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Investigating the optimal control strategy involved in human lifting motion can provide
meritorious insights on designing and controlling wearable robotic devices to release
human low-back pain and fatigue. However, determining the latent cost function regarding
this motion remains challenging due to the complexities of the human central nervous
system. Recently, it has been discovered that the underlying cost function of a biological
motion can be identified from an inverse optimization control (IOC) issue, which can be
handled via the bilevel optimization technology. Inspired by this discovery, this work is
dedicated to studying the underlying cost function of human lifting tasks through the bilevel
optimization technology. To this end, a nested bilevel optimization approach is developed
by integrating particle swarm optimization (PSO) with the direction collocation (DC)
method. The upper level optimizer leverages particle swarm optimization to optimize
weighting parameters among different predefined performance criteria in the cost function
while minimizing the kinematic error between the experimental data and the result
predicted by the lower level optimizer. The lower level optimizer implements the
direction collocation method to predict human kinematic and dynamic information
based on the human musculoskeletal model inserted into OpenSim. Following after a
benchmark study, the developed method is evaluated by experimental tests on different
subjects. The experimental results reveal that the proposed method is effective at finding
the cost function of human lifting tasks. Thus, the proposed method could be regarded as
a paramount alternative in the predictive simulation of human lifting motion.

Keywords: inverse optimization control, bilevel optimization, direct collocation, particle swarm optimization, human
lifting motion

1 INTRODUCTION

Lifting motion plays a paramount role in our daily lives and has been found to be one key incentive to
pain and fatigue in the human neck and upper limbs (Mombaur et al., 2019). So far, it has been
discovered that human lifting behavior complies with an optimal pattern regulated by the central
nervous system (CNS) (Chang et al., 2001; Xiang et al., 2021). This discovery implies that an optimal
control strategy is more likely involved in human lifting motion. Revealing this potential strategy
may not only benefit the development of biomechanics but also provide valuable insights on the
bionic control of different wearable robot devices to reduce human physiological discomforts caused
by lifting tasks (Mark et al., 2019). However, the complexities of the human CNS and intersubject
variances lead investigating the optimal control issue, particularly in terms of establishing the cost
function regarding human lifting motion, to be difficult.
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Recently, different methods have been devised by numerous
researchers to expose the optimal control strategies with respect
to different human motions. Among those currently existing
methods, predictive musculoskeletal simulation via dynamic
optimization could be one of the most formidable approaches,
thanks to its ability to formulate the dynamic optimization issue
independent of the experimental data (Ackermann and van den
Bogert, 2010). In yielding predictive simulation for a given
human motion, the determination of the cost function
remains the most significant issue needed to be addressed.
Generally, the cost function is represented by the combination
of multiple performance criteria via different unknown weighting
parameters (Yao et al., 2020). In such a case, determining the
weighting parameters is the rite of passage to obtaining the cost
function. Recent studies have suggested that determining the
potential cost function for a given human motion could be cast as
an inverse optimization control (IOC) problem and solved via the
bilevel optimization technology (Mombaur et al., 2010).

Normally, a bilevel optimization problem is composed of the
upper and lower levels. The optimal solution to the lower level is
considered a feasible candidate for the upper level. The upper
level optimizes its goals by considering its own constraints and
the optimized solution obtained from the lower level (Sinha et al.,
2017). Under such a case, the lower level denotes a single
optimization of the movement constrained by the dynamic
equation of the musculoskeletal model. The upper level adjusts
the weighting parameters of the cost function to minimize the
difference between the optimized solution gained from the lower
level and the experimental data at each iteration (Yao et al., 2020).

Due to the nondeterministic polynomial-hard (NP-hard)
nature of the bilevel optimization issue, it remains intrinsically
thorny to solve this type of problems, even for simple instances
(Sinha et al., 2013). To deal with this challenge, different bilevel
optimization methods have been recently developed. Overall,
these approaches can be categorized into classical and
evolutionary methods (Sinha et al., 2018). Classical methods,
such as single-level reduction using Karush–Kuhn–Tucker
(KKT) conditions (Dempe et al., 2012) and gradient-based
methods (Sun et al., 2020), cannot guarantee their
performances over complex and large-scale bilevel
optimization problems due to their lack of well-established
solution procedures (Sinha et al., 2013). As alternatives to
classical methods, evolutionary approaches, such as genetic
algorithm (GA) (Zhang et al., 2020; Liu et al., 2022) and
covariance matrix adaptation evolution strategy (He et al.,
2019), have gained increasing popularity in this area, thanks to
their swarm-based nature and promising abilities in handling
parallel computation.

