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Chronic lowback pain (LBP) is a leading cause of disability and opioid prescriptionsworldwide,
representing a significant medical and socioeconomic problem. Clinical heterogeneity of LBP
limits accurate diagnosis and precise treatment planning, culminating in poor patient
outcomes. A current priority of LBP research is the development of objective,
multidimensional assessment tools that subgroup LBP patients based on neurobiological
pain mechanisms, to facilitate matching patients with the optimal therapies. Using
unsupervised machine learning on full body biomechanics, including kinematics, dynamics,
andmuscle forces, captured with a marker-less depth camera, this study identified a forward-
leaning sit-to-stand strategy (STS) as a discriminating movement biomarker for LBP subjects.
A forward-leaning STS strategy, as opposed to a vertical rise strategy seen in the control
participants, is less efficient and results in increased spinal loads. Inefficient STS with the
subsequent higher spinal loadingmay be a biomarker of poormotor control in LBP patients as
well as a potential source of the ongoing symptomology.

Keywords: nonlinear principal component analysis, biomechanics, chronic low back pain, sit-to-stand, movement
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INTRODUCTION

Low back pain (LBP) is a leading cause of disability and opioid prescriptions worldwide (Ringwalt
et al., 2014; Vos et al., 2016) with significant medical and socioeconomic impact estimated at $87
billion (Dieleman et al., 2016) per year in healthcare spending. Specific pathologies such as cancer,
fracture, and infection account for less than 6% of cases, with the vast majority of LBP cases classified
as non-specific LBP (Henschke et al., 2009; Hartvigsen et al., 2018). The lack of clinical tests to
identify relevant biopsychosocial processes responsible for an individual’s LBP experience has
resulted in overall poor patient outcomes, despite extensive research efforts (Woolf et al., 1998;
Burton, 2005; von Hehn et al., 2012; Hush et al., 2013; Hodges, 2019). A current priority of LBP
research is the development of widely adoptable quantitative assessments to classify individual
patients and select appropriately targeted therapies (Woolf et al., 1998; Foster et al., 2009; Costa et al.,
2013; Hush et al., 2013).
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Low back pain is associated with altered sensorimotor
processes (Hodges, 2000; Hodges and Smeets, 2015; Hodges
et al., 2019; van Dieën et al., 2019). Nociceptive input
modulates sensorimotor function by altering spinal circuits of
the central nervous system (CNS) (Schomburg et al., 2001;
Amann et al., 2013; Mandadi et al., 2013; Sidhu et al., 2017;
Massé-Alarie et al., 2019). The intrinsic interaction between pain
processing and sensorimotor circuitry provides a physiological
basis for biomechanical biomarkers as a functional readout of the
CNS response to LBP (Amann et al., 2013; Sidhu et al., 2017;
Massé-Alarie et al., 2019). Using kinematics and
electromyography, prior work demonstrated distinct
neuromuscular mechanics of LBP patients compared to
healthy controls (Shum et al., 2005a; Shum et al., 2005b;
Moseley and Hodges, 2006; Shum et al., 2007a; Shum et al.,
2007b; Christe et al., 2016; Papi et al., 2018). Kinematic measures,
such as position, velocity and acceleration, and particularly their
interaction (acceleration at a specific velocity as a patient moves
through a trunk-specific angle) can predict LBP etiology with 70%
accuracy. In contrast, routine medical imaging techniques aiming
to identify the anatomic source of LBP stratify patients by etiology
in less than 20% of the cases (Marras et al., 1995, 19). Together,
these suggest that high-fidelity analysis of movement has the
potential to serve as a diagnostic biomarker of LBP that rivals
medical imaging in diagnostic accuracy. The addition of accurate,
movement biomarkers has the potential to improve patient care
by identifying sub-populations who may be strong responders to
particular therapies, or identify those who may be at risk. To date,
motion-based studies in LBP populations have mainly assessed
trunk kinematics and/or kinetics while patients performed
isolated movements (e.g., bending, sitting, or standing). In this
study, we assessed the coordinated movement of the spine and
lower limbs using the sit-to-stand (STS) maneuver. The five-times
STS or 30 second STS tests are commonly used clinical assessments
of lower extremity strength and have been used to assess if a
person can independently perform activities of daily living
(Rolfson et al., 2006). The movement requires coordinated
effort between the lumbar spine, hip, and knees (Shum et al.,
2005a), and has been used to elicit compensatory movements in
different clinical populations including those with low back pain
(Ippersiel et al., 2018; Staartjes and Schröder, 2018).

