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The continuous development of deep learning improves target detection technology day
by day. The current research focuses on improving the accuracy of target detection
technology, resulting in the target detection model being too large. The number of
parameters and detection speed of the target detection model are very important for
the practical application of target detection technology in embedded systems. This article
proposed a real-time target detection method based on a lightweight convolutional neural
network to reduce the number of model parameters and improve the detection speed. In
this article, the depthwise separable residual module is constructed by combining
depthwise separable convolution and non–bottleneck-free residual module, and the
depthwise separable residual module and depthwise separable convolution structure
are used to replace the VGG backbone network in the SSD network for feature extraction
of the target detection model to reduce parameter quantity and improve detection speed.
At the same time, the convolution kernels of 1 × 3 and 3 × 1 are used to replace the
standard convolution of 3 × 3 by adding the convolution kernels of 1 × 3 and 3 × 1,
respectively, to obtain multiple detection feature graphs corresponding to SSD, and the
real-time target detection model based on a lightweight convolutional neural network is
established by integrating the information of multiple detection feature graphs. This article
used the self-built target detection dataset in complex scenes for comparative
experiments; the experimental results verify the effectiveness and superiority of the
proposed method. The model is tested on video to verify the real-time performance of
the model, and the model is deployed on the Android platform to verify the scalability of the
model.
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1 INTRODUCTION

With the appearance and progress of powerful hardware devices
such as image processors, deep learning has achieved rapid
development. In recent years, deep convolutional neural
networks have been widely applied to solve various tasks of
computer vision. Traditional visual tasks include image
classification, location, detection, and segmentation (Evan,
et al., 2017; Jiang et al., 2019a; He, et al., 2019). In traditional
visual tasks, feature extraction, a complicated task, has been
completely replaced by convolutional neural networks (Sun,
et al., 2020; Tian, et al., 2020; Liu, et al., 2021a; Liao, et al.,
2021). On this basis, deep learning technology can improve the
visual tasks of most complex scenes (Li, et al., 2019a; Jiang, et al.,
2019b; Huang, et al., 2022). For example, automatic driving, face
monitoring, pedestrian tracking, and so on are all tasks in very
complex scenes, but the current research mostly focuses on how
to improve the accuracy of target detection technology, which
leads to the excessively large target detection model to a certain
extent (Chen, et al., 2021a; Bai, et al., 2021; Duan, et al., 2021).

Target detection methods based on deep learning developed
rapidly after 2012, which can be roughly divided into two
categories: one is a two-stage model, which divides target
detection into two stages: candidate box selection and target
classification; the other is a one-stage model, which treats
classification and localization as regression tasks. The two-
stage target detection model first determines whether the
target exists in the candidate region, and then determines the
category with the classifier. However, most of the current research
focuses on how to improve the accuracy of target detection
technology, which leads to the excessively large target
detection model to a certain extent. It is still challenging to
synchronously realize high detection accuracy and real-time
performance of objects in complex scenes.

This article proposes a real-time target detection method
based on a lightweight convolutional neural network to reduce
the parameters of the target detection model and improve the
detection speed. First, Kinect is used to establish the target
detection dataset in complex scenes, and the existing lightweight
network is comprehensively studied. Then, combined with the
depthwise convolution and bottleneck-free residual module, the
depthwise residual module is proposed, and the MobileNet-SSD
network is further improved by using the deep separable
residual module, deep separable convolution, and
convolution substitution structure. A real-time target
detection model based on a lightweight convolutional neural
network is established. The effectiveness of the proposed
method is verified by comparing the established dataset with
the existing lightweight target detection algorithm. Finally, the
real-time detection model is tested on video, and the model is
deployed to the mobile terminal to verify the scalability of the
model.

The key contributions of this work are:

1) Combining depth-separable convolution and bottle-free
residual module, the depth-separable residual module is
proposed.

2) The MobileNet-SSD network is further improved by using the
depthwise separable residual module, depthwise separable
convolution, and convolutional substitution structure, and
a real-time target detection method based on a lightweight
convolutional neural network is proposed.

3) Target detection datasets are established in complex scenarios
4) Multiple groups of comparative experiments are conducted,

and the proposed method is used to detect the video to verify
the real-time performance of the model.

The rest of this article is organized as follows: Section 2
discusses the related work of target detection, followed by a
target detection method based on improved MobileNet-SSD in
Section 3. A comparative experiment is carried out using self-
built datasets in Section 4. Section 5 concludes the paper with a
summary and future research directions.

