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The Cardiotocography (CTG) is a widely diffused monitoring practice, used

in Ob-Gyn Clinic to assess the fetal well-being through the analysis of the

Fetal Heart Rate (FHR) and the Uterine contraction signals. Due to the

complex dynamics regulating the Fetal Heart Rate, a reliable visual

interpretation of the signal is almost impossible and results in significant

subjective inter and intra-observer variability. Also, the introduction of few

parameters obtained from computer analysis did not solve the problem of a

robust antenatal diagnosis. Hence, during the last decade, computer aided

diagnosis systems, based on artificial intelligence (AI) machine learning

techniques have been developed to assist medical decisions. The present

work proposes a hybrid approach based on a neural architecture that

receives heterogeneous data in input (a set of quantitative parameters

and images) for classifying healthy and pathological fetuses. The

quantitative regressors, which are known to represent different aspects of

the correct development of the fetus, and thus are related to the fetal healthy

status, are combined with features implicitly extracted from various

representations of the FHR signal (images), in order to improve the

classification performance. This is achieved by setting a neural model

with two connected branches, consisting respectively of a Multi-Layer

Perceptron (MLP) and a Convolutional Neural Network (CNN). The neural

architecture was trained on a huge and balanced set of clinical data

(14.000 CTG tracings, 7000 healthy and 7000 pathological) recorded

during ambulatory non stress tests at the University Hospital Federico II,

Napoli, Italy. After hyperparameters tuning and training, the neural network

proposed has reached an overall accuracy of 80.1%, which is a promising

result, as it has been obtained on a huge dataset.
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1 Introduction

Nowadays, the health world is experiencing a never seen

growth of collected data about patients and their clinical

history, either those being acquired during care path but

also during the entire span of their lifetime (Stead, 2018).

Recent years saw the rise of new monitoring techniques,

higher computational resources at lower costs, novel, and

more powerful computational methods to extract

parameters from more accurate and precise measurements.

The presence of a large amount of new information generated

at a consistent high rate, enforces the idea that medicine

procedures could effectively improve their effectiveness by

embedding the processing of such amount of recorded data

(Hinton, 2018).

From a historical perspective, statistical analysis partially

addressed this expectation by providing population

classification and paving the way for the prediction of

pathological events at least in terms of macro groups of

subjects. The derived rules of inference were used to

automate the medical reasoning process such as in the case

of Linear Regression which represents a striking example of

machine learning algorithm widely used in data analysis.

Machine learning (ML) methods can be considered a subset

of AI techniques, characterized by the peculiar capacity to learn

from huge amount of data as available for health-related

applications. Such very large datasets are almost impossible to

be analyzed by means of standard statistical methods. On the

opposite, predictive models inspired by AI, can be learned on

high dimensional datasets including many features (Naylor,

2018). Fetal monitoring during pregnancy by means of

cardiotocography (CTG) and echography represents a good

benchmark for ML methods, because it comprises a large

amount of data coming both from signals and images.

In this paper we will focus on Fetal Heart Rate (FHR) signals,

collected through CTG exams to perform a dichotomic

classification (normal vs pathological fetuses) by means of a

hybrid neural network architecture consisting of a Multilayer

Perceptron (MLP) in parallel with a Convolutional Neural

Network (CNN).

1.1 Brief history of CTG analysis

As a matter of fact, in developed countries, all mothers are

submitted to medical examinations to monitor fetal wellbeing

throughout pregnancy. Although most pregnancies proceed

physiologically, complications affect approximately 8% of the

total ones (4 Common Pregnancy Complications | John

Hopkins Medicine, 2018). These might arise due to adverse

mother’s health conditions, thus leading to various medical

issues, further impacting the health of both the mother and

fetus. The negative impact on the fetus health is usually

referred to as “fetal distress”, which is strictly linked to

alterations in the FHR signal.

The most employed diagnostic examination in the clinical

practice is Cardiotocography (CTG). Such examination records

simultaneously Fetal Heart Rate (FHR) and uterine contraction

signals (TOCO). Conventional CTG started to be used since the

1970s as a non-invasive method to monitor fetal condition by eye

inspection of both FHR and uterine contractions tracings

(Hammacher and Werners, 1968).

The introduction of CTG considerably decreased fetal

mortality during labor, but it did not improve the diagnostic

performance as regards fetal morbidity, in particular during the

antenatal period, mainly due to the qualitative examination of the

tracings. The considerable inter and intra-observer variability

and the inability of the human eye to extract quantitative

information from the FHR signal played a key role

representing the real weakness of the method (Ayres-de-

Campos et al., 1999). Moreover, attempts made so far to

interpret the tracings, according to various guidelines, did not

provide the desired results (Ayres-de-Campos and Bernardes,

2010).

Analysis of CTG tracings received a boost since the early

1980s with the computerized CTG, which allowed to

quantitatively reproduce the standard analysis method based

on eye inspection of CTG signals time course (Visser et al.,

1981). However, this was not enough to reach a satisfactory

assessment of fetal wellbeing, although it eliminated intra and

inter subject variability. The reliability of such approach has been

limited for long time using basic time domain analysis,

considering linear parameters only.