A challenge for point-of-care biomechanical assessment is its
dependency on complex measurement systems developed for
research settings that typically require instrumenting the
patient. High-accuracy research systems are incompatible with
routine use in the clinic because of the cost, space, time, and
expertise requirements needed to conduct conventional motion
assessments. Alternatively, marker-less motion capture using
standard color and depth cameras has been used to collect
movement data in clinic. One of these systems utilizing the
Microsoft Kinect cameras has been validated for kinematic
and dynamic measures during gait (Pfister et al., 2014),
standing balance (Clark et al., 2012), and STS (Matthew et al.,
2019b; Matthew et al., 2019a).

In addition to implementation challenges associated with
accurately collecting raw movement data, is the identification
of clinically relevant summary metrics. To address this, we

performed integrative analysis using unsupervised machine
learning from marker-less STS data collected on a convenience
sample of three subject types: 1) Non-specific LBP patients; 2)
patients with LBP due to spinal deformity, and 3) healthy
controls. We hypothesized that unsupervised machine learning
on full body biomechanics would identify divergent movement
patterns that discriminate LBP patients from healthy controls.
Our analysis unveils quantitative STS strategies that describe
clinically relevant movement patterns.

MATERIALS AND METHODS

Participants
This study consists of three cohorts: individuals with non-specific
low back pain (NS-LBP, n = 43), individuals who are considering
spinal fusion due to adult spinal deformity (SD-LBP; n = 42), and
controls (n = 26) (see Table 1 for details on demographics).
Patients were recruited during scheduled appointments for low
back pain or pre-surgical consultation due to degenerative spinal
conditions that result in thoracolumbar malalignment. The
control cohort was recruited from the clinicians, staff, and
students at the recruitment site. This research study was
conducted in accordance with the Declaration of the World
Medical Association. All subjects signed the informed consent
(UCSF IRB: 16-21015, 17-22291).

Experimental Procedures
Patient movements were collected in the clinic before or after
their regularly scheduled appointments. Subjects were provided
an armless chair 17.75 inches high, with a Kinect 2 (Microsoft,
Redmond, WA, United States) depth camera placed 84 inches in
front of them, 45 inches off the ground. Subjects were told to place
their feet so that their shanks were normal to the ground. Subjects
were asked to perform three self-paced sit-to-stand actions
keeping their arms by their side. Subjects were allowed to
perform less than three actions if they moved their feet, used
their arms, or if the investigator or subject wanted to stop the
experiment.

Data Processing
The Kinect body tracking library (C++) was used to obtain
estimates of body pose from the color and depth data (Zhang,
2012). Estimates of joint position were streamed into a log file
using custom software for post-processing at 30 Hz. The
complete modelling approach used in this study is covered in
previous work (Matthew et al., 2019b; Matthew et al., 2019a). A
quadruple-pendulum planar model was used to model the
movements of the ankle, knee, hip, and L5S1 joints. Segment
geometry and inertia were scaled based on the subject sex, height,
and mass using the relationships from (Mcconville et al., 1980;
Young et al., 1983; Chaffin et al., 2006; Dumas et al., 2007).
Inverse kinematics was performed using an unscented Kalman
filter to obtain smoothed estimates of joint position and the
corresponding joint angle (Julier and Uhlmann, 1997). Angular
derivatives were obtained using sequential second-order, low-
pass Butterworth filtering at 5 Hz, and numerical differentiation.
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The filtered kinematic time series data were used to estimate
the forces, and torques at each joint were computed using the
inverse dynamics formulation by Park et al. (1995). The world-
frame body segment positions, velocities, and accelerations were
computed in a forward recursion from the computed joint angles,
velocities, and accelerations. The contact forces and torques at
each joint were then computed in a backward recursion, using the
inertial parameters from the allometrically scaled planar
pendulum model. Estimated joint powers were calculated from
these torques and the corresponding joint angular velocities.
Numerical integration was used to compute the concentric
and eccentric work for each joint (Zhang et al., 2000). A
planar muscular model was used to find the total loading at
the L5S1 joint using the approach from Chaffin et al. (2006). This
model estimates the effective muscle force and abdominal
pressure from the computed torques and angles at the L5S1
joint. All measures that are derived from this analysis are
normalized by the height and mass of the subject using the
convention proposed by Pinzone et al. (2016). From our prior
validation studies, this approach has been shown to have an
average joint position error of 1.80 cm compared to active motion
capture, and 30N average error compared to floor-mounted force
platforms (Matthew et al., 2019a; Matthew et al., 2019b). The
angle and torque time series data from the Kinect system were
found to be concordant (0.81–0.99, 0.89–0.97) compared to our
baseline active motion capture system.