For predicting human motions via the bilevel optimization
technology by using evolutionary algorithms, the lower level is
required to generate a full predictive simulation of a given human
motion based on the musculoskeletal model. Since the
musculoskeletal model contains different dynamic constraints,
the lower level often prefers to use the direct methods, such as the
shooting method (Umberger, 2010) and the direction collocation
(DC) method (Lee et al., 2016), to transfer the dynamic
optimization problem into a nonlinear programming (NLP)

problem in order to predict the human movement as full as
possible. Compared to the shooting method, the DC method can
yield a higher sparse NLP problem, which may thus enhance the
computational efficacy (Lee et al., 2016). Therefore, combining
with evolutionary algorithms, the DC method could be a vital
alternative to the lower level optimization of the predictive
simulation of human motion.

Over the last decade, applying the bilevel optimization
technology to predict human motions has drawn great
interest. Mombaur and Clever have used bilevel optimization
to determine the underlying cost functions for human walking
and running motions on different levels according to human
motion capture data (Mombaur et al., 2017). A bilevel
optimization method has been devised by leveraging the
quadratic approximation-based method and multiple shooting
method to identify potential optimality criteria of human gait
generation in a constrained environment (Clever et al., 2018).
Applying GA and DC, Nyuyen et al. have developed a novel
bilevel optimization approach to determine the cost function in
the dynamic simulation of human gait (Nguyen et al., 2019).
Some other related works using bilevel optimization to determine
the performance criteria of different human motions can be also
found in Howard et al. (2013), Rebula et al. (2019), Price et al.
(2020), Westermann et al. (2020).

From these aforementioned studies, it can be found that
employing bilevel optimization to identify human motion
generation is still a flourishing area. Also, based on our best
knowledge, these studies mainly focus on some typical human
movements, such as reaching tasks, running, jumping, or gait
generation, and few of them have discussed the possibility of
applying bilevel optimization to human lifting motion. Herein,
this work has been devoted to investigating the potential cost

FIGURE 1 | Schematic diagram of human lifting mission.
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function with respect to human lifting tasks via bilevel
optimization, such that our results would provide some
insights on designing and controlling the upper limbed
wearable robot devices to release the physiological discomforts
caused by lifting task.

To this end, blending particle swarm optimization (PSO)
(Zhao et al., 2021) with the DC method, this article proposes
a nested bilevel optimization approach to identify the cost
function of human lifting motion. The upper level applies PSO
to optimize the weighting parameter of each predefined
performance criterion in the cost function minimizing the
kinematic difference between the experimental data and the
results gained from the lower level. The reason for using PSO
can be interpreted by the fact that PSO is one of the most well-
known evolutionary algorithms with excellent convergence
speed, which would be suitable for dealing with our concerned
issue within a tackle time (Liu, et al., 2021). Thanks to its
aforementioned advantages, the DC method is implemented in
the lower level to predict human kinematic and dynamic

information based on the predefined cost function and human
musculoskeletal model implemented into OpenSim. Finally, the
performance of the proposed method is examined by
experimental tests over 6 subjects, followed after a benchmark
study. The experimental results confirm that the proposed
method can identify a robust cost function for each subject.
Thus, our method would provide practical utilities in bionics
controlling of wearable robotic devices to aid human lifting
motion in the future.

The rest of this article is organized as follows: Section 2 mainly
presents the IOC model of human lifting motion established in this
study; the proposed bilevel optimization method, including the PSO
and DC method, used for identifying the cost function of human
lifting motion is stated in Section 3; the experimental tests and result
analysis are summarized in Section 4; and the last section completes
this study by drawing conclusions and showing some future works.