2 RELATED WORK

At present, the mobile intelligent terminal has gradually become a
necessity in people’s life (Li, et al., 2019b; Hu, et al., 2019; Yu,
et al., 2019; Cheng et al., 2021; Jiang, et al., 2021c; Huang, et al.,
2021); while the mobile intelligent device for embedded devices is
limited by the storage and computing power, the development of
technology, such as unmanned drones, also need terminal real-
time feedback image- and video-processing results; thus, the
target detection model size and the complexity of calculation
are difficult requirements (Luo, et al., 2020; Liu, et al., 2021b; Sun,
et al., 2021; Liu, et al., 2022).

The task of target detection is to classify objects in the image
and further determine their position in the image. For the
recognition task, the network needs to extract deeper semantic
features, that is, the essence of the target features, so as to
distinguish between the target objects and improve the
accuracy of recognition. For positioning tasks, location
information needs to be saved as much as possible to bring
the detection frame closer to the actual position of the target
object in the image.

The traditional target detection process is as follows: first,
multiple image regions with possible target objects are selected by
sliding windows of different sizes; then, feature extraction
methods such as SIFT (scale-invariant feature transform) and
HOG (histogram of oriented gradient) are used to transform the
information contained in the region into feature vectors and then
classify them, commonly using the support vector machine
(SVM) classifier. The DPM (deformable parts model) was
proposed in 2010, which decomposes the target object into
various parts for training and merges the prediction results of
all parts during prediction to complete the detection of the target
object. However, since the traditional target algorithm extracts
the candidate region information and manually designs the
features, the application range has great limitations. For
example, the Haar feature is suitable for face detection, and
the detector trained by this feature cannot detect other types
of targets. In addition, the traditional target detection algorithm
generates multiple candidate regions through traversal, which
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takes a lot of time. In addition, the traditional target detection
algorithm classification training detector may produce the
problem of feature vector “dimension disaster.”

Ross et al. proposed an R-CNN object detection model based
on convolutional neural networks (CNNs), which first used depth
to detect objects. However, the scaling of candidate regions has
certain limitations in detection accuracy, and the training of this
algorithm is complicated. In 2015, He et al. proposed the SPP-
NET model to transform feature information of candidate
regions of arbitrary size into feature vectors of fixed length. In
the same year, Girshick proposed the fast R-CNN algorithm,
which was based on ROI pooling (region of interest pooling),
fixed the feature length of candidate regions, and used the multi-
task loss function for training, which improved the training and
detection efficiency of the target detection algorithm. In order to
achieve real-time detection, researchers use the integrated
convolutional neural network to complete target detection and
improve the detection efficiency of the algorithm. Regression-
based algorithms of YOLO and SSD (single-shot multibox
detector) have continually appeared. However, both SSD and
YOLO only use the characteristic information of a single scale for
prediction, and the detection accuracy of multi-scale targets and
small objects is low.

Due to the diversity of application scenarios of target
detection technology (Sun, et al., 2022a; Weng, et al., 2021;
Yun, et al., 2022; Zhao, et al., 2021), target detection algorithm
should realize the lightweight of the model, solve the
efficiency problem of the model, and successfully deploy or
apply to mobile devices, industrial computers and other
embedded platforms (Xiao, et al., 2021; Yang, et al., 2021;
Sun, et al., 2022b; Liu et al., 2021c). Therefore, the lightweight
target detection model has become another hot issue (Ma,
et al., 2020; Liu, et al., 2021d). He et al. (2015) used the
lightweight deep separable residual network as the basic
network of fast R-CNN to reduce the parameters of the
network model, fused the multi-layer convolution features
in the basic network after local response normalization,
enhanced the completeness of target feature information,
and trained the network model in combination with
Softmax loss function and central loss function so that the
network model could learn other different target
characteristics. Ren and Bao (2020) reduced the amount of
network computation by using MobileNet as the basic
network and replacing the standard convolution in the SSD
detection layer with the inverse residual convolution. Evan
et al. (2017) reduced darknet53, the backbone network of
YOLOv3, and added an improved dense connection network
and spatial pyramid pooling on the backbone network, which
greatly improved the speed at the expense of accuracy. Zhao
et al. (2020) integrated a 5 × 5 depthwise separable
convolution kernel on the basis of the MobileNetV2-SSD
Lite model to further improve the recognition accuracy of
the algorithm for small target objects, and the experimental
results show that LMS-DN only needs fewer parameters and
calculation costs to obtain higher identification accuracy and
stronger anti-interference than other popular object detection
models. Zhang et al. (2021) proposed a lightweight target

