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With the global escalation of the aging process, the number of patients with bone diseases
is increasing year by year. Currently, there are limited effective treatments for bone
diseases. Exosome, as a vital medium in cell-cell communication, can mediate tissue
metabolism through the paracrine transmission of various cargos (proteins, nucleic acids,
lipids, etc.) carried by itself. Recently, an increasing number of researchers have proven
that exosomes play essential roles in the formation, metabolism, and pathological changes
of bone and cartilage. Because exosomes have the advantages of small size, rich sources,
and low immunogenicity, they can be used not only as substitutes for the traditional
treatment of bone diseases, but also as biomarkers for the diagnosis of bone diseases.
This paper reviews the research progress of several kinds of cells derived-exosomes in
bone diseases and provides a theoretical basis for further research and clinical application
of exosomes in bone diseases in the future.
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INTRODUCTION

With the intensification of global aging, the number of patients with bone-related diseases (including
osteoarthritis (OA), osteoporosis (OP), bone defect) has increased sharply (Zhao H. et al., 2018; Mei
et al., 2020; Ren et al., 2021). These diseases not only bring physical and psychological pain to
patients, but also result in enormous financial burdens to society (Hernlund et al., 2013; Hu et al.,
2021a; Xue et al., 2021b). For OA, it was estimated that nearly 250 million OA patients worldwide,
and the incidence was anticipated to increase further (Hunter and Bierma-Zeinstra, 2019). A
statistical report pointed out that in some developed countries, the cost of treating OA could reach
1–2.5% of gross domestic product (Hunter et al., 2014). At present, themain ways to treat OA include
drug treatment and surgical intervention (Zhou et al., 2020; Jin et al., 2021). However, painkillers and
anti-inflammatory drugs commonly used in drug treatment could only relieve pain, not completely
cure it. In addition, although advanced OA could be surgically intervened, it might be accompanied
by many complications. In short, there is still no effective treatment to reverse the progression of OA
(Glyn-Jones et al., 2015; Hu et al., 2019; Fang et al., 2021; Yajun et al., 2021). For OP, estimates
showed that more than 200 million people worldwide suffered fromOP (Ensrud and Crandall, 2017).
Statistically, OP-related fractures cost approximately $17.9 and 4 pounds billion per year in the
United States and United Kingdom, respectively (Clynes et al., 2020). Additionally, among hip
fractures caused by OP, 21–30% of patients died within 1 year (Force et al., 2018). Unfortunately, OP
usually takes a long period and even requires lifelong treatment with many side effects (Compston
et al., 2019; Chen J. et al., 2021). For bone defects, although autogenous and allogeneic bone grafts

Edited by:
Andrea Vernengo,

AO Research Institute, Switzerland

Reviewed by:
Wei Seong Toh,

National University of Singapore,
Singapore

Xingming Shi,
Augusta University, United States

*Correspondence:
Fei Gao

flyhightly@shu.edu.cn
Xiuhui Wang

blackrabbit@shu.edu.cn
Zhen Geng

nanboshan1987@163.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Tissue Engineering and Regenerative
Medicine,

a section of the journal
Frontiers in Bioengineering and

Biotechnology

Received: 31 January 2022
Accepted: 15 March 2022
Published: 12 April 2022

Citation:
Meng F, Xue X, Yin Z, Gao F, Wang X
and Geng Z (2022) Research Progress

of Exosomes in Bone Diseases:
Mechanism, Diagnosis and Therapy.

Front. Bioeng. Biotechnol. 10:866627.
doi: 10.3389/fbioe.2022.866627

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org April 2022 | Volume 10 | Article 8666271

REVIEW
published: 12 April 2022

doi: 10.3389/fbioe.2022.866627

http://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2022.866627&domain=pdf&date_stamp=2022-04-12
https://www.frontiersin.org/articles/10.3389/fbioe.2022.866627/full
https://www.frontiersin.org/articles/10.3389/fbioe.2022.866627/full
https://www.frontiersin.org/articles/10.3389/fbioe.2022.866627/full
http://creativecommons.org/licenses/by/4.0/
mailto:flyhightly@shu.edu.cn
mailto:blackrabbit@shu.edu.cn
mailto:nanboshan1987@163.com
https://doi.org/10.3389/fbioe.2022.866627
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2022.866627


have been widely used for repairing bone defects, there are still
some limitations in these two treatments, such as inflammation,
limited autogenous bone, and immune rejection (Lee and
Goodman, 2015; Qin et al., 2016; Xue et al., 2021a; Chen W.
et al., 2021). In recent years, stem cell treatment has been located
at the forefront of the field of bone regenerative medicine (Hao
et al., 2016; Debnath et al., 2018). However, its molecular
mechanism is not precise, and there are still some limitations,
such as high cost, limited donors, and so on. Therefore,
alternative and novel treatment strategies are imperatively
needed to meet the clinical requirements of bone diseases.