2 PROBLEM STATEMENT

2.1 General Form of IOC Issue
It is commonly supposed that human daily motion is performed
in an optimal way due to evolution, learning, and training
(Mombaur et al., 2017). This, from a mathematical
perspective, indicates that human motions can be formulated
as optimal control problems. Yet, determining exact forms of the
optimal control issues, especially as far as the establishment of the
cost function, still remains a challenge due to complexities of
human CNS (Lee et al., 2016). Despite optimization principles for
humanmotions being uncertain, they can be generally denoted by
the combination of multiple performance criteria (Mombaur
et al., 2010). Recently, many researchers from different fields
have confirmed that human motions can be mathematically
formulated as an IOC model as follows (Mombaur et al., 2010,
2017; Clever et al., 2018; Nguyen et al., 2019):

Min
ω

e (1)

subject to

ωlb ≤ω≤ωub, (2)

TABLE 2 | Simulation parameters of PSO in the upper level for the
benchmark study.

Parameter item Parameter value

ωm 0.9
c1 2
c2 2
Np 40
kmax 50

TABLE 3 | Statistical results gained by the proposed method for the benchmark
test function (“NS” represents the numerical solution of ω.“ULFV” and “LLFV”
denote the fitness values of the upper and lower levels, respectively. “CT” indicates
the computation time.“Std.” denotes the standard deviation.).

NS (ω) ULFV LLFV CT (s)

Best 0.9530 1.2179E-08 11.02 1.18E+02
Worst 0.9454 2.2133E-07 19.86 1.22E+02
Average 0.9473 2.4263E-08 16.06 1.19E+02
Std. 0.0019 6.5787E-08 5.847 1.01E+00

TABLE 1 | Algorithmic steps of using PSO to solve the upper level of human lifting motion.

1 Set the needed simulation parameters and randomly generate an initialize swarm
2 while k ≤ kmax do
3 for m = 1: Np do
4 Calculate the fitness value of particle m based on Eq. 6
5 Update the velocity information of particle m based on Eq. 8
6 Update the position information of particle m based on Eq. 9
7 Modify the position vector of particle m based on the saturation strategy given by Eq. 10
8 Update pbestkm of particle m
9 end for
10 Update the global best solution gbestk of the swarm and send gbestk to the lower level optimizer
11 Increase the iteration number k by 1
12 end while
13 Output gbestkmax as the optimized weighting parameters
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Min
x,u

J ω, x, u, t( ), (3)
Subject to: _x � f x, u, t( ), (4)

Clb ≤C x, u, t( )≤Cub, (5)
where e indicates the distinction between the solution of the lower
level and the experimental data; ω ∈ Rn represents the unknown
parameter vector in the lower level cost function for the human
motion J, with n denoting the dimension of ω; ωlb and ωub are the
lower and upper boundaries of ω, respectively; x(t) ∈ Rl stands for
the state vector (e.g., joint positions, velocities, muscle lengths,
and activations), with l indicating the dimension of the state; u(t)
∈ Rq denotes the muscle control vector with q dimensions; t
represents the execution time of a given motion; Cx,u,t are the
boundary constraints of the lower level; and Clb and Cub are the
lower and upper boundaries of Cx,u,t.

Note that the IOC issue defined by Eqs 1–5 is a general
formulation used to investigate the optimal control strategies of
different human motions. Since the goals and regulation
mechanisms of different motions are diversified, one needs to
establish a concrete expression of the lower level cost function
defined by Eq. 3 for a given human motion (Nguyen et al., 2019).

2.2 Modeling of Human Lifting Motion
As visualized in Figure 1, this study concerns the lifting task,
where a human bends down to pick up an object from the ground.
In this motion, four joints, namely, the human lumbar, hip, knee,
and ankle joints, are considered since they play the most
significant roles in human lifting tasks. In this study, all the
joints in the musculoskeletal model are fixed to flex and extension
in the sagittal plane. Moreover, the joint angle is defined as
negative when the joint bends in the sagittal plane. The joint angle
is considered to be positive on the condition that the joint extends
in the sagittal plane. Inspired by the discovery noted in the

previous subsection, this study defines the upper and lower
levels of this task as follows, respectively:

Min
ω

e � 1
tf
∫
tf

0

∑n
j

xj* t( ) − xj t( )[ ]2dt, (6)

Min
x,u

J � ∫
tf

0

ω′∑n
j

u2
j t( ) + ω5Comx t( )2 + ω6Comy t( )2 + ω7

102
Fl t( )2⎡⎢⎢⎣ ⎤⎥⎥⎦dt, (7)

where n denotes the number of joints (n = 4 in this article); tf
stands for the ending time of the lifting task; xj*(t) and xj(t),
respectively, indicate the predictive kinematic data from the lower
level and the experimental kinematic of the jth joint; j = 1, 2, 3, 4
corresponds to human lumbar, hip, knee, and ankle, respectively;
uj is the joint torque of the jth joint; Comx and Comy, respectively,
denote positions of center mass of human body along the
horizontal and vertical directions; Fl(t) represents the resultant
force of human lumbar in the case of bending down to pick up an
object; and ω′ = [ω1, ω2, ω3, ω4], ω5, ω6, and ω7 are the unknown
weighting parameters of different items shown in the
aforementioned lower level cost function.

It is noticeable from Eq. 6 that the upper level aims to search
for solutions to the kinematical information with respect to each
joint from OpenSim to match the experimental kinematics as
closely as possible. Since human beings always prefer to stably lift
objects with least energy consumption and fatigue of lumbar,
these performance metrics are considered in Eq. 7. The first item
in this equation denotes the summation of total joint torque.
Since joint torque can be used to calculate the energy
consumption by multiplying with the angular displacement,
associated with different weighting parameters, this item is
used to denote the energy consumption of lifting movement.
The second and third items indicate human body stability during
lifting. The last item in this equation stands for the resultant force
of the human lumbar. Since the human lumbar is subject to

FIGURE 3 | Average fitness curve of the lower level for the benchmark
test function.

FIGURE 2 | Average fitness curve of the upper level for the benchmark
test function.
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different forces, which mainly result in fatigue on the lumbar, the
last item is used to evaluate fatigue in the lumbar. Moreover, due
to different dimensions, this item is empirically scaled to 10−2 in
order to obtain similar magnitudes among all items. Note that
each item in Eq. 7 is calculated through the musculoskeletal
model in OpenSim based on the optimized state and control
variables, as well as the optimized weighting parameters. In
addition, similar to some other human motions, the upper and
lower levels of human lifting motion are also constrained by Eqs
2, 4, and 5, respectively.

3 METHODS

In order to handle the bilevel optimization problem defined by
Eqs 6, 7 within a tackle time, this study develops a bilevel
optimization method by leveraging PSO and DC. Thanks to
the promising convergence speed and parallel computation
nature of PSO, this algorithm is implemented to optimize the
weighting parameters by minimizing the difference between the
predictive kinematics of joints obtained from the lower level and
those of the experimental results. Due to the sparsity property of
DC, this method is ideal for dealing with the derivative constraint,
as shown in Eq. 4 (Nguyen et al., 2019). Thus, this study applies

the DC method to simultaneously optimize the state and control
variables in the lower level based on the optimized weighting
parameters obtained from the upper level at each iteration. Note
that the numerical value of each item in Eq. 7 is calculated based
on the musculoskeletal model inserted into OpenSim.
Applications of these two methods on the upper and lower
levels are detailed in the hereinafter contents.

3.1 Particle Swarm Optimization
Inspired by birds flocking, Kennedy and Eberhart first proposed
PSO in 1995 (Eberhart et al., 1995). Each particle in this algorithm
denotes a candidate solution to an optimization issue. During the
iterative search, each particle updates its position and velocity
information according to its own flight experience and those of its
companions as follows (Wu, et al., 2022):

Vk+1
m � ωmV

k
m + c1r1 pbestkm −Xk

m( ) + c2r2 gbestk −Xk
m( ), (8)

Xk+1
m � Xk

m + Vk+1
m , (9)

where Vk
m and Xk

m denote the velocity and position vectors of the
mth particle at iteration k, respectively; ωm is a real coefficient,
standing for the inertia weight parameter of particle m; c1 and c2
are two positive real parameters, respectively, denoting the
cognitive and social acceleration parameters; r1 and r2 are two

FIGURE 4 | Kinematics results of different joints obtained by different methods for subject 1.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2022 | Volume 10 | Article 8836335

Tang et al. Cost Function Determination

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


random numbers uniformly distributed in [0, 1]; and pbestkm and
gbestk represent the personal best position of themth particle and
the global best position of the swarm at iteration k, respectively.