Measured and Derived Biomechanical
Variables
The biomechanical set of variables included trunk and lower limb
positions and angles (L5S1, hip, knee, and ankle angles measured
with two different reference points: joint and world), velocities
and accelerations (anterior and vertical velocities and

accelerations calculated for each joint and body segment
(torso, pelvis, thigh, and shank) with three different reference
points: joint, body and world), dynamics (torques and powers
calculated around each joint and normalized to patient’s height
and weight) as well as compressive, shear and maximum muscle
forces calculated at the L5S1 joint. The maximum and minimum
variants of joint angles, accelerations, velocities, torques and
powers, and maximum muscle forces around L5S1 were
compiled for the data analysis. There were a total of 118
biomechanical derived variables included in the analysis. (see
Data Dictionary, in Supplementary Material S1 (pages 1–10),
which has a full description of each variable).

Analytical Workflow and Statistics
Figure 1 shows the schematic of the overall analytical
workflow. The statistical analysis was performed using R (R:
The R Project for Statistical Computing, R Project, 2021) and
syndromic R package (Torres-Espín et al., 2021) specifically
developed to facilitate post hoc principal component analysis
(PCA), interpretation, and visualization of the PCA solutions.
For the analysis, the biomechanics data were averaged across
trials and repetitions of sit-to-stand as PCA suffers from intra-
subject correlation and assumes independence of observations.
Several studies on the kinematics of human movement
comparing linear and nonlinear analytical methodologies
have demonstrated that nonlinear methods outperform
linear in the percent variance accounted for in the data
(Harbourne et al., 2009; Portnova-Fahreeva et al., 2020; Boe
et al., 2021). Furthermore, if the variables are linearly related,
then PCA and NLPCA both result in the same solution.
Therefore, to consider the likelihood of nonlinear
relationships between the large number of biomechanical
variables in our data, we have chosen to use a nonlinear
approach.

TABLE 1 | Participant demographics.

Back pain
(N = 43)

Control
(N = 26)

Surgery
(N = 42)

Total
(N = 111)

F/chi-square
pvalue

Age
Mean (SD) 53.9 (17.4) 27.5 (8.85) 62.7 (11.9) 51.0 (19.3) F (2, 108) = 54.13
Median [min, max] 54.0 [21.0, 85.0] 24.0 [18.0, 58.0] 64.5 [30.0, 80.0] 55.0 [18.0, 85.0] p <0.0001*

Sex
Mean (SD) 0.558 (0.502) 0.500 (0.510) 0.310 (0.468) 0.450 (0.500) X2 (2) = 5.64
Median [min, max] 1.00 [0, 1.00] 0.500 [0, 1.00] 0 [0, 1.00] 0 [0, 1.00] p =0.059

BMI
Mean (SD) 26.7 (4.18) 23.8 (3.85) 26.4 (4.86) 25.9 (4.49) F (2, 108) = 3.82
Median [min, max] 27.0 [20.0, 41.0] 23.0 [18.0, 33.0] 27.0 [17.0, 38.0] 26.0 [17.0, 41.0] p =0.024**

VAS
Mean (SD) 4.67 (2.38) NA 6.83 (2.93) 5.65 (2.84) F (2, 108) = 12.81
Median [min, max] 5.00 [0, 9.00] NA 8.00 [1.00, 10.0] 6.00 [0, 10.0] p <0.001***
Missing 1 (2.3%) 26 (100%) 7 (16.7%) 34 (30.6%)

ODI
Mean (SD) 50.2 (16.3) NA 48.9 (16.2) 49.6 (16.2) F (2, 108) = 0.12
Median [min, max] 48.0 [20.0, 88.0] NA 52.0 [8.00, 78.0] 50.0 [8.00, 88.0] p = 0.073
Missing 2 (4.7%) 26 (100%) 9 (21.4%) 37 (33.3%)

