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Wound healing is slowed in Space. Microgravity and possible physical factors associated
with Space affect alterations in fibroblast, matrix formation, dysregulation in apoptosis and
inflammation. Themicrobial populations settled on skin, spacemodules, in space suits, are
also playing a pivotal role, as wound healing is also affected by the microbial community.
We propose a perspective that includes four domines for the application of human skin
microbiota for wound healing in Space: The natural antimicrobial properties of the skin
microbiota, the crosstalk of the skin microbiota with the immune system during wound
healing, the contribution of the microbiota in precision medicine, and the role of gut-skin
and gut-brain axes. A stronger understanding of the connections and metabolic network
among bacteria, fungi, the host’s immune system and the host metabolismwill support the
basis for a better wound healing in Space.
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INTRODUCTION

Wounding can happen during Space exploration (Gontcharov et al., 2005; Tronnier et al., 2008;
Crucian et al., 2016; Farkas and Farkas, 2021). Astronauts are exposed to skin erythema, peeling,
dryness, burning, pruritus, sensitivity, thinning, therefore the physiology of the healing process of
cutaneous injuries is hence affected (Farahani and DiPietro, 2008; Cubo-Mateo and Gelinsky, 2021).
Recent studies have confirmed that wound healing is altered during Space missions (Cubo-Mateo
and Gelinsky, 2021). During the normal wound healing process and under normal gravity (on earth),
the body can repair wounds, trauma, burns by recreating the skin barrier (Reinke and Sorg, 2012;
Singh et al., 2017; Maheswary et al., 2021). The physiology of wound healing under normal
conditions is achieved via several defined steps: inflammation, proliferation, epithelialization,
maturation, and remodelling phases (Reinke and Sorg, 2012; Singh et al., 2017; Maheswary
et al., 2021). Chronic wounds extend the inflammatory phase, with immune cells continually
degrading collagen and extracellular matrix (Blaber et al., 2010; Dam and Paller, 2018; Jemison and
Olabisi, 2021). The delayed wound healing induced by microgravity differs in aetiology from that of
chronic wounds on earth (Jemison and Olabisi, 2021). Microgravity affects matrix formation (Blaber
et al., 2010), the alterations in fibroblast and dysregulation in apoptosis (Cialdai and Monici, 2013),
inflammation (Blaber et al., 2010), delayed cellular proliferation of the basal skin layer and a thinning
of the upper layer of the epidermis (this study is based on a single crew member) (Tronnier et al.,
2008). Space radiation including solar particle events, galactic cosmic radiation and intra-vehicular
secondary radiation may also compromise the physiology of the skin (Onorato et al., 2020). Space
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radiations cause damage to the DNA, through direct interaction
or production of free radicals (Moreno-Villanueva et al., 2017;
Afshinnekoo et al., 2020). Non-ionizing UV radiations also
damage the skin as well, but this is not an issue in Space due
to extensive protection provided to the astronauts (Tyrrell, 1995;
Gasperini et al., 2017; Lipsky and German, 2019). UV exposure is
under strict control inside the International Space Station (ISS)
also in case of use of UV lamps.

Physical factors are not the only factors that affect the
physiology of skin. The microbial populations settled on skin,
space modules, in space suits, are also playing a pivotal role. The
skin hosts an immense number of microorganisms adapted to
utilize the nutrients available. The skin microbiota of healthy
adults remains stable over time, despite environmental
perturbations—at least on earth (Byrd et al., 2018). It is well
known that skin diseases and disorders, are associated with an
altered microbial state (Lunjani et al., 2019). Space missions occur
in non-sterile, extreme confined environments, where air
pressure, temperature, humidity, limited water supply are kept
under strict control (Gentry and Cover, 2015). In this
environment, astronauts are not able to take proper shower
keeping their body clean by using wet tissues, using rinseless
shampoo, and they do not change their clothes often (Farkas and
Farkas, 2021). It is therefore important to understand the
astronauts’ skin microbiomes and their fluctuation over time.

The skin microbiota has been studied by using both cultivable
microbes and metagenomic profiles. The application of targeted
and untargeted Next Generation Sequencing (NGS) has been
used to further differentiate strains and functional variability
(Tomida et al., 2013), e.g., the association of microorganisms with
sweet and sebaceous glands, hair follicle, sebum and the stratum
corneum (Byrd et al., 2018). Bacteria may variate according with
the site of the body, in contrast fungal community composition
was in general similar across core body sites regardless the
physiology (Findley et al., 2013; Byrd et al., 2018).