It is generally considered that bone is a complex organ containing
various cells, such as osteoblasts, osteoclasts, macrophages,
endothelial cells, stem cells, and other cells (Wang L. et al., 2021).
These cells surrounding the bone microenvironment communicate
with each other and participate in bone metabolism together.
Extracellular vesicles (EVs) have attracted extensive attention as
an important medium of cell-cell communication (van der Pol et al.,
2012). EVs can be further divided into exosomes, ectosomes
(microparticles/microvesicles), apoptotic bodies, oncosomes and
some other EVs subtypes (Thery et al., 2018; Ni et al., 2020).
Among these different subtypes of EVs, exosome is one of the

most widely studied subtypes as evidenced by an exponentially
increasing number of exosome-related researches in recent years
(Lawson et al., 2016). Exosome has a phospholipid bilayer structure
with a diameter of 30–150 nm and can be secreted by various cells
through the endosomal pathway (Figure 1) (Thery et al., 2002;
Klumperman and Raposo, 2014). The history of exosomes could be
traced back to 1983. It was firstly found byHarding et al. (1983), Pan
and Johnstone (1983) in rat and sheep animal models, respectively.
They found that a nano-vesicle containing transferrin was released
during the maturation of reticulocytes into erythrocytes. According
to its endosomal origin, this nano-vesicle was officially named
“exosome” by Johnstone in 1987 (Johnstone et al., 1987). Over a
long period of time, exosomes were considered to be cellular waste
used by cells to transport metabolic products and little attention was
paid to them. In recent years, accumulating evidence indicated that
exosome was a natural endogenous nano-carrier that played an
essential role in cell-cell communication (Mathieu et al., 2019; Cheng
et al., 2021). This was mainly due to the fact that exosomes could
involve in cell signaling and intercellular communication by carrying
various bioactive substances (including proteins, nucleic acids, lipids,
etc.) to the target cells (Yang D. et al., 2020; Norouzi-Barough et al.,
2021). Moreover, they could exist stably in body fluids (such as
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blood, urine and breast milk, etc.) and conditioned medium for cell
culture (Han et al., 2016; Cobelli et al., 2017). Because of the above
characteristics, Masaoutis et al. proposed that exosomes could act as
an important signaling mediator in bone remodeling (Li Q. et al.,
2018; Masaoutis and Theocharis, 2019). Nowadays, a large number
of growth studies have demonstrated that exosomes could be used in
cell-free therapy to effectively improve bone disease and solve the
problems (immune rejection, insufficient bone mass, and poor
stability) caused by traditional bone implants and stem cell
therapy (Bjorge et al., 2017; Huang J. et al., 2021).

At present, the research field of EVs is not mature and still
faces many challenges. Due to the problems of overlapping size,
similar composition and lack of standardized surface markers, the
existing EVs isolation methods (ultracentrifugation method, kit-
based method, etc.) and purification methods could not prepare
purified EVs specific subtypes. Therefore, the current EVs
preparations obtained are highly heterogeneous. In order to
further accelerate the regulation and development of this field,
the International Society for Extracellular Vesicles (ISEV) issued
the Minimal Information for Studies of EVs in 2018 (MISEV

2018) (Thery et al., 2018). MISEV2018 recommended naming
different subtypes of EVs according to physical characteristics,
biochemical composition, or cell of origin unless the pathway can
be demonstrated by live imaging techniques. For the purposes of
this review, “exosomes” are described as EVs with a diameter of
30–200 nmwhose surface markers meet the basic requirements of
MISEV2018 and regardless of their purity and origin. Based on
the current knowledge, this article reviews the investigation status
of exosomes in the domain of bone diseases and aims to bring
novel approaches for bone diseases treatment in the clinic
(Figure 1).

EXOSOMES AND BONE DISEASES

Stem Cell-Derived Exosomes
Stem cells are cells with a very high differentiation potential,
which have been confirmed to play critical roles in the growth of
bone (Jiang et al., 2020). Currently, stem cell therapy has been
used in the clinic as an alternative strategy for allogeneic and

FIGURE 1 |Biogenesis, secretion, and potential application of exosome. (I) Extracellular constituents and cell surface proteins entered cells through endocytosis. (II)
The formation of the cell membrane budded in the luminal side. The fusion of the bud with the compositions of the endoplasmic reticulum, Golgi, and mitochondria gave
rise to early sorting endosome formation. (III) Then, early sorting endosome led to late sorting endosome. (IV) The secondary invagination wasmodifiedwith cargos, giving
rise to the generation of various intraluminal vesicles and the formation of the multivesicular body. (V) At last, the exocytosis of the multivesicular body released
intraluminal vesicles to the outside of cells in the form of exosomes. Many studies have demonstrated that exosome-based treatment was effective for OA, OP, and bone
defects.
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FIGURE 2 | (A) BMSC-derived exosomes induced osteogenic differentiation of hMSCs through mediating the PI3K/Akt and MAPK signaling pathways by
upregulating/downregulating osteogenic and anti-osteogenic miRNAs (Zhai et al., 2020). (B) Schematic of the mechanism BMSC-derived osteoinductive exosomes
functionalized hierarchical MBG scaffold promoted bone regeneration (Liu A. et al., 2021). (C) Aged BMSC- derived exosomal miR-31a-5p inhibited BMSCs functions in
cellular aging and osteogenesis via the E2F2 and SATB2 signaling pathways and promoted osteoclastic differentiation via the RhoA signaling pathway (Xu et al.,
2018). (D) Schematic described that superficial cartilage could be regenerated by injecting BMSC-derived exosomes containing hydrogels (Zhang F.-X. et al., 2021). (E)
3D printed ECM/Gelma/BMSC-derived exosomes scaffold enhanced chondrocyte mitochondrial biogenesis and promoted osteochondral regeneration in rabbit
models (Chen et al., 2019).