BMI, bodymass index; VAS, Visual Analogue Scale; ODI, Oswestry Disability Index; SD, standard deviation; sex coded as 0 = female, 1 =male; Tukey post hoc results: *control vs. NS-LBP
(p <0.0001), control vs. SD-LBP (p <0.0001), NS-LBP, vs. SD-LBP (p =0.01); **control vs. NS-LBP (p = 0.028), control vs. SD-LBP (p =0.051), NS-LBP, vs. SD-LBP (p =0.96); ***NS-LBP,
vs. SD-LBP (p <0.001).
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Nonlinear PCA (NLPCA) was conducted by solving for the
Gifi loss function through optimal scaling and alternating least
squares as implemented in the princal () function of the Gifi
package in R (Mair et al., 2019). All variables were ordinally
restricted limiting to monotonic transformations. Nonlinear
transformations were performed by a b-spline of degree two
and three knots placed into the quartiles of the data. To
determine the number of significant principal components
to retain for further analysis, 1,000 permutations of the
resulting NLPCA solution were performed using a
permutation test (permD method with 1,000 permutations)

with the overall goal to reduce the number of components
while maximizing the variance accounted for (Torres-Espín
et al., 2021). Based on the results of the permutation test the
first 7 PCs had significant signal above random noise
(Supplementary Figure S1 shows the results of the
permutation test). The final number of 3 PCs were chosen
for construct validation established by applying the following
criteria: Kaiser rule (Kaiser, 1960), Scree plot (Cattell, 1966),
and factor specification based on top PC standardized loadings
(correlations between the vector defined by a variable and the
PC with an absolute correlation coefficient ≥0.5). The stability

FIGURE 1 |Unsupervisedmachine learning on full body biomechanics analytical workflow. (A)Healthy control (n = 23), patients with non-specific low back pain (n =
43) and patients with spinal deformity (n = 42) were assessed using full body biomechanics (59 variables) during sit-to-stand movement. (B) Full time series data were
summarized into minimum and maximum for each variable (total of 118 variables) for each patient. Here, the time series trajectories represent group mean and standard
deviation (black ~ control, blue ~ non-specific low back pain patients and red ~ patients with spinal deformity) for one of the variables with a significant loading in
PC1, PC2 or PC3. (C) The resulting dataset was analyzed using nonlinear principal component analysis (D), followed by a permutation test (E) that determined the
number of principal components (PCs) to be retainedwith a significant number of loadings above 0.5 (F). (G) The first three PCswere assessed for construct validity, with
subsequent generation of the biomechanical constructs of movement patterns/strategies. (H)Color-coded visualization of groups projected in 3D space revealed group
separation particularly across PC2. (I) Linear regression models were then used to test whether identified movement constructs in PC1, PC2, and PC3 could predict
patient-reported outcomes of pain and disability.
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FIGURE 2 |NLPCA on full body biomechanics separates across two patient subgroups and healthy controls based on STS strategies. (A) SyndRomics plot of PC1
loadings. Kinetic variables with highest loadings were grouped based on body segment to identify the underlying construct of vertical rise strategy. (B) Boxplot of PC1
scores group data. Controls had significantly higher PC1 scores compared to SD-LBP group. (C) SyndRomics plot of PC2 loadings. The variables were grouped based
on their biomechanical identity (kinetic, kinematic, dynamics or muscle forces) revealing the underlying construct of leaning sit-to-stand strategy that results in
increased spinal loading requiring a more laborious extension effort in patients with LBP vs. controls. (D) Boxplot of PC2 scores group data. There was a significant
difference between all three groups. (E) Schematic representation of the control and LBP patient sit-to-stand (STS) strategies captured in PC1 and PC2. F. PC1 vs. PC2
biplot visualizes the group separation in 2D space. *Significance established at p ≥ 0.5; ANOVA on PC1 scores: F(2, 108) = 7.55, p =0.0008). Tukey post hoc: control vs.
SD-LBP group (p = 0.0005); NS-LBP vs. controls (p = 0.066); NS-LBP vs. SD-LBP (p =0.148). ANOVA on PC2 scores: F(2,108) = 30.091, p <0.0001), Tukey post-hoc:
control vs. NS-LBP (p =0.0001); control vs. SD-LBP group (p <0.0001); NS-LBP vs. SD-LBP (p =0.0004).
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of the NLPCA solution was assessed by performing
bootstrapping on the approximations of the NLPCA
solution generated through linear PCA on nonlinear
transformations of the data. Specifically, 300 balanced
bootstrap samples were randomly drawn and 300 PCA
solutions generated. Pattern matching statistics (root mean
square difference in PC loading patterns, the coefficient of
congruence, the Pearson product moment correlation
coefficient) were calculated for the first 3 PCs between the
PCA solution and each one of the bootstrapped PCA,
generating an empirical distribution for each metric for
each PC. The average and non-parametric 95% confident
interval for each metric was calculated (Supplementary
Table S1 shows the bootstrapping results). Following
construct validation which is an expertise-guided process of
determining whether the pattern of variable association
determined by the loadings conform to an explainable
interpretation based on the current knowledge and
understanding of these variables, the first 2 PCs are
discussed as containing pertinent information (Figure 2).
The full list of loadings is provided in the barmap plot in
Supplementary Figure S2.