The ISS is not a sterile environment and its microbial
community is routinely monitored on various surfaces, as part
of standard operations and maintenance requirement procedures
(NASA, 2005). Influx of newmicrobes from travels at the ISS may
quickly resemble astronaut skin microbiomes: it is transient
(following crew exchanges), and some can settle permanently
(Voorhies et al., 2019), showing that there is shift of the microbial
communities, but also a small proportion of ubiquitous bacteria
are long-term residents (in dust, Actinobacteria, Proteobacteria,
and Firmicutes) (Checinska et al., 2015). A survey of cultivable
bacterial and fungal populations from surface wipes over
14 months from the ISS surfaces, showed a range of
104–109 CFU/m2 changing over time but remained similar
between locations. With reference to the phyla, the bacteria
Actinobacteria, Firmicutes, and Proteobacteria were the most
represented, while Ascomycota and Basidiomycota phyla
represented the fungal domine. The dominant organisms are
associated with the human microbiome and may include
opportunistic pathogens. Methylobacteriaceae were also
dominant across the ISS (as well as in some hospitals)
(Checinska Sielaff et al., 2019), and Staphylococcaceae and
Enterobacteriaceae were the most predominant organisms on

the USmodule, very similar to fitness centres and, again, hospitals
(Mukherjee et al., 2014; Lax et al., 2017). Interestingly, 46% of
viable bacteria and 40% of viable fungi from the overall meta-
taxonomical 16S were culturable, reflecting that a high percentage
of possible opportunistic pathogens are present and alive,
suggesting that ISS is like other built environments (Checinska
Sielaff et al., 2019). Recent findings suggest that possible thinning
of the upper layer of the epidermis and a significant loss of
elasticity of the skin (Tronnier et al., 2008) could increase the
exposure of the microbial communities that reside in the deeper
layers of the skin, including the stratum corneum (Zeeuwen et al.,
2012; Lipsky et al., 2020). In this conditions the skin of astronauts
is continuously exposed to different microbial communities with
relatively low biodiversity (Checinska Sielaff et al., 2019; Voorhies
et al., 2019).

A crosstalk in Space: application of the knowledge on skin
microbiota during wound healing.

The skin microbiome is protective against pathogens,
nevertheless in certain conditions the microorganisms that are
ordinarily beneficial to their host can become pathogenic
(dysbiosis) (Byrd et al., 2018). Skin microorganisms are
important in educating the innate and adaptive arms of the
cutaneous immune system (Byrd et al., 2018), and the
commensal skin microbiome during healing is essential for the
regulation of the cutaneous immune system (Tomic-Canic et al.,
2020). Skin microorganisms can provide protection from
pathogens through modulation of antimicrobials (Tomic-Canic
et al., 2020). It is urgent to better understand the crosstalk of the
skin microbiota and the immune system in Space, as it is difficult
to disentangle the components of microgravity, space radiations,
stress, and the effect of the microbiota itself (Siddiqui et al., 2021).
Exposure to microgravity during Space flights produces
immunosuppression, and this can lead to dysbiosis or ill-states
(Spatz et al., 2021).

The Skin Microbiota has Natural
Antimicrobial Properties
The role of microorganisms in chronic wounds provides
important insight on how to handle would healing in Space
(Figure 1). The role of the microbiome in chronic wound is not
fully understood and the importance of topical antimicrobial
agents in their treatment is continuously debated (Tomic-Canic
et al., 2020). Pathogens or pathobionts are suspected to delay the
healing process (Eming et al., 2014; Misic et al., 2014). Alterations
in the skin microbiome might contribute to the high frequency of
skin rashes/hypersensitivity episodes experienced by astronauts
in Space (Voorhies et al., 2019). Microorganisms can act
competitively to exclude one another or synergistically for
mutual benefits depending by the interaction between the skin
surface and other microorganisms that live on it (Cleary et al.,
2018).

