNNs), several excellent studies have been conducted to
develop computer-aided diagnostic systems for histopathology
(Zhang et al., 2019; Skrede et al., 2020). The developed digital
pathology technology provides a basis for using deep learning
algorithms in histopathological diagnoses. The Cancer Metastases
in Lymph Nodes Challenge 2016 (CAMELYON16) (https://
camelyon16.grand-challenge.org) and the public whole-slide image
(WSI) dataset fromTheCancerGenomeAtlas (TCGA) (https://www.
cancer.gov/about-nci/organization/ccg/research/structural-genomics/
tcga) significantly promote the implementation of patch-based CNNs
for WSIs in cancer histopathology; this is to verify the feasibility of

CNNmethods for the diagnosis of lymph nodes’metastases in breast
cancer. The area under the curve (AUC) of the InceptionV3 (Szegedy
et al., 2016)model using the CAMELYON16 dataset is 98.6%, and the
free-response receiver operating characteristic (FROC) curve is 87.3%
(Szegedy et al., 2016; Liu et al., 2017). The Resnet model and a
conditional random field (Li and Ping, 2018) were used to exploit the
context information of patch images in WSIs, and the corresponding
FROC curve using CAMELYON16 is 79.34%. Moreover, CNNs have
been trained and evaluated in other cancer categories. For example, the
InceptionV3 model was validated using TCGA non-small cell lung
cancer histopathology images (Coudray et al., 2018), and the study
reported that the performance of the developed framework did not
show a statistically significant difference compared with three
pathologists (two and one thoracic and anatomic pathologist,
respectively). Additionally, to address the interpretability of the
deep learning model for cancer diagnosis, a novel pathology WSI
diagnostic method was developed in urothelial carcinoma of bladder
cancer and compared with 17 pathologists to verify the diagnostic
accuracy of the framework (Zhang et al., 2019). Furthermore, several
general classifications and segment models, such as MobileNet
(Howard et al., 2017) and UNet (Ronneberger et al., 2015), were
developed for prostate cancer, basal cell carcinoma, and colorectal
cancer (Campanella et al., 2019; Skrede et al., 2020). These studies
jointly demonstrate the significant potential of CNNs in computer-
aided diagnostic systems for histopathology.

Most of the previous results from deep learning-based studies
focused on WSIs from common benign and malignant subtypes
without considering the rare ones. The model based on data from
only the common subtypes cannot function efficiently to predict
the rare ones. In clinical settings, the diagnostic results of
pathological images are used to guide the selection of
operation, which requires high accuracy for both the common
and the rare subtypes. However, we do not know if the next
section to be evaluated is from a common or rare subtype. Thus,
the model prediction results are impractical. In this study, we
collected 1,374 thyroid FSs at the National Cancer Center/Cancer
Institute and Hospital, and the Chinese Academy of Medical
Sciences (NCC/CICAMS) from September 2018 to December
2020. We developed a novel framework to effectively automate
whole-slide diagnosis and classification into three categories
based on the dataset: common benign, common malignant,
and rare categories. Our AUC for binary classification using
the patch-UNet model was approximately 0.986 for WSIs
obtained from common benign and malignant tumors,
whereas the AUC was only 0.946 when the rare category was
included. The use of an empirical decision tree and the patch-
UNet model obtained a 0.882 recall rate (127/144 WSIs) for the
rare types and resulted in 33.4% of WSIs (255 WSIs) from the
entire test dataset being rereviewed by pathologists.

MATERIALS AND METHODS

Dataset
The NCC Ethics Committee/Institution Review Board
(2021031709490902) approved our research. In this study, patient
consent was not required as participants were not at risk. We
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collected 1,374 thyroid FSs in the Pathology Department of NCC/
CICAMS from September 2018 to December 2020, which includes
the following: 536 PTC, 72 thyroid adenomatous lesions (TAL), 45
thyroid fibrous calcified nodules (TFCN), 691 nodular goiters (NG),
5 other thyroid carcinomas (Other TC: which includes medullary
thyroid carcinoma, undifferentiated carcinoma, and poorly
differentiated carcinoma), and 25 other benign thyroid lesions
(Other BTL: which includes thyroiditis and granulomatous
thyroiditis) (Table 1). To generate the WSIs, all FSs were
scanned using the Aperio AT2 Digital Whole Slide Scanning
System (Leica Biosystems, Germany). Notably, we have excluded
images containing artifacts of tissue processing, including air
bubbles, folding, handwriting, crushing, poor staining, and
blurring when scanning the sections, which seriously affected the
recognition.