ANOVA was used to determine the between-group difference
of the stable principal component scores as well as patient
demographics (age, BMI, VAS scores, and Oswestry Disability
Index (ODI)). Pairwise comparisons were conducted by Tukey’s
post hoc test. Chi-square statistic was used to asses between-
group differences in participant sex distribution. Linear
regression models (lm () function in R) were used to assess
the relationship between principal components (PC1, PC2, and
PC3) and patient-reported outcomes of pain (Visual Analogue
Scale, VAS) and ODI with a covariate adjustment for age and
body mass index (BMI). The absence of collinearity between the
PCs, age, and BMI was confirmed with the variance inflation
factor (vif () function in the car R package (Fox and Weisberg,
2019). Statistical significance for all analysis was set at α = 0.05.

RESULTS

Participant Demographics
The analysis was performed on a convenience sample of patients
with non-specific LBP, patients with adult spinal deformity, and
healthy participants. There was no significant difference in male
vs. female sex distribution across groups. There were significant
between-group differences in age and BMI (control and NS-LBP
groups only). Patients with adult spinal deformity had
significantly higher VAS scores than patients with NS-LBP,
however, there were no significant differences in ODI
between the two patient groups. Neither VAS nor ODI
measures were assessed in healthy controls, therefore, the
control group was not included in the patient-reported
outcome analysis (Table 1).

NLPCA on the Biomechanical Variables
Unsupervised machine learning on full body biomechanics
(Figures 1A,B) identified divergent movement strategies in

LBP patients compared to healthy controls (Figures 2). The
NLPCA workflow consists of multiple steps starting from
raw participant-level data curation (Figure 1C), which then
is subjected to optimal scaling transformation (Figure 1D),
unsupervised pattern detection (Figures 1E,F), and expert-
augmented construct validation (Figure 1G). This helps
identify biomechanical parameters related to pain,
enabling us to cluster participants based on their
movement phenotypes (Figures 1H,I). Two global
movement strategies represented by the principal
components were deemed to capture a significant
proportion of the variance (see methods for details).

PC1: Reduced Full Body Kinetics, Hip, and
Flexed Standing Posture Characterize
Patient STS
The first principal component (PC1) accounted for 36.8% of
variability within the dataset (Figure 2A). PC1 captured three
different components of STS associated with either the control
participant strategy (positive loadings) or patient movement
(negative loadings). Maximum torso, pelvis, and thigh
kinematics (accelerations and velocities) in the world and
body frame, as well as peak L5S1, hip, and knee joint
kinetic variables had significant positive correlations with
PC1. World thigh maximum flexion angle, L5S1, hip
minimum flexion angles, and knee minimum flexion torque
had significant negative correlations with PC1 (Figure 2A).
Based on this loading pattern, PC1 was regarded as a “vertical
rise” STS strategy (positive loadings = full body vertical
kinetics) and final standing posture (negative loadings =
joint/segment kinematics).

There was a significant group difference in PC1 scores (F (2,
108) = 7.55, p =0.0008) (Figure 1B). Specifically, control
participants had significantly greater PC1 scores as
compared to SD-LBP group (p = 0.0005). There were no
significant differences in PC1 scores between NS-LBP and
controls (p = 0.066), and the two patient groups (p =0.148).
Taken together these results suggest that lower full body
kinetics and forward flexed standing posture are the
main differentiating/defining features of SD-LBP patient
STS movement when compared to healthy control
participants.