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org April 2022 | Volume 10 | Article 8666274

Meng et al. Exosomes for Bone Diseases Therapy

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


allogeneic bone transplantation (Perez et al., 2018). Recent
researches pointed out that the function of stem cells in
promoting bone repair is mainly attributed to their paracrine
secretion (Tao et al., 2018). Exosome had been proved to be an
essential medium involved in paracrine. In this way, exosome,
which could bypass immune rejection caused by stem cell therapy
and bone deficiency in traditional surgical techniques, was
regarded as a good candidate for cell-free therapy (Furuta
et al., 2016; Hu et al., 2021b). In the last decades, stem cell-
derived exosomes were demonstrated better therapeutic potential
in OA, OP, and bone defects (Liu S. et al., 2020). The following
paragraphs and Supplementary Table S1 introduce the effects of
several stem cells-derived exosomes in bone diseases.

Bone Marrow Mesenchymal Stem Cell-Derived
Exosomes
Bone marrow mesenchymal stem cells (BMSCs) mainly
differentiate into osteoblasts and chondrocytes, so they have
great effects on bone/cartilage formation (Fan et al., 2017; Gao
et al., 2021). During this process of differentiation, exosomes
activated and participated in different intracellular pathways to
facilitate osteogenesis/chondrogenesis by transporting their
cargos (Metavarayuth et al., 2019; Wong et al., 2020). For
example, Zhang L. et al. (2020) elucidated that BMSC-derived
exosomes improved fracture healing by promoting osteogenesis
and angiogenesis via the BMP-2/Smad1/RUNX2 signaling
pathway. Furthermore, the impacts of BMSC-derived
exosomes on angiogenesis could be further enhanced by low-
dose dimethyloxalylglycine (Liang et al., 2019). In addition, Zhao
P. et al. (2018) indicated that BMSC-derived exosomes could
proliferate osteoblasts and relieve OP through the MAPK
signaling pathway. Among various cargos carried by exosomes,
small RNA (sRNA), especially micro-RNA (miRNA), has been
proved to be the primary medium involved in cell-cell
communication (Pegtel et al., 2010). For instance, Zhai et al.
(2020) concluded that human BMSC (hBMSC)-derived
exosomes could facilitate bone formation by upregulating
osteogenic miRNAs (Hsa-miR-146a-5p, Hsa-miR-503-5p, Hsa-
miR-483-3p, and Hsa-miR-129-5p) or downregulating anti-
osteogenic miRNAs (Hsa-miR-32-5p, Hsa-miR-133a-3p, and
Hsa-miR-204-5p) to activate PI3K/Akt and MAPK signaling
pathways (Figure 2A). Moreover, Fan et al. (2020) found that
downregulation of miR-29a could inhibit the expression of
natural bone morphogenetic protein (BMP) antagonist noggin,
activate BMP/Smad signaling pathway, and enhance the
osteogenic characteristics of BMSCs-derived exosomes.
Additionally, Liu A. et al. (2021) optimized BMSC-derived
exosomes immobilized in hierarchical mesoporous bioactive
glass (MBG) scaffold via lyophilization. Then they found that
BMSC-derived exosomal let-7a-5p, let-7c-5p, miR-328a-5p, and
miR-31a-5p could activate the phosphorylation of Smad1/5/9 and
activate BMP/Smad signaling pathway by targeting Acvr2b to
mediate osteogenic differentiation and repair bone defects
(Figure 2B). Besides, other BMSC-derived exosomal miRNAs,
such as miR-122-5p (Liao et al., 2019), miR-15b (Li Y. et al.,
2020), miR-206 (Huang et al., 2021d), miR-19b (Huang et al.,
2021c), miR-146a (Liu L. et al., 2021), miR-877 (Liang et al.,

2021), miR-218 (Hassan et al., 2012), and miR-128-3p (Xu et al.,
2020) also played significant roles in stimulating osteogenesis and
angiogenesis. Briefly, BMSCs-derived exosomal miRNAs could
participate in various pathways to promote bone formation,
suggesting BMSC may be a key cell in maintaining bone
metabolism.

It is worth noting that not all BMSC-derived exosomes play an
active role in promoting osteogenesis. A rat model of OP with
alveolar bone degeneration study showed that BMSC-derived
exosomes accelerated osteoclasts formation (Xu and Wang,
2017). In addition, serval studies have pointed out the effect of
age on exosomes. Xu et al. (2018) demonstrated that
overexpression of aged BMSC-derived exosomal miR-31a-5p
could not only inhibit osteogenesis via the E2F2 and SATB2
signaling pathways, respectively, but also promote osteoclastic
differentiation through the RhoA pathway, resulting in bone loss
(Figure 2C). Meanwhile, Jia et al. (2020) provided convincing
evidence that BMSC-derived exosomes from young rats could
upregulate the expression of osteogenesis-related genes, promote
BMSCs proliferation, and accelerate bone establishment in aged
rats. The above studies suggested that special attentions should be
paid to the effects of pathology, age and other internal or external
factors when using exosomes to treat bone diseases in the future.