Reference Standard
In the clinical practice, each FS was reviewed by two additional
pathologists, and the diagnostic report was given and deposited in
the pathology reports system. Generally, the so-called intermediate
categories are indeed prone to misdiagnosis, but it does not mean that
their biological behavior is unclear. We collected and reevaluated all
reports and then grouped themasmalignant, benign, and intermediate.
The malignant group included PTC and Other TC, benign included
NG and Other BTL, and intermediate included TAL and TFCN. The
lesion areas of all PTC, other TC, TAL, and TFCN were annotated on
digital slides manually by four pathologists with over two years of work
experience who trained before the annotation using Bejnordi et al.‘s
method (Ehteshami Bejnordi et al., 2017) and ASAP software (V1.9.0,
https://github.com/computationalpathologygroup/ASAP/releases).
Each annotatedWSI was reviewed in detail by a pathology expert with
over 20 years of work experience.

Dataset Splitting
Our dataset was randomly split at the WSI level into 496 slides for
training (36%), 114 slides for validation (8%), and case series (Test 1
total (45%), 617; Test 2 total (56%), 764) for testing (Table 2). The
training and validation sets contained the PTC and NG WSIs.
However, in the test group, the Test 1 dataset contained
common benign and malignant pathological subtypes (PTC and
NG) commonly used in research. To evaluate the performance of the
commonly used patch-UNet model in clinical practice, we designed
the Test 2 dataset containing all subtypes (PTC and NG) in Test 1
and the rare category. So the Test 2 dataset contained not only PTC
and NG types included in Test 1 but also two intermediate cases that
are also known as rare types (TAL and TFCN); it also contained two

other rare types (Other TC and BTL). Thus, the composition of Test
2 simulated a real-world dataset in clinical practice.

Patch Sampling
Our framework was based on WSIs divided into patches because of
their large size (over 10 gigapixels at 40 × equivalent magnification).
First, we used Otsu’s method (Gharib et al., 2010) to remove empty
regions inWSIs, which significantly lowered the computational cost.
To avoid biases toward training slides,WSIs were randomly sampled
using a 256 × 256 resolution (at 5 × equivalent magnification) and
patches were extracted from every WSI with an equal number
(Figure 1B). We performed a set of ratios (1:1, 1:2, 1:3, and 1:4)
for sampling malignant and benign patches on our dataset, and the
maximum accuracy on the Test 1 dataset was used to decide the best
condition in each experiment. The ratio accuracy 1:1, 1:2, 1:3, and 1:4
was 0.9449, 0.9627, 0.9643, and 0.9559, respectively. The 1:3 ratio
achieved the best results over the other tested ratios. To reduce the
false positives, the ratio of malignant and benign patches adopted
was 1:3 (Liu et al., 2019).

Patch-UNet Model Training and Inference
The training set of the UNet model was constructed using the
aforementioned malignant and benign patches, and similarly, we
obtained a validation set. For training, we used softmax cross-
entropy as the loss function, exponential decay mechanism for
learning rate management, batch size of 32, and an initial learning
rate of 0.01 based on empirical values to reduce invalid trials and
computational consumption. The UNet model was trained
without a pretrained model until convergence occurred in
both the training and test datasets.

During UNet inference, all WSIs were partitioned into 512 × 512
images in equally spaced intervals using a stride of 256 × 256 to
generate WSI heatmaps, which is known as the tile-based sampling
(Figure 1C). Thus, the core size 256 × 256 of 512 × 512 images was
used to compose the heatmap, and other marginal edges were
abandoned to remove the edge noise of 512 × 512 images.
Furthermore, as a fully convolutional network, UNet allows an
equal ratio of scaled sizes between training and inference.