PC2: Leaning Stand-Up Strategy
Differentiates Across the Two Patient
Groups and Healthy Controls
The second principal component (PC2) accounted for the next
19.3% of variability in the data (Figure 1C). PC2 loadings
featured several kinematic, kinetic, dynamic, and muscle force
variables and for interpretability purposes, the loadings were
grouped based on their biomechanical identity as following.
Positive loadings included: world torso and pelvis maximum
flexion angle, L5S1 and hip maximum flexion and maximum
sagittal vertical axis (SVA) characterize body flexion or
forward-leaning; thigh and shank maximum world anterior
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acceleration, shank maximum world anterior velocity, shank
maximum body anterior and vertical velocities altogether
encompassing lower limb forward kinetics; L5S1 lumbar
anterior shear and compressive maximum forces, L5S1
sacral compressive maximum force and L5S1 extensor
muscle maximum force which characterize spine loading;
L5S1 and hip maximum flexion powers and L5S1 and hip
maximum extension torques representing total effort; pelvis
and torso maximum body posterior accelerations and
velocities, thigh maximum world posterior velocities
capturing posterior body swing (Figure 2C). The variety of
biomechanical modules captured by PC2 comprises a leaning
stand-up strategy and its biomechanical consequences (e.g.,
overall effort and spinal loading). There was a significant
group difference in PC2 scores (F (2,108) = 30.091,
p <0.0001) (Figure 2D). The control group had significantly
lower PC2 scores as compared to NS-LBP (p =0.0001) and SD-
LBP group (p <0.0001). NS-LBP has significantly lower PC2
scores as compared to SD-LBP (p =0.0004). The positive PC2
scores in the patient groups suggest that the positive PC2
loadings are more descriptive of the patient participants’ STS
strategy. Thus, patients utilize a leaning forward–swing back
STS strategy that is more laborious (requires greater extension
torques) and more strenuous (results in higher spine loadings)
(Figure 2E). Overall, NLPCA has separated the control and 2
patient groups into three overlapping but distinct clusters
across PC1 and PC2 space (Figure 2F).

PC3: A Complex, Defuse Construct
The third principal component (PC3) captured 10.4% of
variability in the data. Kinematic, dynamic as well as
kinetic variables have loaded into PC3 in a less cohesive
fashion, capturing the remaining STS movement
components. Positive loadings captured downward or
caudal velocity of the pelvis and thigh body segments, the
resulting flexion torque around the L5S1, knee and hip joints
as well as world torso and pelvis maximum extension angles
(leaning back). Negative loadings captured lower body
maximum kinematics (acceleration and deceleration).
Overall, these movement components do not link or group
into a strategy as do PC1 and PC2 limiting the interpretability
and establishment of its construct validity (Supplementary
Figure S3A). Furthermore, there were no significant group
differences in PC3 scores (F (2,108) = 1.78, p = 0.17)
(Supplementary Figure S3B); therefore, they were
excluded from further analysis.

PC4–PC7 Constructs
The construct PC4–PC7 were excluded from the main analysis
following Kaiser and Scree plot rules. However, based on the
permutation test PC4–PC7 have significant loadings/
information. P7 did not contain any loadings above 0.5 and
was excluded from further investigation. The loadings of
PC4–PC6, which together account for additional 16.1%
variance in the data and capture the information related to

participants ankle biomechanics, are reported in
Supplementary Figure S4.

Reduced Body Kinetics Predict Pain and
Disability
Linear regressions were used to determine whether
biomechanical parameters and/or compensatory movement
strategies captured across PC1 and PC2 can predict patient-
reported outcomes including pain (VAS) and disability (ODI).
We found a significant association between PC1 and VAS, as well
as PC1 and ODI (Figures 3A–C) when controlling for BMI and
age by including them as co-factors. The higher PC1 scores
corresponding to greater speed of movement had a negative
correlation with VAS and ODI scores, suggesting that patients
with worse pain and greater disability move slower. In contrast,
there were no significant associations between PC2 and VAS or
PC2 and ODI (Figures 3D–F).

DISCUSSION

Based on the well-established interaction between nociceptive
and sensorimotor circuitries (Schomburg et al., 2001; Amann
et al., 2013; Mandadi et al., 2013; Sidhu et al., 2017; Massé-Alarie
et al., 2019), the goal of this study was to identify patient-specific
movement strategies by applying unsupervised machine learning
on a set of full body biomechanics of STS movement collected
from a convenience sample of patients with non-specific LBP,
patients with adult spinal deformity and healthy participants. The
overarching objective of our work is based on the idea that
divergent motor control strategies identified using quantitative
biomechanical measures may be used to, first, develop a
discriminatory biomarker for patient subgrouping based on
the profile of their sensorimotor dysfunction. A longer-term
goal is to set the stage for developing a predictive
biomechanical biomarker that captures maladaptive movement
patterns that contribute to LBP recurrence.