In the case of applying PSO to solve the upper level
optimization problem of human lifting motion, the position
vector of each particle is encoded by the unknown weighting
parameters. Since 7 weighting parameters are considered in this
study, the length of the position vector of each particle equals 7.
During the search process, the fitness value of each particle is
calculated based on Eq. 6. It is notable that the integral operator
in Eq. 6 is approximately handled by the summation of Nt

discretized time nodes between 0 and tf in terms of calculating
the fitness value of each particle (Nt = 101 in this article).

During the search process, in order to guarantee the searched
weighting parameters to satisfy the constraint given by Eq. 2, each
dimension of the position vector of each particle is modified by
the following saturation strategy:

ωi �
ωub
i , if ωi >ωub

i

ωlb
i , if ωi <ωlb

i

ωi, otherwise

⎧⎪⎨⎪⎩ , (10)

where ωlb
i and ωub

i are the lower and upper boundaries of the ith
weighting parameter ωi, respectively.

The algorithmic steps of applying PSO to search the optimized
weighting parameters in the upper level are shown in Table 1.
kmax and Np, respectively, denote the maximum iteration number
and swarm size in this table. The evolution of PSO will not exist
until the iteration number reaches kmax. It is notable from this
table that the predictive kinematic data are obtained from the
lower level in terms of calculating the fitness value of each particle
based on Eq. 6.

3.2 Direct Collocation Method
The DC method has been used to transfer the lower level issue of
lifting motion into an NLP problem in virtue of its sparse nature.
To this end, the state and control variables in Eq. 7 are first
discretized along the time axis as follows:

z � x1, x2, . . . , xN, u1, u2, . . . , uN, tf( ), (11)
where N stands for the number of nodes and tf is the time final.
Notice that, according to our pilot test, N is empirically set to be
25 in this article so as to release the burden of the computation
time of the lower level.

The dynamic constraint of the lower level given by Eq. 4 can be
then simplified into an equation constraint through the mid-
point method as follows:

FIGURE 5 | Kinematics results of different joints obtained by different methods for subject 2.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2022 | Volume 10 | Article 8836336

Tang et al. Cost Function Determination

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


xj+1 − xj � 1
2

tj+1 − tj( ) f xj+1, uj+1, tj+1( ) + f xj, uj, tj( )[ ], (12)

where xj+1 and xj are values of the (j + 1)th and jth discretized state
variables, respectively; (tj+1 − tj) is the time difference between the
(j + 1)th and jth nodes; uj+1 and uj are values of the (j + 1)th and jth
discretized control variables, respectively; and f (xj+1, uj+1, tj+1)
and f (xj, uj, tj) are values of the dynamic constraints at (j + 1)th

and jth nodes, respectively.
Following the way noted previously, the lower level issue is

transferred into an NLP problem, which can be solved by a
typical NLP solver. In this study, the SNOPT solver (Andrei,
2017) is used to handle the lower level NLP issue due to its
simplicity. At each iteration, the lower level implements SNOPT
to optimize the defined objective function given by Eq. 7 based on
the obtained weighting parameters in the upper level. Note that the
integral operation in this objective function can be instituted by
summation calculation since the state and control variables are
discretized along the time axis. Moreover, in the case of applying
SNOPT to solve the lower level problem, the boundary constraints of
the state and control variables, as shown in Eq. 5, can be similarly
modified by Eq. 10 by setting appropriate values of the lower and
upper boundaries. The reader can refer to Andrei (2017) for more
detailed information on using SNOPT to solve different NLP issues.

4 EXPERIMENTAL TEST AND RESULT
ANALYSIS

Followed after a simple benchmark study, the developed bilevel
optimization method is then verified by experimental tests on six
subjects. The obtained results and analysis of the benchmark
study and experimental tests are stated in the following contents.