Postprocessing of the Heatmap for Binary
and Triple Classification
We applied a random forest as the two slide-level classification
models because the mean accuracy of different pathological

TABLE 1 | Dataset information.

Ground truth Common/rare Subtype WSI count Percentage (%)

Malignant Common PTC 536 39.01
Malignant Rare Other TC 5 0.36
Intermediate Rare TAL 72 5.24
Intermediate Rare TFCN 45 3.28
Benign Rare Other BTL 25 1.82
Benign Common NG 691 50.29
Total — — 1374 100

TABLE 2 | WSI counts for training validation and test datasets.

Ground truth Subtype Training Validation Test1a Test2a

Malignant PTC 200 53 283 283
Malignant Other TC 0 0 0 5
Intermediate TAL 0 0 0 72
Intermediate TFCN 0 0 0 45
Benign Other BTL 0 0 0 25
Benign NG 296 61 334 334
Total — 496 114 617 764

aTest 1 simulates the dataset for research. Test 2 simulates the real-world dataset in
clinical practice.
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subtypes by using a random forest (0.7712) was higher than that
by SVM (0.4751). Furthermore, we extracted four types of
features from heatmaps (Wang et al., 2016; Wen et al., 2017)
(Figure 1E), such as geometric features (area, perimeter,
eccentricity, extent, and solidity), texture features (gradient
and intensity), marginal features (canny nonzero and mean),
and others (such as connected region and pixel count). The
statistics consist of the maximum, minimum, mean, standard
deviation, variance, skewness, kurtosis, entropy, energy, contrast,
dissimilarity, homogeneity, and correlation. Based on these
features, we trained the random forest model for WSI binary
classification. All features are listed in Supplementary Table S1,
and the corresponding feature is presented in Supplementary
Figure S1 (Supplementary Material). AUC was calculated and
used to evaluate the model’s performance. PTC, TAL, TFCN, and
other TC WSIs were considered positive, whereas other BTL and
NG slides were negative.

The important features selection during RF model training
was as follows. First, we trained the random forest with all the
features (Supplementary Table S1) and obtained the top 30 most
important features. Then, these features were used to train
another RF model to provide the binary-classification result
for each WSI. The top 30 most important features could be
summarized into four categories: lesion count, lesion area related,
diameter related, and perimeter (shape) related (Supplementary
Figure S1 and Supplementary Table S2). These features can also
provide crucial evidence for pathologists’ decision-making in
clinical practice. When multiple scattered lesions were
observed, it revealed that malignant lesions had occurred.
However, when the lesions are diffusely distributed, the
possibility of aggressively malignant tumors or thyroiditis
should be considered. Furthermore, when the lesion area or
diameter is larger, the tumor cell components are more
complex, and the probability of malignant components would
increase. Moreover, malignant lesions show obvious irregular
edges, resulting in a relatively larger lesion perimeter. However,
benign thyroid tumors, such as TAL, TFCN, and NG, have
relatively regular and round edges without invasive growth

characteristics, resulting in relatively smaller lesion perimeter
(Chmielik et al., 2018).

To build the triple classification model, we assumed the
features will be easier to qualify, explain, and visualize in
clinical applications for future computer-aided diagnosed
product development. Thus, the probability of the binary
random forest classifier, the carcinoma diameter, perimeter,
and area were used to design the triple classification model.
We designed the postprocessing steps as follows using the Test
2 dataset. The probability of the heatmap computed by random
forest was the first parameter. The next includes the max area,
diameter, and perimeter of tumor regions on WSI heatmaps. All
WSIs were sequentially split into two sets using the
aforementioned features. The corresponding division values for
probability, area, diameter, and perimeter were 0.5, 300 mm2,
7 mm, and 35 mm, respectively (Figure 4 and Figure 1F). To
evaluate the triple classification result, we divided the Test 2
dataset into three categories: common benign, common
malignant, and rare. The common benign and malignant
groups represent the benign (NG) and malignant (PTC) types,
respectively, which are correctly classified using patch-UNet. The
rare category represents the misclassified PTC, other TC, hard
determined NG and other BTL, and intermediateWSIs (Table 3).
For the triple classification results, WSIs predicted as common
benign and malignant could be diagnosed using our model, but
the others must be rereviewed by pathologists. We first divided
the Test 2 dataset into training and test sets (Supplementary
Table S3), and we trained a triple-classification model using a
random forest. However, we observed that the recall rate for the
rare category is only 0.743, which is lower than the performance
of our empirical tree (0.882).