BMSC-derived exosomes also played crucial roles in
promoting cartilage repair and relieving OA. On the one
hand, BMSC derived-exosomes promoted cartilage repair by
directly acting on chondrocytes or indirectly participating in
cartilage-related signaling pathways. For example, Hingert
et al. (2020) proposed that BMSC-derived exosomes could
improve the activity of chondrocytes and accelerate
chondrocytes proliferation. Further mechanism studies pointed
out that BMSC-derived exosomal miR-136-5p facilitated
chondrocyte migration and proliferation through targeting
ELF3 and downregulating ELF3 expression in a traumatic OA
mouse model (Chen et al., 2020e). In addition, BMSC-derived
exosomal circular RNA (circRNA_0001236) could also facilitate
cartilage repair through miR-3677-3p/Sox9 signaling axis (Mao
et al., 2021). Interestingly, Liu et al. obtained an exosome via
pretreating BMSC-derived exosome by a new small molecular
compound Kartogenin. Then, they found that the obtained
exosome could promote chondrogenesis through upregulating
COL2A1, Prg4, and SOX-9 (Liu C. et al., 2020). On the other
hand, OA could lead to changes in the extracellular matrix of
cartilage and aggravate the injury due to inflammation. BMSC-
derived exosomes maintained the stability of cartilage
extracellular matrix and alleviate OA by inhibiting
inflammatory factors or inflammation-related signaling
pathways (Jin et al., 2020). For instance, He et al. (2020b)
confirmed that BMSC-derived exosomes could promote
cartilage formation by weakening the inhibitory effects of pro-
inflammatory cytokines on chondrocyte proliferation and
migration. Moreover, Vonk et al. (2018) found that BMSC-
derived exosomes could affect the cartilage homeostasis,
stimulate the production of polysaccharides and collagen, and
inhibit the upregulation of pro-inflammatory interleukin.
Additionally, BMSC-derived exosomes reduced cartilage injury
via converting the M1 phenotype of macrophages to the M2
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phenotype, decreasing the release of inflammatory factors (Zhang
J. et al., 2020). Further research proved that mouse BMSC-derived
exosomes overexpressing miRNA-210 could protect
chondrocytes from injury by inhibiting the inflammation-
related NF-κB signaling pathway (He et al., 2020a).
Meanwhile, the treatment of rat OA models proved that low-
intensity pulsed ultrasound could enhance this process (Liao
et al., 2021).

Exosomes are often combined with technologies or
biomaterials to achieve ideal functions, such as specific bone
targeting, better osteogenic properties, and bone healing ability.
For instance, Luo et al. (2019) fabricated an engineered exosome
through coupling exosomes with BMSC-specific aptamers via
high-affinity recognition. The engineered exosomes had a specific
bone targeting ability and could significantly induce bone
regeneration. In addition, Huang et al. (2020) prepared a
functional exosome (BMP2 overexpression) via gene-editing

technology. The exosome not only promoted the expression of
BMP2, RUNX2, Osterix, and BMP9 in vitro, but also accelerated
the healing of skull defects in vivo. In addition, other data
indicated that exosomes and materials had a synergistic role in
tissue healing. For example, Zhang F.-X. et al. (2021) found that
BMSC-derived exosomes and adhesive hydrogel had a synergistic
role in promoting BMSCs migration, proliferation, and
differentiation, and repairing the osteochondral defects
(Figure 2D). As well, Chen et al. (2019) demonstrated that
chondrocyte extracellular matrix (ECM)/methacrylic acid
gelatin (Gelma)/BMSC-derived exosomes scaffold fabricated by
3D printing technology could repair the mitochondrial
dysfunction of chondrocytes, promote chondrocytes migration,
and facilitate cartilage regeneration in rabbit models (Figure 2E).
In addition, other studies suggested that BMSC-derived exosomes
modified biomaterials, such as TiO2 nanotubes and hydrogel,
exhibited superior properties on BMSCs proliferation and

FIGURE 3 | (A) UMSC-derived exosomes combined with the HA-hydrogel and the 3D-printed nHP scaffold for cranial defect repair (Zhang Y. et al., 2021). (B)
Exosomes (exos) released from hydrogel improved the migration, proliferation, and chondrogenic differentiation of hBMSCs and enhanced the formation of
glycosaminoglycan (GAG), ECM, and collagen II, and thus promoted cartilage regeneration (Hu H. et al., 2020). (C) Schematic of WJMSC-derived exosomal miRNAs
facilitated osteochondral regeneration (Jiang et al., 2021).
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differentiation, inflammation regulation, and bone healing
(Huang C.-C. et al., 2021; Zhang B. et al., 2021; Zhao et al.,
2021). In brief, the addition of exosomes or engineered exosomes
could prepare better biomaterials for the treatment of bone
diseases, which pointed out a novel research direction.

Umbilical Cord Mesenchymal Stem Cell and
Wharton’s Jelly of Umbilical Cord Mesenchymal Stem
Cell-Derived Exosomes
Compared with other stem cells-derived exosomes, human
umbilical cord mesenchymal stem cell (hUCMSC) and
Wharton’s jelly of umbilical cord mesenchymal stem cell
(WJMSC)-derived exosomes have the characteristics of clean
source, strong proliferation and high immunity. Several studies
showed that hUCMSC-derived exosomes could promote OP
and bone fracture healing by boosting BMSCs proliferation,
migration, osteogenic differentiation and angiogenesis viaWnt
and miR-1263/Mob1/Hippo signaling pathways (Zhang Y.
et al., 2019; Zhou et al., 2019; Liu W. et al., 2020; Yang B.-c.
et al., 2020). Based on these characteristics, by injecting
hUCMSC-derived exosomes intravenously into a mouse OP
model, Hu Y. et al. (2020) revealed that hUCMSC-derived
exosomes could prevent the decrease of bone mass and
maintain bone strength by promoting bone formation,
reducing bone resorption and fat accumulation. In addition,
hUCMSC-derived exosomes-modified hydrogels also showed
excellent osteogenic and chondrogenic effects. For instance, by
fabricating a hUMSC-derived exosomes modified Gel/

hyaluronic acid (nHP) scaffold, Zhang et al. found that the
addition of hUMSC-derived exosomes promoted rat cranial
defects healing through activating the miR-21/NOTCH1/DLL4
signaling pathway (Figure 3A) (Zhang Y. et al., 2021). In
addition, studies by Wang L. et al. (2020) revealed that
hUCMSC-derived exosomes could enhance the reparative
effect of coralline hydroxyapatite/silk fibroin/glycol chitosan/
difunctionalized polyethylene glycol self-healing hydrogel in
SD rats with induced femoral condyle defect. Moreover, Hu H.
et al. (2020) prepared a hUCMSC-derived exosomes modified
Gelma/nanoclay hydrogel. The modified hydrogel could
effectively boost the chondrocytes migration, proliferation,
and differentiation and promote cartilage regeneration
(Figure 3B).