4.1 Benchmark Study
In the conducted benchmark study, an IOC problem with a
known optimal solution is used in this study as follows (Mcasey
et al., 2012):

Min
ω

e � x t( ) − 0.28197( )2 (13)

subject to

0≤ω≤ 20, (14)

Min
x,u

J � ∫
1

0

x2 t( ) + ωu2 t( )( )dt, (15)

Subject to: _x t( ) � −x t( ) + u t( ), (16)
x 0( ) � 1. (17)

FIGURE 6 | Kinematics results of different joints obtained by different methods for subject 3.
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The aforementioned benchmark test function has an optimal
solution with ω* = 1. In our benchmark study, a Monte Carlo test
with 10 runs is conducted in order to reduce the random effects.
The needed simulation parameters of PSO are given in Table 2.
The number of nodes of the DC method is empirically set to be
25. The statistical results of using the developed method on the
benchmark test function are summarized in Table 3. The average
fitness value curves of the upper and lower levels for solving this
benchmark are visualized in Figures 2, 3, respectively.

It can be observed from Table 3 that the proposed method can
provide an average numerical solution of 0.9473 for the
benchmark test function, with a standard deviation of 1.90E-
03. It can be also observed from this table that the mean cost
function values of the upper and lower levels gained by using the
proposed method for the benchmark are 2.4263E-08 and 16.06,
respectively. Also, one can note from this table that the proposed
method averagely takes around 1.19E+02 s to cope with the
selected benchmark test function. Thus, these observations, to
some extent, can reflect the effectiveness of our proposed method
on the bilevel optimization issue. Moreover, it is clear from
Figures 2, 3 that the average fitness value curve of the upper
level keeps decreasing with the iteration number increasing,
whereas the average fitness value curve of the lower level
oscillates. This observation is due to the fact that the bilevel

optimization issue is naturally hierarchical (Sinha et al., 2018).
The optimal solution to the lower level is a candidate, rather than
the optimal, solution to the upper level. Thus, the optimality of
the upper level always has priority over that of the lower level.

4.2 Experimental Studies on Different
Subjects
To verify the developed method on the IOC issue of human lifting
motion, six healthy male subjects (age: 23 ± 2 years, mass: 62.5 ±
4.52 kg, height: 1.71 ± 0.101 m) have been recruited to carry out a
pack with 10 kg in our experimental study. The experimental
kinematic data of each subject is obtained by using a motion
capture system (Nokov, Beijing Metrology Technology Co., Ltd.)
with 39 marker points. For more details about ways of sticking
markers, the reader can refer to the operation guidance from
OpenSim official website (https://simtk-confluence.stanford.edu:
8443/display/OpenSim/Gait+2392+and+2354+Models). After
gaining experimental kinematic data, the musculoskeletal
model is scaled by the scaling tool in OpenSim to change the
anthropometry of the model in order to match the specific subject
as far as possible. Note that joint kinematics and kinetics data (e.g.
, joint angles and torques) are gained by inverse kinematics and
inverse dynamics tools in OpenSim.

FIGURE 7 | Kinematics results of different joints obtained by different methods for subject 4.
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In the conducted experimental tests, each weighting parameter
is set to locate within [0,1] for each subject. The maximum
number of iterations of PSO is set to be 100. The rest
simulation parameters of PSO and DC are referred to Section
4.1. The final experimental results of each subject obtained by
using the developed bilevel optimization method are compared
with those gained by the tracking simulation method (Koelewijn
et al., 2016) (referred to as “Tracking Sim” in this article ) and the
muscle activation cubed approach (Nguyen et al., 2019) (referred
to “Mus Act Cubed” in this study). Note that only the energy
performance metric is considered in the lower level cost function
in “Mus Act Cubed,” for instance, only the first four items shown
in Eq. 7 are considered in the “Mus Act Cubed” method. The
kinematics results of different joints obtained by using the
different methods for different subjects are illustrated in
Figures 4–9, respectively. The numerical results of each
considered joint and optimized weighting parameters obtained
by different methods for each subject are reported in Table 4,
where the best result of each item is highlighted in boldface. The
upper fitness value curves searched by using our proposed
method for the six subjects are illustrated in Figure 10.