RESULTS

Binary Classification
We conducted experiments to evaluate whether the performance
of the patch-UNet model was sufficient for clinical practice

FIGURE 1 | An overview of the proposedWSI diagnostic framework presented in this study. (A) TheWSI slide with the region of interest (green line) and carcinoma
region (blue line). (B) The process of patch-based UNet model training. (C) The process of patch-based UNet inference. (D) The WSI heatmap. (E) A random forest was
selected for the WSI-based classification task. (F) The proposed triple classification model.
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(Figure 1). To simulate the real clinical setting in these
experiments, we designed three test groups of different sizes
(Test 1 total, 617; Test 2 total, 764) using common training
and validation sets (Materials and Methods, Table 2). Our AUC
for binary classification was approximately 0.986 for Test 1,
which corresponds to the model performance in the research
theory. However, when the same model was applied to the Test 2
dataset containing the rare category, the AUC was 0.946,
indicating a decrease of 0.04 compared with its performance
in the Test 1 dataset (Figure 2A). Additionally, we also obviously
drop for specificity and positive predicted value (PPV)
(Supplementary Table S5). These results showed that the
current patch-UNet model trained with FSs from the easily
collected pathologic types of thyroid cancer could not
maintain its performance in clinical practice.

Misclassification
The following analysis was conducted to determine the reason for
the decreased AUC value when the model was used for the Test 2
dataset. We observed that the total number of misdiagnosed WSIs
was 84, which includes 14 and 70 false positives and negatives,
respectively. However, if theWSIs of intermediate types are removed
from the Test 2 dataset, the error predicted number is only 22, which
includes 9 and 13 false positives and negatives, respectively
(Figure 3). Furthermore, we observed that the error rate for the

intermediate types was as high as 48.7% (Figure 2B), which was
significantly higher than the benign and malignant categories (p <
0.00001). To further understand the reason for this occurrence, an
experienced pathologist and an artificial intelligence specialist
rereviewed all 84 error-predicted WSIs. The fibrotic tissue in
both tumors and noncancerous regions of WSIs resulted in the
misclassification of false-positive slides. Furthermore, the cell and
structural features of the intermediate category varied from the slides
of the training set, thus reducing the accuracy of the model for the
intermediate category (Figure 3). However, clinical thyroid slides of
different subtypes always have substantial diverse features and
distributions. These findings indicate that using the single two-
classification patch-UNet method for the clinical application of
computer-aided diagnosis for thyroid cancer WSIs was impractical.

Triple Classification
To limit the effect of the decreased AUC in clinical practice, we
first relabeled the WSIs from the complete test dataset based on
the prediction results of the patch-UNet model and the subtype
distributions, which include the rare, common benign, and
malignant categories (Materials and Methods, Table 3). To
distinguish the rare category, we designed a decision-tree
model (Figure 4). For the rare category, we obtained a recall
rate and precision of 0.882 and 0.498, respectively, and we
recommended that they are rereviewed by pathologists.

TABLE 3 | The test dataset in clinical practice was relabeled based on our binary classification results and the ground truth for evaluating the triple classification model
performance.

Subtype The common benigna The common malignanta The rarea Total

PTC 0 270 13 283
Other TC 0 5 0 5
TAL 0 0 72 72
TFCN 0 0 45 45
Other BTL 20 0 5 25
NG 325 0 9 334
Total 345 275 144 764

aThe common benign and malignant represented the types correctly classified by patch-UNet, for the benign (NG) and malignant (PTC) types, respectively. The rare represented the
misclassified PTC, other TC, hard determined NG, other BTL, and the intermediate WSIs.