NLPCA on a set of comprehensive full body biomechanics
data acquired during STS using a marker-less system has
identified significantly different movement strategies across
healthy controls and the two patient groups. Control strategy
is characterized by higher rostral kinetics which are coupled
across torso, pelvis and thigh body segments resulting in faster
transmission of momentum and a vertical rise (Figures 2A–C). In
addition to reduced body kinetics, another main biomechanical
characteristic that sets SD-LBP patients apart from the controls is
a flexed or slouched final standing posture. Furthermore, both
patient groups (NS-LBP and SD-LBP) initiate STS by leaning
forward which is accompanied by increased lower limb forward
kinetics, suggesting that patients move horizontally/forward
before standing up (Figures 2B,C). Patients complete STS by
swinging their body back which is reflected in higher torso and
pelvis posterior kinetics. Overall, this strategy is less efficient as it
requires generation of higher extension torques, and, in addition,
results in higher spinal loads.
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The redundancy in the neuromusculoskeletal system allows
for variations in movement and muscle recruitment for the same
task. These compensatory strategies can be due to a lack of reserve
or a balancing of multiple movement objectives such as
maximizing stability or minimizing pain (van der Kruk et al.,
2021). While interplay between these effects is complex,
stereotyped compensation strategies can be observed in
different populations. An example of movement compensation
stereotypes can be seen in the STS maneuver. A person can use a
combination of momentum generation, torso leaning, and hip-
knee extension to rise from a chair. Individuals with low back
pain have been found to have higher peak torso flexion angles
(Coghlin and McFadyen, 1994) and slower torso flexion and
extension velocities (Shum et al., 2005a; Sánchez-Zuriaga et al.,
2011). These differences in movement suggest a reduction in the
use of the momentum generation strategy and a higher reliance
on torso leaning. To execute STS using vertical rise strategy,
efficient and coordinated recruitment of sufficiently strong hip/
knee extensors is required. Pelvis/thigh body segments are the
primary dynamic movers when the task is to displace the body
from a seated to standing position, whereas the predominant role
of trunk muscles is to stabilize the spine to prevent significant
deviation in posture during the vertical rise (Rodrigues-de-Paula
Goulart and Valls-Solé, 1999). We found that patients, on the
other hand, rely on torso/pelvis flexion/leaning forward and
torso/pelvis swing back (captured by increased posterior
velocities) to accomplish STS task. Given that this strategy is
also associated with increased spinal loading, it seems
counterintuitive that patients with LBP would adopt a leaning

STS strategy. This discrepancy reveals a deficiency in the ability to
generate vertical momentumwhichmay be a result of weak hip or
knee extensor muscles previously found to be associated with LBP
(Cai and Kong, 2015). From biomechanical standpoint,
exaggerated trunk flexion during STS reduces knee extensor
moments (Doorenbosch et al., 1994). Furthermore, a study on
STS strategies in a healthy elderly population identified a
significant negative correlation between isokinetic knee
strength and the trunk flexion amplitude during STS (Dehail
et al., 2007).

Reduced body kinetics captured in PC1 associate significantly
with VAS and ODI, suggesting that pain is the substrate for the
reduction in movement speed and reduced physical function as
the overall outcome in our study. The compensatory
biomechanics may arise from a conscious decision to move
slower and/or more cautiously consistent with pain fear-
avoidance conditioning (Asmundson et al., 1999; Leeuw et al.,
2007). In addition, assuming an ongoing nociceptive input from
an aggravated spine joint/muscle, changes in biomechanics may
result from a shift in the muscle recruitment patterns which occur
at the spinal cord level (without volitional control) (Hodges and
Richardson, 1999; Hodges and Tucker, 2011; Hodges and Smeets,
2015; Hodges et al., 2019). Furthermore, persistent nociceptive
input results in a reduction of motor output and decreased spinal
cord excitability (Gandevia, 2001; Le Pera et al., 2001; Nijs et al.,
2012). It is likely that patients with LBP, thus, have a decreased
capacity to recruit the extensor muscles necessary for STS which
may be the reason for compensatory leaning strategy adaptation,
slower movement speeds, as well as a flexed standing posture at

FIGURE 3 | Reduced body kinetics predict pain and disability. (A) Body kinetics (PC1 scores) vs. patient pain scores (VASback, measured using Visual Analogue
Scale) linear regression model plot. (B) Body kinetics (PC1 scores) vs. patient-reported disability (ODI, measured using Oswestry Disability Index) linear regressionmodel
plot. (C) PC1 vs. VASback and ODI prediction model results. (D) Leaning strategy (PC2 scores) vs. VASback linear regression model plot. (E) Leaning strategy (PC2
scores) vs. ODI linear regression model plot. f. PC2 vs. VASback and ODI prediction model results. BMI and age were included as co-factors to correct for their
potential confounding effect in the relationship between body kinetics and patient-reported outcomes.
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the end of STS in LBP patients (overall reduced extensor tone)
(Figure 4).