Microgravity can affect the biology of microorganisms. Under
simulated microgravity, the liquid phase of a culture of
Lactobacillus acidophilus exhibited higher antibacterial activity
against Staphylococcus aureus in a time-dependent manner (Shao
et al., 2017). Targeting S. aureus and Staphylococcus epidermidis
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in wounds is important. S. epidermidis can either help or hurt the
skin barrier being strain-dependent in disease (Brown and
Horswill, 2020). Staphylococcus lugdunensis inhibited S. aureus
growth through the production of the antibiotic lugdunin, a
thiazolidine-containing cyclic peptide (Zipperer et al., 2016).
In another study, S. epidermidis strains were capable of
inhibiting Propionibacterium acnes grown in-vitro (Christensen
et al., 2016). P. acnes is involved in developing cutaneous
inflammation. The peptidoglycan of P. acnes can activate
monocytes to produce cytokines such as IL-1β, IL-8, and
TNF-α, which cause granulomatous responses in inflammatory
skin disorder (Kistowska et al., 2014; Lee et al., 2019).

In a different study, multiple coagulase-negative
Staphylococcus spp, S. epidermidis and Staphylococcus hominis
were shown to produce lantibiotics that were able to synergize
with the human antimicrobial peptide cathelicidin and to inhibit
the growth of S. aureus (Nakatsuji et al., 2017; Byrd et al., 2018).
Strains producing lantibiotics were depleted in individuals with
atopic dermatitis, who are frequently colonized with S. aureus
(Byrd et al., 2018). Other studies have shown that S. aureus shifts
toward commensalism in response to Corynebacterium species,
affecting S. aureus behaviour and fitness, leading to a reduced
virulence of S. aureus (Ramsey et al., 2016). In vitromono-vs. co-
culture of commensal Corynebacterium striatum increased
transcription of genes related to human nasal colonization and
decreased transcription of virulence genes of S. aureus (Ramsey
et al., 2016). Biotechnological application of Corynebacterium’s

metabolic products could lead to develop anti-virulence therapies
against S. aureus (Ramsey et al., 2016).

It must be mentioned that the direct influences of changes of
the microbial community should be carefully considered, since
changes in abundance may not be solely beneficial but leading to
opposite results, For example, Propionibacterium species induced
S. aureus aggregation and biofilm formation in a manner
dependent on dose, growth phase and pH (Wollenberg et al.,
2014).

The discovery, characterization and production of the
antimicrobials or elicitors involved in quorum sensing or
signalling could find important biotechnological applications
to control pathobionts. The interactions among
microorganisms in wounds are common but poorly
characterized.

Bacterial community instability was associated with faster
healing and more positive clinical outcomes (Loesche et al.,
2017). One hundred subjects diagnosed with diabetic foot
ulcers were enrolled into a prospective, longitudinal cohort
study to analyse the temporal dynamics of the bacterial
community of the ulcers. In this study the bacterial
community stability reflected a delayed healing phenotype
(Loesche et al., 2017). This observation may apparently be
counterintuitive, as in many other pathologies bacterial
community instability was associated with disease (Martinez
et al., 2008). Nevertheless, as proposed by Loesche and
collaborators “instability in the microbiome is a reflection of

FIGURE 1 | Perspectives for the application of human skin microbiota for wound healing in Space. Four possible domines for intervention developed from studies
aimed to improve medical applications on Earth. These solutions can also find application in Space. (A) The ecological network among microorganisms is also regulated
by natural antimicrobial. Few examples are shown as reported in the main narrative. S, Staphylococcus spp. L, Lactobacillus. P, Propionibacterium. Red arrows
represent inhibition. Gold boxes are common pathobionts. Green boxes are other organisms. (B) Crosstalk of the skin microbiota with the immune system during
wound healing. Microorganisms can support cytokine interleukin regulation. Up and down black arrows mean activation and reduction, respectively. Blue arrow
represents IL expression. (C,D) The typization of the skin microbiota can lead to a better treatment of wound and prevention of complications. Gut-skin, gut-brain axes
can be crucial for healing: in mice the administration of probiotics has shown better regulation of healing. Please refer to the text for all the details.
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effective control of wound bacteria, which prevents any
community structure from stabilizing” (Loesche et al., 2017).
Stabilization could proceed on the trajectory of the progressive
ulceration. Temporal stability of the microbiota of wound should
be further studied in Space.