detection network MN-YOLO (MobileNet-YOLOv4-tiny)
suitable for embedded platforms using depthwise separable
convolution instead of standard convolution to reduce the
number of model parameters and calculations; at the same
time, the visible light target detection model is used as the
pretraining model of the infrared target detection model and
the infrared target dataset collected on the spot is fine-tuned
to obtain the infrared target detection model. Currently,
miniaturized versions of YOLO and SSD algorithms are
commonly used on embedded platforms (Alex, et al., 2017;
Cao, et al., 2018; Cheng, et al., 2020; Chen, et al., 2021c; Hao,
et al., 2021). The research of the MobileNet-SSD network
framework to realize network model compression and multi-
scale target detection is increasing gradually. Based on the
Mobilenet-SSD framework, Li et al. (2019c) used the time
characteristics of video to effectively improve the confidence
level of detection and enhance the stability of detection, which
provides a certain reference value for unmanned target
detection. Although these algorithms have low
computational load and fast detection speed, their
detection accuracy is generally low, making it difficult to
achieve a balance between computational load and accuracy
(Jiang, et al., 2019d; Jiang et al., 2019e; Huang, et al., 2019; Li,
et al., 2020).

To sum up, there are many algorithms for target detection
at present, but the problems of target detection accuracy,
model size, and detection speed still need to be solved in the
application scenarios of service robots and other mobile
devices (Sandler, et al., 2018; Qiu, et al., 2019; Meng, et al.,
2020; Yu et al., 2020; Li, et al., 2021; Tao et al., 2022a).
Therefore, a real-time target detection method based on a
lightweight convolutional neural network is proposed in this
article to reduce the number of target detection model
parameters and improve the detection speed.

3 IMPROVED MOBILENET-SSD NETWORK

3.1 SSD
SSD is a one-stage target detection algorithm (Tan, et al., 2020;
Wu, et al., 2022), which directly generates the category probability
and position coordinate value of objects. After a single detection,
the final detection result can be directly obtained, so it has a faster
detection speed. The network detection framework is shown in
Figure 1. Traditional SSD uses VGG16 as the feature extraction
network. The full connection layer of VGG16 is removed and the
convolution layer is added to obtain more multi-layer feature
maps for detection. At the same time, SSDmakes full use of multi-
level feature maps in the classification regression network, and
the corresponding classification layer of all level feature maps
shares weights with the location regression layer.

One of the cores of SSD is to detect objects of different sizes
using feature maps of different levels, that is, to extract targets
using feature maps output by each convolution layer. The scale of
the anchor frame corresponding to the bottom-level feature
graph to the high-rise feature graph is linearly divided from
small to large. Steps for generating anchor frame are as follows:
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1) A set of concentric anchor frames is generated centering on
the midpoint of each point on the feature graph.

2) m feature maps of different levels are used to extract targets.
The scales of the bottom feature map corresponding to the
anchor frame are smin, and the scales of the top are smax. That
of the other layers are:

sk � smin + smin − smax

m − 1
(k − 1), k ∈ [1, m] (1)

3) Different ratios [1, 2, 3, 1/2, and 1/3] were used to calculate the
width and height of the anchor frame using Eqs 2, 3:

wa
k � sk

��
ar

√
(2)

hak � sk/ ��
ar

√
(3)

4) In the case of ratio = 0, the specified scale is as follows:

s′k �
�����
sksk+1

√
(4)

3.2 MobileNet-SSD
The network detection framework of MobileNet-SSD is shown in
Figure 2 (Algarni, 2021). The front-end network of MobileNet
VGG16 is replaced by MobileNet, and the global average pooling
layer, full connection layer, and Sofamax layer of MobileNet
network are removed, followed by the back-end detection
network of SSD. A MobileNet-SSD network was formed.
Because the front-end network of the MobileNet-SSD network
was deeper than that of SSD, the depth of the whole model was
larger than that of the SSD network. From the perspective of the
SSD back-end detection network, both MobileNet-SSD and SSD
networks were detected by extracting features from the feature
map of six scales. Because the MobileNet-SSD network adopted
depthwise separable convolution, the resolution of the feature

FIGURE 1 | SSD network structure.