FIGURE 2 | (A) AUC for the different test datasets. The Test 1 dataset contained common benign and malignant pathological subtypes (PTC and NG). Test 2
contained not only the common PTC and NG types included in Test 1 but also two intermediate types (TAL and TFCN) and two other rare types (other TC and BTL). (B)
The confusion matrix for the benign, malignant, and intermediate subtypes.
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FIGURE 3 |Misclassification examples of selected slides in the Test 1 dataset. Examples of true positive, false negative, false positive, and other subtype slides are
represented. Ourmodel performed efficiently in tumor carcinomas for true positives (PTC), but the false positives (NG) weremainly caused by the fibrotic tissue in both the
normal and carcinoma regions. Fibrotic tissue sometimes has a larger area or diameter than certain carcinoma regions for false negatives (PTC). Because fibrotic tissue is
quite common in thyroid WSIs, the TAL, TFCN, and other BTL slides outside our training slides showed clear differences in structural features from PTC and NG
slides, resulting in a heatmap far from the ground truth.
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Notably, all predicted intermediate images accounted for 33.4%
of WSIs (255WSIs) from the Test 2 dataset, whereas the rest (509
WSIs) could be diagnosed directly using our models. To compare
the accuracy of our model for 509 WSIs with that of pathologists
in clinical practice, we collected the reports from the pathology
report system of CICAMS and observed that eight FSs were
misdiagnosed. However, there was no significant difference
between our model’s performance and that of pathologists in
clinical practice using the Fisher and chi-square test (p > 0.05,
Supplementary Table S4).

DISCUSSION

The rare types are inevitable, and the special question of
pathology image recognition is not a well-investigated
research area. The main hypothesis of this research was that
we could achieve the required accuracy level for most FSs from
thyroid cancer in clinical practice by recognizing the rare types
between common benign and malignant cases of WSIs. To test
this hypothesis, we first performed a binary classification using
patch-UNet and then used an empirical decision tree for triple
classification. Furthermore, we demonstrated that our
framework performed at the level expected by pathologists
in clinical practice for the common benign and malignant
sections predicted. In clinical practice, these three types
correspond to different clinical treatments. When the model
suggests an intermediate category, the pathologist needs to
review it. Otherwise, misdiagnosis is likely to occur, which
affects treatment decisions. In addition, our framework might
theoretically handle 66.6% of the diagnostic workload of
thyroid pathologists.

The incidence rate of thyroid cancer pathological subtypes is
different (Lim et al., 2017; Zhao et al., 2019; He and Wei, 2021).
Thus, the proportion of PTC and NG WSIs in our dataset was
approximately 90%, whereas that of the other types (TAL, TFCN,
other TC, and Other BTL) was significantly lower at ~10%,
resulting in an insufficient number of WSIs for deep learning
model training. Previous studies have obtained encouraging
results for prostate cancer (AUC, 0.986), skin cancer basal cell
carcinoma (AUC, 0.986) (Campanella et al., 2019), bladder
cancer (AUC, 0.95) (Zhang et al., 2019), gastric cancer
(sensitivity, approximately 100%; specificity, 80.6%) (Song
et al., 2020), lung cancer (AUC >0.974) (Kanavati et al., 2020),
and cervical cancer (AUC, 0.978) (Tian et al., 2019). However,
most of these models were generated based on the main cancer
type. This limits their applications because, in clinical practice,
machines do not know whether the next section to be reviewed is
from a common or rare subtype. In our study, we not only
achieved high classification performance with an AUC of 0.986
but also improved the recognition of the rare category (recall,
0.882; precision, 0.498), and we further recommended these
sections be rereviewed by pathologists. Additionally, an
improved region growing algorithm has a better segmentation
effect (Li et al., 2019), providing insight for tumor-region
detection at WSI-level and may further improve the
performance of the recognition of the rare category.