Wharton’s jelly of umbilical cord mesenchymal stem cell
(WJMSC), which has a strong ability of proliferation and
differentiation, is a kind of MSCs extracted from the umbilical
cord (Li et al., 2015). Recently, studies indicated that WJMSC-
derived exosomes could also play important roles in bone
reconstruction. For example, Jiang et al. (2021) confirmed that
human WJMSC-derived exosomes could promote the
proliferation of BMSCs and chondrocytes, facilitate the
polarization of macrophages to M2 phenotype, reduce the
inflammatory response, and regenerate bone and cartilage
(Figure 3C). In addition, Kuang et al. (2019) found that
human WJMSC-derived exosomes could inhibit osteocyte
apoptosis through miR-21/PTEN/AKT signaling pathway via
TUNEL and high-throughput RNA sequencing methods.

FIGURE 4 | (A) Schematic diagram of the mechanism that AMSC-derived exosomal miR-130a-3p enhanced osteogenic differentiation of AMSCs via the SIRT7/
Wnt/β-catenin signaling axis (Yang S. et al., 2020). (B) AMSC-derived exosomes-coated silk fibroin 3D-scaffold implants facilitated bone healing in the calvarial bone
defects of SD rats (Kyung Kim et al., 2021). (C) IPSC-derived exosomes internalized hydrogel glue positively facilitated cells to promote cartilage repair (Liu et al., 2017).
(D) Schematic of the proposed mechanisms of MSC-derived exosome in repairing and regenerating TMJ-OA (Zhang S. et al., 2019).
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Other Stem Cells-Derived Exosomes
In addition to the widely studied stem cell exosomes mentioned
above, other stem cells (including adipose-derived mesenchymal
stem cell (AMSC), induced pluripotent stem cell (iPSC), etc.)-
derived exosomes also have potential therapeutic applications in
the field of bone diseases.

AMSC-derived exosomes. Previous studies showed that
AMSC-derived exosomes could inhibit the activation of
NLRP3 inflammasome in osteoclasts and reduce the
apoptosis of osteoblasts to relieve OP (Ren et al., 2019;
Wang S. et al., 2021; Zhang L. et al., 2021). Furthermore,
Yang S. et al. (2020) demonstrated that miR-130a-3p played a
vital role in determining the osteogenic differentiation of
AMSCs-derived exosomes. They further proved that the
overexpression of miR-130a-3p could downregulate the
expression of SIRT7 and upregulate the expression of Wnt
signaling pathway-associated protein (Figure 4A). Moreover,
recent studies confirmed that AMSC-derived exosomes
pretreated with TNF-α or osteogenic medium have better
osteogenic ability than non-pretreated ones (Lu et al., 2017;
Zhu et al., 2021). As well, AMSC-derived exosomes combined
with biomaterials have been proved to promote osteogenic
differentiation and bone regeneration cooperatively (Li W.
et al., 2018; Li S. et al., 2021). For example, Kyung Kim et al.
(2021) demonstrated AMSCs-derived exosomes modified silk
fibroin 3D-scaffold showed better bone healing ability than
non-modified scaffold in a calvarial bone defects SD rat model
(Figure 4B).

iPSC-derived exosomes. IPSC can be induced from patients’
autologous stem cells and have no ethical problems, so they have

attracted much attention. Meanwhile, emerging investigations
have shown that iPSC-derived exosomes could provide a
promising option in treating bone diseases. For example, Qi
et al. (2016) found that exosomes secreted by MSCs derived
from human induced pluripotent stem cells (hiPSC-MSC-Exos)
could promote vascular and bone regeneration in ovariectomized
(OVX) rat models. They also proved tricalcium phosphate
modified with hiPSC-MSC-Exos could accelerate bone repair
through activating PI3K/Akt signaling pathway (Zhang
J. et al., 2016). In addition, other investigations showed that
hiPSC-MSC-Exos had a stronger effect on facilitating
chondrocytes migration and proliferation and ameliorating OA
than synovial cells-derived exosomes (Zhu et al., 2017). This
result opened up a way for IPSC-derived exosomes in cartilage
repair, but the specific mechanism remained to be further studied.
Based on this, Liu et al. (2017) developed a hydrogel glue with the
incorporation of hiPSC-MSC-Exos by in-situ method
(Figure 4C). Then, they found that the incorporation of
hiPSC-MSC-Exos could significantly increase articular cartilage
regeneration in a rabbit articular cartilage defect model.