FIGURE 2 | MobileNet-SSD network structure.
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map of the back-end detection network was only half of that of
the SSD network. Therefore, the network had less computation
and computational complexity.

3.3 Improved MobileNet-SSD
The core of MobileNet is to consider image regions and
channels separately and use depthwise convolution to replace
standard convolution. The process of standard convolution is
divided into depthwise convolution and pointwise convolution,
that is, each channel is first convolved, then the information
between channels is fused by 1 × 1 convolution, the number of
channels in the feature graph is changed, and the same effect as
standard convolution is achieved (Liao, et al., 2020; Liu, et al.,
2021e).

Depthwise separable convolution decomposes a complete
convolution operation into two steps, that is, depthwise
convolution and pointwise convolution. Different from
conventional convolution operations, a convolution kernel of
depthwise convolution is responsible for a channel, and a channel
is convolved by only one convolution kernel. In the
aforementioned conventional convolution, each convolution
kernel operates on each channel of the input image
simultaneously. Similarly, for a 128 × 128 pixel, three-channel
color input image (128 × 128 × 3), depthwise convolution intially
goes through the first convolution operation. Different from the
aforementioned conventional convolution, depthwise
convolution is completely carried out on a two-dimensional
plane. The number of convolution kernels is the same as the
number of channels in the upper layer, that is, channels and
convolution kernels correspond one to one. The operation of
pointwise convolution is similar to that of conventional
convolution operation. The size of its convolution kernel is
1 × 1 × M, and M is the number of channels in the upper
layer. The convolution operation here will combine the feature
graph of the previous step in the direction of the channel to
generate a new feature graph.

The structure of standard convolution and depth-separable
convolution is shown in Figure 3 (Liu, et al., 2021; Li, et al., 2019;
Hao, et al., 2021), where the input image dimension is
H × W × N and the output image dimension is H × W × M.
The standard convolution can be obtained through the
convolution kernel of k × k × M, and the required number of
parameters is N × k × k × M, while the depth-separable
convolution is adopted. First, each channel of the input image
is convolved, that is, the convolution kernel is k × k × N, and the
required number of parameters is N × k × k.M convolution 1 ×
1 is used to check the features of each channel for fusion. The
number of parameters in this step is, N × k × k then the ratio of
the number of parameters between the depthwise separable
convolution and the standard convolution is shown in Eq. 5.
When k � 3, the number of parameters of the depthwise
separable convolution relative to the standard convolution is
reduced by at least 8 to 9 times.

N × k × k +N × 1 × 1 × M

N × k × k × M
� 1
M

+ 1
k2

(5)

Two hyperparameters are set in MobileNet (Huang, et al.,
2021), namely, the width multiplier and the resolution
multiplier. The width multiplier controls the number of
channels in the feature graph; when the width multiplier is
less than 1, the model becomes thinner; the resolution
multiplier is used to control the size of the feature graph,
and both can reduce the number of parameters of the
convolution flexibly. On the basis of MobileNet,
MobileNetv2 uses an inverted residual block (Liu, et al.,
2021; Sun, et al., 2020). First, 1 × 1 convolution is used to
improve the dimension of features, and then 3 × 3 depth-
separable convolution is used to extract features. Then, 1 ×
1 convolution is used to reduce dimensions.

FIGURE 3 | Standard convolution and depthwise separable convolution.
(A) Standard convolution. (B) Depthwise separable convolution.

FIGURE 4 | Residual learning.
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The depthwise separable convolution network in MobileNet
can greatly reduce the number of parameters in the network
model. Therefore, the standard convolution in the
VGG16 structure in SSD is replaced by the depthwise
separable convolutional neural network. However, compared
with the standard convolution, the network layers of the
depthwise separable convolution are deeper. As the number of
network layers increases, network performance degrades, that is,
the detection accuracy begins to decline after reaching saturation.
Therefore, in order to effectively solve the problem of network
performance degradation, this article improved the MobileNet-
SSD feature extraction network by combining the residual
connection mode of the ResNet model and depthwise
separable convolution.

If the input is set to X and a parametrized network layer is
set to H, the output of this layer with X as the input will be
H(X). General CNN networks, such as VGG, can directly
learn the expression of parameter function H through
training, so as to directly learn X − >H(X). Residual
learning is committed to using multiple parametrized
network layers to learn that the difference between input
and output is (H(X) +X) −X. X is the direct mapping,
while (H(X) +X) −X is the residual between input and
output to be learned by the parameter network layer, and
its principle is shown in Figure 4.