In another similar study, the mycobiome (the fungal microbial
community) in chronic wounds is predictive of healing time,
associated with poor outcomes when forming mixed fungal-
bacterial biofilms (Kalan et al., 2016). Cladosporium herbarum
and Candida albicans have been identified as the most abundant
species in chronic wounds (Kalan et al., 2016). More information
must be acquired from the microbiome of chronic wounds, which
is believed to play an important role in impaired healing and the
development of infection-related complications (Loesche et al.,
2017). It is not known to what extent the mycobiome
composition in Space provides little predictive value of wound
outcomes, and culture-independent studies have been limited by
cross-sectional design and small cohort size. An interesting
approach adopted by Loesche and collaborators was to define
the outcome of the diabetic foot ulcers by classifying the
microbiota in different community types (Loesche et al., 2017).
In this disease the transition patterns and frequencies of microbial
populations were associated with healing time, and this can be
extended to the prognosis. Similar experimental approaches
could be done in microgravity scenarios.

Crosstalk of the Skin Microbiota With the
Immune System During wound Healing
The immune system is interconnected with the skin microbiota,
especially by targeting pathogen-associated molecular patterns
(PAMPs), through pattern recognition receptors (PRRs). For
example, Propionibacterium acnes and the lipopolysaccharides
induce the expression of antimicrobial peptides and
proinflammatory cytokines/chemokines in human sebocytes
contributing to the host defence and skin inflammation (Nagy
et al., 2006; Naik et al., 2012). Microorganisms could be beneficial
if able to regulate the immune response toward a normal healing
process. For example, the lack of interleukin-10 (IL-10) (a key
anti-inflammatory cytokine in immunologic tolerance) results in
a strong inflammatory response. IL-10 is a key mediator of the
pro-to anti-inflammatory transition that counters collagen
deposition (Singampalli et al., 2020). In healthy individuals,
IL-10 expression was positively correlated with the abundance
of the gammaproteobacterial genus Acinetobacter on the skin
(Hanski et al., 2012) (Figure 1). Abundance of Acinetobacter
could be monitored in astronauts, and further biotechnological
elicitors released by Acinetobacter could be used as food additive
to support wound healing in microgravity, as well as on earth.

It is well known that environmental biodiversity, human
microbiota, and allergy are correlated (Hanski et al., 2012).
Pro-inflammatory cytokines MCP-1, IL-8, IL-1b and MIP-1β
showed a significant increase in their concentration during flight
(flight day, FD 180), while TNFa had a near significant rise.
Conversely, a decrease in OTU of Fusicatenibacter spp. and
Dorea spp. was measured when IL-8, IL-1 β and MIP-1β
increased during flight (Figure 1). Cytokine concentrations

reverted to pre-flight levels within 2 months of returning to
earth (Voorhies et al., 2019). It would be interesting to further
understand the association of the astronauts’ immune
dysregulation with the skin microbiome. The main picture is
still far to be resolved. The analysis of skin microbiota forehead
and forearm (Voorhies et al., 2019) (Voorhies et al., 2019)
(Voorhies et al., 2019) (Voorhies et al., 2019) during inflight
showed a significant reduction of Proteobacteria, mainly, Gamma
and Betaproteobacteria, with an associated increase in
Firmicutes, including Staphylococcal, and Streptococcal species
(Voorhies et al., 2019) (Figure 1). A better regulation of
Proteobacteria on skin could also provide further details on
how the dynamics of the microbiota can regulate pro-
inflammatory cytokines and wound healing in Space. Voorhies
and co-authors proposed that it is possible that the constant
filtration of environmental air in the ISS contributes to the overall
reduction of skin Proteobacteria (Voorhies et al., 2019). Recent
studies conducted in children showed the importance of “green”
areas around the homes. Children living nearby green areas
showed reduced atopic sensitization, the same absence of
“green” resources (possibly “green” areas) could reduce
Proteobacteria on the skin to a pathological level (Ruokolainen
et al., 2015). Absence of “green” resources (or better, reservoir of
similar microbial communities) could control the incidence of
skin clinical symptoms during long-duration orbital spaceflight
(Crucian et al., 2016; Voorhies et al., 2019). It is reasonable to
assume that skin clinical symptoms and changes in skin structure
may facilitate the establishment of skin infections, inflammation,
leading to reduced wound healing during spaceflight. Further
research needs to be addressed.

Precision Medicine, Personal Skin Features
in Wound Healing
The microbial typing for each individual is ideal for precision
medicine approaches, leading treatment of wounds (Hülpüsch
et al., 2021) (Figure 1). This important field of research needs to
be further explored in Space: it would be important to understand to
what extent the skin microbiota changes in astronauts according
with each personal skin moisture, pH, personal hygiene habits. It is
not clear how these factors affect wound healing and it would need
further investigations (Voorhies et al., 2019). In this context it would
be interesting to stimulate ad hoc skin probiotic communities in an
ecology-based therapy scenario, by limiting dysbiosis that leads to
cutaneous disorders (Zhou et al., 2020).