Moreover, there are some other stem cells-derived exosomes,
such as human embryonic stem cell-derived exosomes (Zhang S.
et al., 2016; Zhang S. et al., 2018; Zhang S. et al., 2019), human
gingival mesenchymal stem cell-derived exosomes (Diomede
et al., 2018), human dental pulp stem cell-derived exosomes
(Swanson et al., 2020; Xie et al., 2020), periodontal ligament
stem cell-derived exosomes (Yu et al., 2021), human perivascular
stem cell-derived exosomes (Xu et al., 2019), amniotic fluid stem
cell-derived exosomes (Zavatti et al., 2020), and synovial
mesenchymal stem cell-derived exosomes (Duan et al., 2021), has

FIGURE 5 | (A) MiR-214-containing exosomes from osteoclasts inhibited osteoblast function via ephrinA2/EphA2 recognition and can also be secreted into the
blood as a biomarker for bone loss (Sun et al., 2016). (B) Schematic illustration of the mechanism that osteoblast-derived EVs pretreated with TSA enhanced the
osteogenic differentiation of hBMSCs and osteoblast mineralization (Man et al., 2021). (C) 3D-printed porous PCL scaffold functionalized with VEGF@CPC-derived
exosomes exhibited better osteogenic and angiogenic ability (Zha et al., 2021).
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also been demonstrated to promote osteogenic differentiation, bone
repair and cartilage repair. To bemore specific, Zhang S. et al. (2019)
found intravenous injection of hESC-MSCs-Exos could control pain
and repair cartilage in temporomandibular joint OA (TMJ-OA).
(Figure 4D). Especially, as the only known mammalian organ that
can be regenerated annually, the deer antler is an ideal organ to
overcome the insufficiency of stem cells. Lei et al. (2021) proved that
the deer antler stem cell-derived exosomes could reduce
inflammation, delay cell senescence, and promote bone and
cartilage regeneration.

Bone/Cartilage Cell-Derived Exosomes
Osteoblasts and osteoclasts are the two most dominant cells that
responsible for bone formation and resorption in the skeletal
system, respectively (Yuan et al., 2016; Chen H. et al., 2020; Chen
et al., 2020f). Osteoblast-osteoclast communication plays a key
role in maintaining skeletal metabolism (Yuan et al., 2018). They
coordinate with each other to maintain the homeostasis of the
bone microenvironment (Deng et al., 2015; Chen et al., 2018a;
Chen et al., 2018b; Li X. et al., 2020). Therefore, exploring the
osteoblast-osteoclast communication will help understand the
mechanism of bone homeostasis and provide a potential therapy
for bone diseases treatment. Some studies suggested that
exosomal miRNA took a crucial effect in osteoblast-osteoclast
communication (Yin et al., 2017; Teotia et al., 2021). Sun et al.
(2016) found that osteoclast-derived miR-214-containing
exosomes could be secreted into the blood and inhibit the
function of osteoblasts through interacting with ephrinA2 and
EphA2 (Figure 5A). As well, Li et al. (2016) confirmed that
osteoclast-targeted miR-214-3p inhibition augmented bone
formation in aging OVX mice. On the contrary, osteoblast-
derived exosomes could downregulate the heparanase gene and

inhibit the differentiation of osteoclasts by increasing the expression
ofmiR-503-3p during bonemineralization (WangQ. et al., 2021). In
addition, Ge et al. provided convincing evidence that osteoblast-
derived exosomes contained osteogenesis-related proteins and could
increase the number of bone trabeculae and bone volume in OVX
rabbits (Ge et al., 2015; Ge et al., 2017; Sadat-Ali et al., 2021).
Moreover, by transferring miRNA to activate the Wnt signaling
pathway, osteoblast-derived exosomes could enhance the osteogenic
differentiation of BMSCs (Cui et al., 2016). Additionally, osteoblast-
derived EVs pretreated with histone deacetylase inhibitor
trichostatin A (TSA) could significantly promote the osteogenic
differentiation of hBMSCs and osteoblast mineralization
(Figure 5B) (Man et al., 2021). These studies provided theoretical
foundations for the clinical application of osteoblast-derived
exosomes in the future. Surprisingly, Niedermair et al. (2020)
showed that osteoblast-derived exosomes from patients with hip
arthritis (CA), OP, and CA/OP could decrease BMSCs viability and
alkaline phosphatase gene expression. This result suggested that the
microenvironment of osteoblast-derived exosomal donor cells
should be considered to avoid the opposite therapeutic effect.

Chondrogenic progenitor cell (CPC) is vital to maintain
cartilage homeostasis and has received widespread attention in
cartilage therapy (Kim et al., 2019). Currently, researchers have
illustrated that CPC-derived exosomes play an essential part in
MSC-chondrocyte communication and cartilage regeneration
(Koelling et al., 2009; Yao and Wang, 2013). For example, Wang
R. et al. (2020) discovered that CPC-derived exosomes not only
enhanced chondrocytes proliferation and migration in vitro, but
also promoted articular cartilage repair in vivo. In addition,
several studies have shown that CPC-derived exosomes could
also take effect in the therapy of bone defects. For instance, Zha
et al. (2021) fabricated a VEGF@CPC-derived exosomes

FIGURE 6 | (A) MiRNA-mRNA-KEGG interaction network analysis showed the top 10 OP-related pathways (Kong et al., 2021). (B) TRF-25, tRF-38, and tRF-18
were potential targets to OP treatment (Zhang Y. et al., 2018).
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functionalized 3D-printed porous polycaprolactone (PCL)
scaffold and verified that the functionalized scaffolds could
induce osteogenic differentiation and promote angiogenesis
and bone regeneration (Figure 5C). In contrast, current study
showed that chondrocyte-derived exosomes could promote
CPC proliferation, increase chondrogenesis markers’
expression, and inhibit angiogenesis (Chen Y. et al., 2018).
The multiple effects of bone/cartilage cell-derived exosomes in
bone diseases had been listed in Supplementary Table S2.