The ResNet model has two types of residual modules, no-
bottleneck residual module and bottleneck residual module, as
shown in Figure 5.

BN and Relu shown in Figure 5 are the normalization layer and
activation function, respectively, which help to speed up the training
and generalization of the network model. Compared with the no-
bottleneck residual module, the bottleneck residual module uses 1 ×
1 convolution to reduce or expand the dimension of the feature

graph, so that the 3 × 3 convolution is no longer affected by the
number of channels’ input, and accordingly, the output of this
module will not affect the next module. The model layers are
deep, and the bottleneck-free module is beneficial to improve the
model detection accuracy, while the bottleneck residual module is
beneficial to improve the model running speed.

Compared with the combination of depthwise separable
convolution and bottleneck residual module, the combination of
depthwise separable convolution and bottleneck residualmodule has
more obvious advantages in reducing the number of model
parameters. Therefore, the depthwise separable convolution is
combined with the bottleneck-free residual module to improve
the feature extraction function of the trunk network. The
structure of the combined depthwise separable residual module is
shown in Figure 6. The network structure can effectively extract
image feature information and greatly reduce the number of model
parameters. Then, the module is combined with the depthwise
separable structure to replace the VGG backbone network in the
SSD network for feature extraction of the target detection model.
Finally, for the network structure after Conv5_3 in SSD, the
convolution sum of 1 × 3 and 3 × 1 convolution kernels are
used to replace the standard convolution 3 × 3, thus obtaining
multiple detection feature graphs corresponding to SSD.

Both the bottleneck residual module and the non-bottleneck
residual module can reduce the number of parameters and

FIGURE 5 | Two types of residual modules. (A) No-bottleneck residual
module. (B) Bottleneck residual module.

FIGURE 6 | The depthwise separable residual module structure.

TABLE 1 | Number of module parameters with different residuals.

Residual block Bt (K) Non-Bt (K) DS-Bt (K) DS-non-Bt (K)

In_Out_C 64 4.35 36.86 2.77 4.67
256 69.63 589.82 35.65 67.84
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computation by introducing depth-separable convolution. Table 1
compares the number of parameters of different types of residual
modules when both input and output are 256 channels and
64 channels, respectively. In_Out_ C represents the number of
input–output channels, Bt represents the bottleneck residual
module, Non-Bt represents the non-bottleneck residual module,
DS-Bt represents the separable bottleneck residual module after
the introduction of depthwise separable convolution, and DS-
Non-Bt represents the separable bottleneck residual module after

the introduction of depthwise separable convolution.When the input
and output are 64 channels, the number of Bt parameters is 4.35K, the
parameter of DS-Bt is 2.77K, the parameter of Non-Bt is 36.86K, and
the parameter of DS-Non-Bt is 4.67K. The parameter number of DS-
Bt is 63.7% of that of Bt, and that of DS-Non-Bt is 12.7% of that of
Non-Bt. When the input and output channels are 256 channels, the
parameter number of Bt is 69.63K, that of DS-Bt is 35.65K, that of
Non-Bt is 589.82K, and that of DS-Non-Bt is 67.84K. The number of
parameters of DS-Bt is 51.2% of that of Bt, and that of DS-Non-Bt is
11.5%of that ofNon-Bt. It can be seen from these data that the depth-
separable convolution introduced by the bottleneck residual module
has a higher benefit in reducing the number of parameters than the
depth-separable convolution introduced by the bottleneck residual
module. Moreover, themore channels there are, themore benefit can
be obtained in reducing the number of parameters by introducing
depthwise separable convolution.

The specific parameters of lightweight SSD network
structure based on depthwise separable convolution are
shown in Tables 2 and 3, where Conv is the standard
convolution, DW is the depthwise separable convolution,
DS-RES is the depthwise separable residual module, and
Alter Conv is the alternative convolution of corresponding

TABLE 2 | The structure of a real-time target detection algorithm based on a
lightweight convolutional neural network.