Surprisingly, PC2 scores did not correlate with either VAS
or ODI, suggesting that NLPCA separated biomechanical
parameters related to pain and physical dysfunction (PC1)
from those that are not (PC2). Given the fact that PC2 captures
part of the residual variance not explained by PC1, the
separation based on movement biomechanics captured in
PC2 is, therefore, mechanical in nature highlighting the
reduced neuromuscular capacity revealed by demanding STS
task (Papi et al., 2018). Both control (vertical rise) and patient
(forward leaning) movement strategies have been described
previously as different ways of getting up out of a chair (van der
Kruk et al., 2021). However, there was no discussion of these
strategies in the context of LBP in prior studies, or what
implications these strategies might have on LBP
development. Through computational modeling of full body
biomechanics, we found that the leaning strategy results in
increased spinal loading. Alternative to the hypothesis of
nociceptive-afferent/pain-induced inhibition of motor

output, is a possibility that the compensatory STS strategy
(forwarding leaning) is utilized by the individuals with weak
hip/lower body extensors (Kankaanpää et al., 1998; Nadler
et al., 2002) before the onset of LBP. Overtime increased spinal
loading may then lead to overuse low back injuries. Therefore,
the weakness in hip/trunk stabilizing muscles and/or deficits in
the neuromuscular control of pelvis/back might contribute to
the risk of low back injury.

It remains to be empirically determined whether, first, the
leaning strategy is related to hip/trunk muscle weakness and
second, whether the leaning strategy can be used as a
biomechanical biomarker or a predictor of future LBP onset in
asymptomatic individuals. Although currently the transition
from acute to chronic low back pain condition is poorly
understood, acute injury is the first step towards a cascade of
events that are multidimensional in nature and become difficult
to disentangle. Given the high propensity of LBP and its
persistence after the initial episode, target programs for LBP
prevention and specific movement education may need to be
implemented throughout an individual’s lifespan, for example, as
part of a healthy lifestyle in the workplaces, similar to what has
been done in regard to cardiovascular health and fitness.

Limitations
There are several important limitations in this study. The analysis
was performed on a convenience sample, in which age and BMI
were not controlled. The two patient groups were significantly
older and had higher BMI as compared to control subjects. Aging
is associated with increased BMI, as well as overall reduced
fitness, including muscle capacity. To control for the potential
confounders, age and BMI were included as co-factors in the
linear regressions of PC scores with VAS and ODI outcomes, and
no significant contribution of either age or BMI was found on the
significant correlation between PC1 scores with VAS and ODI,
suggesting that pain and disability are more strongly related to the
observed movement phenotypes than either age or BMI. In
addition, LBP is a multidimensional heterogeneous disease
and, therefore, patient phenotyping using even the most
comprehensive biomechanics measures does not fully address
the multifactorial nature of LBP. Deep patient phenotyping
should be ideally performed on many outcome measures,
including comprehensive patient-reported outcomes collected
through validated NIH questionnaires (e.g., PROMIS), muscle
electromyography, neuroimaging, quantitative sensory testing,
etc., that capture the different aspects of the biopsychosocial
model of LBP.

CONCLUSIONS

Despite the limitations, this study identified a full body-based
biomechanical biomarker derived from STS which is a highly
relevant movement in the context of activities of daily living.
Increased spinal loading, associated with the inefficient leaning
STS strategy observed in patients with LBP, may underly the LBP
chronicity. Overall, the leaning STS strategy appears
counterintuitive to LBP condition, pointing to the underlying

FIGURE 4 | Working hypothesis of the relationship between pain/
nociception and patient compensatory STS movement biomechanics.
Damage in the peripheral tissue, such as muscle, ligament, or intervertebral
disc may trigger the low back pain (LBP) onset (1). Upon initial injury,
activation of primary nociceptive afferents triggers a cascade of action
potentials across the central neural axis ultimately propagating the signal to
the higher brain structures responsible for cognitive and emotional processing
of pain (2). According to pain fear-avoidance model patients may consciously/
volitionally seek to reduce physical activity and/or adopt compensatory
strategies to avoid moving a painful joint (3 and 4). In this study, we determined
that patients use a leaning forward–swing back sit-to-stand strategy that
results in higher spinal loading (5). Presumably, the inefficient strategy/
increased spinal loading maintains ongoing nociceptive tone. Persistent
nociceptive signaling overtime results in decreased motor output and reduced
spinal cord excitability (6) which at the subconscious level may contribute to
the observed compensatory biomechanics, locking individuals with LBP in a
viscous cycle of chronic disability.
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extensor muscle weakness of the primary movers (knee/hip
extensors) during STS in patients with LBP. We suggest that
LBP patient physical therapy-based rehabilitation efforts should
include lower extremity strengthening with the goal to correct
biomechanical insufficiency identified in patients with LBP.
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