Gut-Skin, Gut-Brain Axes can be Crucial for
Wound Healing in Space
The crosstalk between the immune system and the skin
microbiota can lead to normal healing (Byrd et al., 2018). In
this context the gut-brain/skin axis can play a role in wound
healing (Figure 1). The gut microbiome influences many
domains of the human body: e.g., the central nervous system
(Ma et al., 2019), endocrine control (Régnier et al., 2021),
immune fitness (Balikji et al., 2021). New biotechnological
approaches should identify microbial elicitors that could be
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used to control inflammatory cytokines and be administered as
probiotics or as additive in food. Probiotics actively can crosstalk
between the immune system and the skin microbiota. From the
biotechnological potential a few examples have been proposed: in
mice, the administration of Lactobacillus reuteri enhanced
wound-healing properties through the up-regulation of the
neuropeptide hormone oxytocin (Poutahidis et al., 2013). In
mice, diet control has been proved to alter the formation of
chronic wounds, as a diet with kefir products or the
administration of Lactobacillus johnsonii showed to support
some benefits (Guéniche et al., 2006; Huseini et al., 2012). In
another murine model, preparations of orally administered
Lactobacillus acidophilus, showed enhanced wound contraction
and fast epithelization when compared with the not treated. The
treatment with L. acidophilus also increased breaking strength in
sutured incision wound, increased granuloma dry weight and
marked increase in collagen content indicating wound healing
(Gudadappanavar et al., 2017). The use of Lactobacillus spp. in
food biotechnology is well known, it has essentially negligible
biological risk, and it is known for balancing gut microbial
population (Bernardeau et al., 2006; Widyastuti et al., 2021).

It is reasonable to assume that the gut-skin and gut-brain axes
biochemical signalling could also affect wound healing in Space,
having a profound influence on astronaut health (Siddiqui et al.,
2021). Further studies must be completed. For example, depression
and chronic wounds were demonstrated to share common
pathologic features, which included dysregulated inflammation
and altered microbiome (Hadian et al., 2020). For this reason, it
should not be excluded that isolation and stress associated with the
fluctuation of the microbiome can originate delay in healing.
Recently, in a questionary survey about the irritable bowel
syndrome symptoms, the perceived immune fitness (subjective
judgment), and impaired wound healing were studied in a cohort
of 1942 Dutch students (Balikji et al., 2021). The assessment showed
that impaired wound healing (self-reported) was significantly
associated with irritable bowel syndrome, showing that when
both conditions occurred, complaints were significantly more
severe (Balikji et al., 2021).

CONCLUSION

The last frontiers on the association of the skin microbiome and
wound healing during short and long mission in Space show that
further understanding is needed. The perspectives for further
research range from studies on microbial dynamics, natural
antimicrobial properties, understating how personal skin
features affect healing, the crosstalk of the microbiome with
the immune system, to the skin-gut-brain axes.

Further biotechnological applications will help to understand
better the skin microbiome and the healing process: for

example, the three-dimensional bioprinting of skin utilizing
different cell types (fibroblasts and keratinocytes) as bio-inks for
tissue engineering (Jemison and Olabisi, 2021). This technology
can help in studying the healing process associated with specific
probiotic microbial communities (mediated by elicitors), or the
deposition of different cell types along with specific biomaterials
(Cubo-Mateo and Gelinsky, 2021). This is particularly
important for travels to Mars, where also surgery can be a
possible scenario (Kirkpatrick et al., 1997; Farahani and
DiPietro, 2008; Cubo-Mateo and Gelinsky, 2021).

In this context, human skin-associated microorganisms
provide a pivotal role to the skin-microbe ecosystems that still
need to be fully understood. A stronger understanding of the
connections and metabolic network among bacteria, fungi, the
host’s immune system and the host metabolism will support the
basis for a better wound healing in Space. Improving our
knowledge in this field of the biomedicine not only can be
important in the perspective of ensuring adequate medical
assistance in future space exploration missions beyond LEO,
but it can have important repercussions on earth. In fact,
chronic ulcers, which are continually at risk of infection, are a
huge health problem, with high social costs and poor quality of
patients’s life.
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