Network layer Output size Convolution Kernel size Step

Input 300 × 300 × 3
Conv1 150 × 150 × 32 3 × 3,32 2
DW1 150 × 150 × 64 3 × 3,64 1
DS-Res2 150 × 150 × 64 3 × 3,64 3 × 3,64 1
DW3 75 × 75 × 128 1 × 1,128 2
DW4 75 × 75 × 128 1 × 1,128 1
DS-Res5 75 × 75 × 128 3 × 3,128 3 × 3,128 1
DW6 38 × 38 × 256 1 × 1,256 2
DW7 38 × 38 × 256 1 × 1,256 1
DS-Res8 38 × 38 × 256 3 × 3,256 3 × 3,256 1
DW9 19 × 19 × 512 1 × 1,512 2
DW (10–14) 19 × 19 × 512 (1 × 1,256)×5 1
DS-Res15 19 × 19 × 512 3 × 3,512 3 × 3,512 1
DW16 10 × 10 × 1024 1 × 1,1024 2
DW17 10 × 10 × 1024 1 × 1,1024 1
Conv2 10 × 10 × 256 1 × 1,256 1
Alter Conv1 5 × 5 × 256 3 × 3,256 2
Conv3 5 × 5 × 128 1 × 1,128 1
Alter Conv2 3 × 3 × 256 3 × 3,256 2
Conv4 3 × 3 × 128 1 × 1,128 1
Alter Conv3 2 × 2 × 256 3 × 3,256 2
Conv5 2 × 2 × 64 1 × 1,64 1
Alter Conv5 1 × 1 × 128 3 × 3,128 2

TABLE 3 | Parameters related to the experimental environment.

Category name Parameter

operating system Windows 10
CPU AMD Ryzen 7
GPU NVIDIA GeForce RTX 2070
Cuda with Cudnn 10.0/7.6.5
Python 3.6
Tensorflow, Keras 1.13.2/2.1.5
Opencv 4.5.1

FIGURE 7 | Color images of different angles, backgrounds, and lighting.
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FIGURE 8 | Training of trial target detection model based on a lightweight convolutional neural network. (A) Training set loss. (B) Validation set loss.

FIGURE 9 | Comparison of detection accuracy between SSD and lightweight target detection algorithms for various classes. (A) SSD. (B) Improved MobileNet-
SSD. (C) MobileNet-SSD. (D) Tiny-YOLOv3.
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TABLE 4 | Performance comparison between SSD and lightweight target detection algorithms.

Evaluation standard algorithm mAP, % FPS MB Training time/min

SSD 87.13 26 93.2 37
Improved MobileNet-SSD 87.33 47 27.3 12.6
Tiny-YOLOv3 66.57 52 33.2 15.3
MobileNet-SSD 67.02 62 26.8 11.4

FIGURE 10 | Comparison of detection effects between SSD and the lightweight target detection model. (A) SSD. (B) Improved MobileNet-SSD. (C) MobileNet-
SSD. (D) Tiny-YOLOv3.

FIGURE 11 | Detection effect of real-time detection model on video.
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parameters. The improved SSD adopts the idea of multi-layer
feature detection in SSD. Multiple DS-RES modules are used to
extract features, and use the feature graph of 19 × 19, 10 × 10,
5 × 5, 3 × 3, 2 × 2, and 1 × 1 for detection.

The loss function is the weighted sum of position error and
confidence error, as shown in Eq. 6.

L(x, c, l, g) � 1
N

(Lconf(x, c) + αLloc(x, l, g)) (6)
where,

Lloc(x, l, g) � ∑N
i ∈ Pos

∑
m∈{cx,cy,w,h}

xk
ijsmoothL1(lmi − gm

j ) (7)

where,

gcx
j � (gcx

j − dcx
i )

dw
i

, gcy
j � (gcy

j − dcy
i )

dh
i

(8)

gw
j � log(gw

j

dw
i

), gh
j � log(gh

j

dh
i

) (9)

where N is the number of prior frames of positive samples; α is
the weight coefficient, set as 1; xp

ij ∈ {0, 1}, when xp
ij � 1, it means

that the prior box imatches the target j and the target category is
p; c is the predicted value of category confidence; l is the position
prediction value of prior frame; g is the location parameter of the
real target; and gcx

j is the encoding of the real box.
The confidence error is a Softmax function:

Lconf(x, c) � − ∑N
i ∈ Pos

xp
ij log c

∧p

i − ∑
i∈Neg

log c
∧o

i , where c
∧p

i

� exp(cpi )∑
p
exp(cpi ). (10)

4 EXPERIMENT AND ANALYSIS

4.1 Establishment of Target Detection
Dataset in Complex Scenarios
The Kinect camera was used to collect studio scenes in the
manner of a video stream, and common objects in daily life
were selected as detection targets, including toys, chair, stool,
cabinet, glasses case, and cup. In the process of image collection,
1,064 color images of studio indoor scenes with different
backgrounds, different light intensity, and different angles
were collected, and the deformation of the toy page, thermos
cup, and glasses case with different poses was taken into account.
The chair and stool shape similarity improved the robustness of
the target detection model. The collected pictures were named in
one-to-one correspondence with four Arabic digits, and part of
the sample of the indoor scene image constructed from this is
shown in Figure 7.