Unlike the commonly used image datasets, such as ImageNet,
tumor pathological images lack a ground truth for the gray zone
(intermediate category) between cancer and non-cancer.
Consequently, the recognition of the intermediate category
between cancer and non-cancer should be considered seriously
before artificial intelligence technology is widely applied
(Adamson and Welch, 2019). TAL and TFCN are mostly

FIGURE 4 | Decision tree for distinguishing the rare from the common benign and malignant categories.
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benign thyroid lesions in our study. However, during the
pathological diagnosis process, they do not belong to the
common benign thyroid (NG) or malignant nodules (PTC),
and they must be occasionally discussed and disputed during
the diagnostic process. The former should be differentiated with
encapsulated follicular-patterned thyroid tumors newly added by
WHO in 2017 (Lloyd et al., 2017), whereas the latter should be
differentiated with papillary thyroid carcinoma with abundant
calcification. These lesions can be diagnosed only after thorough
observation and taking sufficient specimens. Some cases require
time to demonstrate their biological behavior (Rosario and
Mourão, 2019). Thus, TAL and TFCN were temporarily
classified as intermediate lesion groups. In this study, we
expanded the intermediate’s definition using WSIs from the
benign and malignant categories that were misclassified by our
patch-UNet model, which is known as the rare type.

Because there is a small proportion of rare types of thyroid
lesions in practice, the rare types collected during the experiment
are insufficient for deep learning. Thus, when simulating the
diagnosis of thyroid lesions in the real clinical setting, the model is
more prone to misclassification of the rare types. We assume that
misclassification occurs mainly because there are similarities in
pathological features between benign and malignant thyroid
lesions to some extent (Dov et al., 2021). For example, at the
cellular level, Hashimoto’s thyroiditis may have obvious follicular
epithelial hyperplasia (enlarged nuclei, crowded cells, etc.) and
mild nuclear atypia (chromatin margins, nuclear membrane
irregularities, etc.), which are confused with malignant lesions;
cell enlargement can also be seen locally in benign thyroid tissue
(Girolami et al., 2020; Böhland et al., 2021). Benign thyroid tissue
may also have a background of fibrosis and calcification at the
background level, which is common in thyroid cancer. The mode
will recall rare types and submit them to the pathologist for
review. Furthermore, our method efficiently combines deep
learning technology with the clinical requirements for the
diagnosis of pathological sections.

This study has some limitations. First, our dataset was
collected without considering all the rare types equally and
lacked external validation, for example, we only collected 5
WSIs from other TC, while 72 WSIs from TAL (Table 1).
However, we merged WSIs from other TC, TAL, TFCN, and
other BTL together for algorithm development. Actually, it is
very hard to collect enough WSI, especially the rare ones for
external validation, so we first demonstrated our framework is
technically feasible for the question raised in this study.
Second, the study is based on the histopathological review
of thyroid WSIs in CICAMS, however, there is no general
quality control standard for the production process of
pathological sections and WSIs (Webster and Dunstan,
2014; Aeffner et al., 2019), which will have a significant
impact on the model generality. In the future, one feasible
strategy is that each institution develop its image analysis
algorithms and internally validated by before the algorithms
can be used for clinical care (Aeffner et al., 2019).

In summary, we described a deep learning method for
diagnosing different types of thyroid cancer using WSIs for
the first time. Furthermore, we focused on the intermediate

category and demonstrated the feasibility of our model from a
clinical application perspective. We expect that our experimental
design and method may be invaluable for the thyroid cancer
diagnosis and significantly improve the application of deep
learning methods for other types of cancer. Because of the
further maturity of this method, fine-tuning the empirical
decision tree in a clinical setting is the priority; this machine-
and-manual model may ensure diagnostic accuracy, improve
diagnostic efficiency, and relieve psychological pressure on
pathology experts. Furthermore, we want to initiate random
prospective non-interventional clinical trials using this
technology to test its efficiency and further advance the
application of artificial intelligence in histopathology.
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