Macrophage-Derived Exosomes
Macrophage-MSC communication plays a significant role in
maintaining bone homeostasis and promoting bone
establishment (Pieters et al., 2019; Chen K. et al., 2020;
Kang et al., 2020; Wang D. et al., 2021). Previous studies
have confirmed that macrophages communicate with MSC
and affect its osteogenic differentiation through exosomes
(Ekstrom et al., 2013). Moreover, recent studies
demonstrated that exosomes derived from M0, M1, and M2
macrophages exerted distinct influences on the proliferation
and differentiation of MSCs (Xia et al., 2020). For instance,
researchers proved that M2 polarized macrophage-derived
exosomes could inhibit the adipogenesis of BMSCs and
promote its osteogenesis by mediating the miR-690/IRS-1/TAZ
signaling axis (Li Z. et al., 2021). In another pathway, M2
polarized macrophage-derived exosomes could directly target salt-

inducible kinase 2 and 3 genes to induce MSCs osteogenic
differentiation (Xiong et al., 2020). In the clinic, it is universally
acknowledged that diabetic patients often have a high incidence of
fracture and prolonged healing time. A recent study illustrated that
diabetic bone marrow macrophage-derived exosomes could inhibit
the osteogenic differentiation of BMSCs and bone healing (Zhang D.
et al., 2021). This inhibitory effect could be counteracted by
inhibiting the expression of the miR-144-5p gene, which
provided a new target for treating diabetic patients. Meanwhile,
Bai et al. (2020) illuminated that macrophage-derived exosomes also
have an influence on the growth of chondrocytes. Macrophage
(pretreated with anti-inflammatory factor IL-4 or IL-13 in vitro)
derived-exosomes, which containing Sox9 mRNA and protein, were
beneficial to chondrocyte differentiation.

Based on the above functions of macrophage-derived
exosomes, many studies combined them with biomaterials to
improve osteogenic activity. For instance, Zhang T. et al. (2021)
indicated that macrophage-derived exosomes modified titanium
fostered osteoblast differentiation and mineralization, and
osseointegration (Wei et al., 2019). Also, Liu et al. found that
mineralized collagen pretreated with macrophage-derived
exosomes could significantly facilitate MSC osteogenesis and
bone regeneration (Liu A. et al., 2020). All these studies
develop a novel way in the field of bone disease treatment.
Supplementary Table S3 summarized some recent studies on
macrophage-derived exosomes in bone diseases.

FIGURE 7 | (A) Diagram of bone targeting and functional EC-exos (Song et al., 2019). (B) FLSs-exos carrying miR-486-5p inhibited Tob1 to activate the BMP/
Smad signaling pathway, thus enhancing osteoblast proliferation, mineralization, and differentiation, then alleviating RA (Chen J. et al., 2020). (C) Schematic mechanism
of bone healing accelerated by the damaged brain. Damaged neurons released exosomes, which were rich in miR-328a-3p and miR-150-5p. They could target FOXO4
and CBL and thus promoted osteogenesis (Xia et al., 2021).
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Serum and Plasma-Derived Exosomes
There are a large number of exosomes in serum/plasma, and
increasing studies pointed out that serum/plasma-derived
exosomes have a great application prospect in early detection,
diagnosis, and later treatment of bone diseases (Xie et al., 2018;
Yang et al., 2021) (Supplementary Table S4). It is generally
recognized that postmenopausal women often miss the best time
for treating OP. In order to solve this problem, the researchers
detected the plasma-derived exosomes of early postmenopausal
women by small RNA sequencing method and concluded that
exosomal miR-642a-3p might contribute to the prediction and
diagnosis of early postmenopausal OP (Figure 6A) (Kong et al.,
2021). Furthermore, Chen et al. found that plasma-derived
exosomal TRF-25, TRF-38, and TRF-18 were closely related to
OP (Figure 6B) (Zhang Y. et al., 2018). These studies use cutting-
edge bioinformatics, and the results obtained by big data’s
analysis were provided references for further exploration of
the pathological mechanism of OP. In addition, other studies
have shown that plasma-derived exosomal surface protein
markers (PSMB9, AARS, PCBP2, and VSIR) (Chen M. et al.,
2020), serum-derived exosomal hsa_circ_0006859 (Zhi et al.,
2021), and long non-coding RNAs (LncRNA) (Teng et al.,
2020) could also be used as new markers for the diagnosis of
OP. Recently, studies found that the serum-derived exosomal
miRNAs varied with age, external stimulation, and other factors.
For example, serum-derived exosomes in young mice with high
expression of miRNA-19b-3p could boost the BMSCs osteogenic
differentiation in fatigue aged osteoporotic mice, suggesting that
the osteogenic capacity of serum-derived exosomes was related to
the age of the donor (Xun et al., 2021). In addition, Du et al. found
that radiation could affect bone metabolism and regeneration by
regulating the expression of plasma-derived exosomal miRNAs
(Du et al., 2021). This study provided a novel method for the
treatment of radiation-induced bone diseases.