Although the established image database contained images in
various scenarios, the samples still lacked diversity. Therefore, on the
basis of the established image data set, in order to increase the noise
anti-interference ability of the model, the image of the dataset
random chose some image processing operations; to make the
data richer, each category contained a sample generally reaching
equilibrium level so that it could be used to enhance the training
dataset of the network, get better model performance, and improve
the generalizability. Therefore, under the condition that other
conditions remain unchanged, random rotation transform,
inversion transform, image translation transform, noise
disturbance, random clipping transform, image color transform,
randomocclusion, and random superposition of the aforementioned
operations were carried out on the collected images to expand the
dataset to 4,256 pieces. Label-Img was used to annotate the image
dataset by category and position, and the indoor scene dataset was
created.

FIGURE 12 | Deployment of real-time detection model on the Android platform.
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4.2 Experiment and Result Analysis
In this article, the improved MobileNet-SSD was trained by using
the target detection dataset in complex scenarios. The parameter
configuration of the experimental environment is shown in
Tables 2 and 3. The Adam optimizer was used to adjust the
learning rate during the training process. The training situations
shown in Figures 8A,B represent the loss of the training set and
verification set in the training process, respectively.

The comparative experiment is conducted on SSD, Tiny-
Yolov3, Mobilenet-SSD, and the improved MobileNet-SSD on
the complex scene dataset. The detection of each algorithm for
each category is shown in Figure 9.

The comparison between the detection accuracy, speed, model
parameters, and training time of SSD and several lightweight
target detection algorithms is shown in Table 4. As can be seen
from the table, compared with SSD, the detection accuracy of SSD
improved by using the depthwise separable residual module was
not reduced, but the number of model parameters was greatly
reduced, which is conducive to model deployment, improves
detection speed, and improves the real-time performance of the
target detection algorithm. Compared with Mobilenet-SSD and
Tiny-YOLOv3, SSD based on depthwise separable convolution
had a smaller number of model parameters and a lower detection
speed, but had a huge advantage in detection accuracy. When the
confidence threshold is set to 0.5, the detection effect of SSD,
lightweight SSD, Mobilenet-SSD, and Tiny-YOLOv3 on the same
image is shown in Figure 10.

The real-time detection model was tested on video, and its
detection speed met the real-time requirement. Figure 11 shows
the detection effect of the real-time target detection model on
video.

It has become a trend for themodel to run on themobile terminal.
In order to verify the scalability of the model, the TensorFlow model
generated by Android Studio was deployed to the Android mobile
terminal, the project was compiled and run, the deployment of the
real-time and high-precision target detection model on the mobile
end was completed, and the real-time detection on the mobile end
was realized. The experimental results are shown in Figure 12.

5 CONCLUSION

In order to solve the application problem of the target
detection model in embedded devices and mobile
terminals, this article focuses on the research of target
detection algorithm lightweight. First, the MobileNet-SSD
network was introduced and analyzed, and then improved
by combining the depthwise separable convolution, no-
bottleneck residual module, and the convolution
substitution structure to reduce parameter quantity and
improve detection speed. A comparative experiment was
carried out on the self-built complex scene target detection
dataset; the experimental results show that the MobileNet-

SSD improved relative to the SSD model precision without
loss and greatly reduced the number of parameters of the
model, which is advantageous to the model in the mobile
terminal, deployment of embedded devices, and improvement
of the detection speed of the algorithm, namely, the real-time
target detection. Compared with the existing lightweight
target detection network, the real-time target detection
model based on the lightweight convolutional neural
network proposed in this article has similar parameters,
but has great advantages in detection accuracy. Finally, the
model was tested on video to verify the real-time performance
of the model, and the model is deployed on the Android
platform to verify the scalability of the model. There are still
shortcomings in this study. In future research, the neural
structure search method can be used to optimize the detection
speed and accuracy of the model while limiting the number of
neural network parameters, so as to achieve high accuracy and
real-time performance of target detection technology on
embedded devices.
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