It is evident from Figures 4–9 that the kinematics of each joint
optimized by the three methods can almost follow those of the
corresponding reference data. This can reflect the effectiveness of

each method for solving the predictive simulation problem of
human lifting motion. It can be found from Figure 10 that the
upper level fitness value curves searched by using the proposed
method for the six subjects keep decreasing in the early phase of
the evolution. This would imply the efficacy of standard PSO in
the upper level optimizer in our developedmethod. Here, we need
to mention that the fitness value curves searched by standard PSO
may probably fall into local optimums for the 6 subjects since the
fitness value curves remain stable in the latter of the evolution, as
demonstrated in Figure 10. This observation is more likely due to
the fact that standard PSO cannot keep a good balance between its
global and local search powers. Thus, we are considering the
possibility of developing some updating strategies to well balance
such two capabilities of PSO in our upcoming study so that the
performance of the developed method could be further enhanced.

It can be also found from Table 4 that the “Tracking Sim”
method is followed by our proposed method and the “Mus Act
Cubed” method in terms of the joint error and optimization
fitness value. It is important to note from Table 4 that despite
providing the best tracking performance among the three
considered methods, the “Tracking Sim” method cannot
obtain the determined weighting parameters. This indicates
that the “Tracking Sim” method cannot gain an analytical
expression of the optimal control strategy of human lifting

FIGURE 8 | Kinematics results of different joints obtained by different methods for subject 5.
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TABLE 4 | Numerical results of each considered joint and optimized weighting parameters of different methods for different subjects (where “NAN”means “unavailable” and
“ULFV” indicates “upper level fitness value”).

Subject Method Optimized
weighting parameters

Joint error ULFV

Lumbar Hip Knee Ankle

1 Tracking NAN 2.74E-08 5.30E-08 5.38E-08 2.36E-08 1.11E-04
Mus Act [0.937, 0.066, 0.852, 0.005] 5.80E-03 3.41E-02 1.35E-02 5.40E-03 4.10E-00
Proposed [0.248, 0.317, 0.567, 0.778, 0.534, 0.975, 0.778] 5.00E-04 2.90E-03 9.70E-03 2.20E-03 1.09E-00

2 Tracking NAN 2.53E-06 6.37E-06 7.75E-06 9.14E-06 1.60E-03
Mus Act [0.250, 0.036, 0.740, 0.405] 8.13E-02 1.26E-02 2.40E-03 2.86E-02 5.32E-01
Proposed [0.536, 0.388, 0.354, 0.075, 0.915, 0.919, 0.237] 1.70E-03 3.60E-03 1.20E-03 1.40E-03 2.23E-01

3 Tracking NAN 1.00E-04 2.18E-04 2.61E-04 2.61E-04 7.81E-02
Mus Act [0.676, 0.135, 0.035, 0.600] 2.00E-03 2.07E-02 7.90E-03 7.00E-03 5.17E-00
Proposed [0.094, 0.324, 0.187, 0.473, 0.374, 0.791, 0.761] 1.90E-03 3.00E-04 4.40E-02 6.30E-03 3.71E-00

4 Tracking NAN 7.86E-06 1.31E-05 2.10E-06 7.40E-07 1.10E-03
Mus Act [0.159, 0.028, 0.693, 0.749] 2.12E-01 1.32E-02 3.69E-02 3.50E-03 1.37E-00
Proposed [0.679, 0.744, 0.622, 0.326, 0.700, 0.340, 0.274] 2.90E-03 5.30E-03 5.30E-03 2.80E-03 1.00E-00

5 Tracking NAN 7.27E-08 1.21E-07 6.53E-08 4.36E-08 1.78E-04
Mus Act [0.289, 0.328, 0.701, 0.380] 9.00E-03 6.30E-03 3.43E-02 9.90E-03 3.51E-00
Proposed [0.427, 0.671, 0.264, 0.932, 0.741, 0.449, 0.772] 2.90E-03 3.40E-03 4.50E-03 3.00E-04 6.64E-01

6 Tracking NAN 5.78E-08 8.33E-08 6.69E-08 9.47E-09 1.91E-04
Mus Act [0.707, 0.872, 0.392, 0.447] 8.50E-03 2.57E-02 6.76E-02 9.00E-03 5.17E-01
Proposed [0.848, 0.397, 0.230, 0.685, 0.392, 0.533, 0.153] 1.00E-04 5.00E-04 4.01E-04 2.00E-04 1.12E-02

The best simulation results among different methods.