Other Exosomes
Studies on other exosomes also provided multiple strategies for
bone diseases treatment (Supplementary Table S5). For example,
Sun et al. (2019) pointed out that sinus mucosa-derived cell-
derived exosomes and periosteum-derived cell-derived exosomes
could mediate paracrine effects to promote osteogenesis. The
endothelial cell (EC) is a kind of highly active cells located in the
inner layer of blood vessels, which can secrete a variety of
substances and is essential for organogenesis (Seton-Rogers,
2014). Song et al. (2019) provided evidence that EC-derived
exosomes (EC-exos) contained miR-155 and could reduce the
activity of osteoclasts and promote bone targeting (Figure 7A).
Recently, studies proved that endothelial progenitor cells (EPCs),
which are precursors of ECs, could also indirectly promote bone
formation via secreting exosomes. EPC-derived exosomes could
facilitate bone formation by stimulating angiogenesis or by
promoting the recruitment and differentiation of osteoclast
precursors via LncRNA-MALAT1 (Cui et al., 2019; Jia et al.,
2019). Fibroblast-like synoviocytes (FLSs) are the most important
cells at the pannus-cartilage junction (Bustamante et al., 2017).
Recent studies showed that FLSs-derived exosomes could also
stimulate bone growth (Tan et al., 2020). For instance, Chen

J. et al. (2020) found that FLSs-derived exosomes (FLSs-exos)
could be swallowed by osteoblasts in the mouse model of
collagen-induced rheumatoid arthritis (RA) and activate
osteogenesis-related signaling pathways by upregulating miR-
486-5p and targeting Tob1 to promote osteogenic
differentiation (Figure 7B). Clinically, there was an
interesting phenomenon that concomitant traumatic brain
injury could accelerate bone formation. To explore the
underlying mechanism, Xia et al. (2021) revealed that
damaged neurons released exosomes (rich in miR-328a-3p
and miR-150-5p) could facilitate osteogenesis by targeting the
3′UTR of FOXO4 and CBL (Figure 7C).

CONCLUSION AND OUTLOOKS

Collectively, exosome is a natural nano-carrier containing various
active cargos (miRNA, proteins, lipids, etc.) and plays a vital role
in regulating bone metabolism. Based on their small size, wide
source, and low immunogenicity, exosomes will have promising
study and application prospects in the field of early diagnosis and
therapy of bone diseases.

However, this field is still in the immature stage of basic
research and preclinical exploration. The contents of exosomes
are complex, which hinders the further exploration of their
action mechanisms. It is worth mentioning that with the
continuous development of proteomics and bioinformatics
technology, several studies have been carried out more in-
depth. For example, Chen M. et al. (2020) found four proteins
closely related to OP (PSMB9, PCBP2, VSIR, and AARS) by
quantitative proteomics and bioinformatics. This contributes
to understanding the mechanism of bone disease. As the
contents of exosomes are also related to different
pathological conditions, external and internal factors, it is
necessary to pay attention to the changes of conditions
when studying the effects of different contents. In addition,
a standardized separation and purification scheme is needed to
further promote the clinical development of therapeutic
exosomes. Consistent separation schemes and purification
indexes are the premises of large-scale mass production for
clinical application. The existing methods for the separation of
exosomes include ultracentrifugation, commercial kit, size
exclusion chromatography (SEC), tangential flow filtration
(TFF), etc. Ultracentrifugation is the earliest and most
widely used method. However, this method takes a long
time and is difficult to meet the requirements of purity and
yield. The commercial kit-based method takes less time than
the ultracentrifugation method, but the specific principles and
ingredients of most products have not been clarified. Recently,
SEC and TFF based on size separation have been recognized by
increasing researchers. Because it can obtain higher purity
exosomes more easily. However, it is necessary to remove
serum from the conditioned medium, which may change
the activity of donor cells. In order to establish a perfect
preparation system, Lim et al. proposed a set of relatively
optimal manufacturing processes for researchers’ reference
(Reiner et al., 2017). For instance, the system should have
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the characteristics of high capacity (unless the product is high
potency), high yield, and reproducible purity. Meanwhile, the
system should be a closed system with clear reaction principles
and disposable components, and accord with serum-free
culture. In addition, the manufacturing process should
follow the Good Manufacturing Practice, which requires
scientists to work together to establish a standard
manufacturing process. Currently, another challenge for the
clinical promotion of therapeutic exosomes is that they have
not been strictly tested for clinical potency. In order to solve
this problem, Lim et al. proposed a series of potentially
quantifiable indicators to reach a consensus on the potency
of different preparations (Witwer et al., 2019). Additionally,
they proposed that different indicators should be evaluated by
different independent laboratories and then analyzed and
discussed together to ensure their credibility. In order to
accelerate the application of exosomes, the cooperation of
different teams is necessary. Furthermore, researchers can
detect specific components that play vital roles in different
diseases. Lim et al. proposed that under the guidance of major
regulators, exosomes could be detected by a specific
component to ensure that the potency of exosomes in the
clinical treatment process is consistent (Gimona et al., 2021).
In addition, the mode of exosomes’ administration (systemic
or local) needs to be considered. Previously, most studies used
systemic injections. Recent studies combined exosomes with
biomaterials to locally administer drugs to animals. These
results showed excellent effects of promoting bone and
cartilage formation. However, the difference between
systemic administration and local administration in the
treatment of bone diseases needs to be further studied. In
particular, due to the above limitations, few studies have
compared the effects of different sources-derived exosomes

in bone diseases treatment. Personalized treatment for
different diseases is gaining importance. It is hoped that
after standardizing therapeutic exosomes, there will be
increasing studies to analyze the therapeutic effects of
different exosomes. Briefly, it will be a trend to study
exosomes in the future, which will help to broaden our
cognitive field of exosomes and provide more strategies for
the treatment of bone diseases.
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