FIGURE 9 | Kinematics results of different joints obtained by different methods for subject 6.
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motion. The reason that the “Tracking Sim” method cannot
analytically solve the predictive simulation problem of human
lifting motion can be explained by the fact that this method is
merely a data-driving optimization method.

Moreover, one can claim from Table 4 that our proposed method
and the “Mus Act Cubed” method can analytically determine the
optimal control strategy of human lifting motions since these two
approaches canobtain theweighting parameters.Due to the distinctions
of human physiological structures such as different weights and heights,
theweighting parameters shown inTable 4 for each subject searched by
using these two approaches are diversified. Compared to the “Mus Act
Cubed” method, the proposed method can generate a more accurate
analytical expression of the optimal control strategy involved in human
liftingmotions. This is because those threemore optimization items are
considered in the lower level cost function in our proposed method.
This means that combining multiple performance criteria in the lower
level cost function results in a more realistic simulation of the human
lifting motion model, which however leads to the determination of the
motion model to be more computationally expensive. This discovery
can be supported by the truth that the proposedmethod averagely takes
about 74 h (with around 20 h for the lower level optimizer) to complete
the programming run for each subject, which generally needs more
than 12 h than those of the “Mus Act Cubed”method. However, since
the predictive simulation of human lifting motion is conducted off-line,
the computation time would not be the most important factor in the
determination of the cost function of human lifting motion. Based on
the aforementioned analysis, it may allow us to conclude that our
proposedmethod could be considered as a vital alternative in thefield of
the predictive simulation of human lifting motion.

5 CONCLUSION AND FUTURE WORKS

Aiming at investigating the underlying cost function of human
lifting missions, this study develops a nested bilevel optimization

approach based on PSO and DC methods. In the developed
method, the upper level implements PSO to optimize the
weighting parameters among different performance criteria
with the goal of minimizing the kinematic error between the
experimental data and the result predicted from the lower level
optimizer. The lower level optimizer applies the DC method to
predict human kinematic and dynamic information based on the
human musculoskeletal model inserted into OpenSim. The
efficiency of the developed method is verified by a benchmark
study as well as the experimental tests over six subjects. The
simulation results confirm that our proposed method is capable
of finding the cost function of human lifting motion within a
tackling time. Therefore, our method could be regarded as a
paramount alternative in the prediction simulation of human
motion and would benefit the bionic control of different wearable
devices.

The method and results shown in this article arise several issues
that deserved some future studies. Although none of the weighting
parameters obtained by using the proposed method are close to
zero, the values of the weighting parameters are diversified over
different subjects. Thus, developing an approach to evaluate the
relative importance of a performance criterion deserves further
strives. Since the global and local search capabilities of PSO heavily
affect its optimization performance and convergence speed,
developing more advanced updating strategies by mixing PSO
with some other approaches such as Faster RCNN (Jiang, et al..,
2021) or rumor diffusion process (Chen et al., 2022) to enhance
such two abilities of PSO could be the second significant issue in the
near future to further improve and optimize the performance and
the computation time of the upper level optimizer. Moreover, we
are considering the possibility of comparing the developed
approach with some other evolutionary algorithms by adding
several more performance criteria in the lower level cost
function in our shortcoming studies. Last but not least, we are
striving to use the proposed method for the bionic control of upper
limbed wearable robot devices to assist human lifting motion. For
this potential application, the proposed method could be first
applied to identify the personalized optimal control law for each
subject. The determined optimal control strategy can then be
mapped into the control system of a wearable robotic device,
such that the device can achieve human-like control behavior
during assisting human lifting motion.
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