On the other hand, it has been observed that FHR changes

anticipate and can predict fetal distress as well as adverse

conditions before the insurgence of any other recognizable

symptom (Hoyer et al., 2017). In this context, more

sophisticated FHR Variability (FHRV) investigations have

been proposed, stressing the importance of considering

multiple parameters to assess fetal state (Van Geijn, 1996).

Moreover, even frequency analysis parameters started to be

used for quantifying fetal cardiovascular control mechanisms

as it happened for adults (Malik et al., 1996).

A further development was introduced with the application

of non-linear methods to biological time series, which can

investigate the geometric and dynamic properties of the FHR

signal. Entropy estimators (Pincus, 1991), complexity indices

(Lempel and Ziv, 1976) as well as wavelets (Daubechies, 1990)

and other nonlinear related parameters were applied with the aim

to improve the information enhancement from the FHR (Pincus

and Viscardo, 1992; Ferrario et al., 2007; Spilka et al., 2012). Such

techniques allowed to describe and understand complex

physiological control mechanisms thanks to novel available

tools. A review of the most used nonlinear indices applied to

FHR was recently published by Ribeiro et al. (Ribeiro and

Montero-Santos, 2021). These nonlinear indices were added to
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more traditional signal processing parameters developed in time

domain such as the ones derived from classical analysis in time

domain: Short- and Long-Term Variability (STV and LTV),

Delta and Interval Index (II) as proposed by Arduini et al.

(Arduini and Rizzo, 1994).

1.2 Artificial intelligence in CTG analysis
(machine & deep learning methods)

The multiparameter approach aroused great interest, in

particular, in the evaluation of the onset of states of fetal

pathology. However, as the number of parameters increased,

even a multifactorial statistical analysis became very difficult to

be applied and researchers in the field of fetal monitoring started

to consider AI techniques. Several approaches have been

proposed in the literature since the introduction of the

computerized CTG analysis, which allows to quantify the FHR

behavior by means of both linear and non-linear aspects. These

aspects consider the indices used in traditional diagnostics, novel

and advanced regressors coming from quantitative frequency

analysis, nonlinear parameters, and are integrated with maternal

information. The different sets of features are used for the

classification of the occurrence of pathological states or simply

for the assessment of the maintenance of the healthy condition.

The results strongly depend on the number of cases, the used

database, the considered features and the performance of the

classifiers

Fergus et al. (Fergus and Hussain., 2017) utilized Machine

Learning models to classify caesarean section and normal vaginal

deliveries based on cardiotocographic traces. In this study 552 FHR

signal recordings, of which 506 controls and 46 pathological, were

used as dataset, from which features like baseline, accelerations,

decelerations, Short-TermVariability (STV) andmany others have

been extracted. The models adopted in this paper are multi-Layer

feedforward neural network, Fisher’s Linear Discriminant Analysis

(FLDA) and Random Forests (RF).

These methods, based on predictive learning classifiers, are

known to suffer from the limitation of relying on the extraction of

complex hand-crafted features from the signals. Therefore,

research in this field has been moving in the direction of deep

learning techniques. Petrozziello et al. (Petroziello and Jordanov,

2018) make use of raw signals from Electronic Fetal Monitoring

(EFM) to predict fetal distress. They fed a Long Short-Term

Memory (LSTM) and a CNN network with both FHR and UC

signals, reaching a predictive accuracy of respectively 61% and

68%. It is worthnoting that their dataset consisted of

35429 recordings, but contained 33959 healthy newborns, while

only 1470 compromised, resulting to be strongly unbalanced.

Iraji et al. (Iraji, 2019) explored other soft computing

techniques to predict fetal state using cardiotocographic

recordings. Neuro-fuzzy inference system (MLA-ANFIS),

Neural Networks and deep stacked sparse auto-encoders

(DSSAEs) were implemented. Iraji used a limited dataset

composed of 2126 selected recordings that were divided in

three classes: 1655 normal, 295 suspect, and 176 pathologic.

On the full dataset, the best performing approach was deep

learning with an accuracy of 96.7%, followed by ANFIS that

reaches an accuracy of 95.3%.

Zhao et al. (Zhao et al., 2019) used FHR signals transformed

into images by using Continuous Wavelet Transform. Their

models consist of an 8-layer Convolutional Neural Network

(CNN) with a single Convolutional Layer. Their dataset was

the open-access database (CTU-UHB), with 552 intrapartum.

FHR recordings, containing a noticeable percentage (about

20%) of scalp electrode recordings. Their model reaches a 98.34%

of accuracy with an AUC of 97.82%.

More recently, Rahmayanti et al. (Rahmayanti et al., 2022)

propose a comparison between MLmethods for the classification

of fetal well-being using 21 attributes from the measurement of

FHR and UC. They report excellent levels of accuracy. The

dataset used was obtained from the University of California

Irvine Machine Learning Repository, which is a public dataset.

It consisted of 2126 data on pregnant women who are in the third

trimester of their pregnancy collected through the system Sys

Porto. In their study, the application of deep learning methods

did not produce satisfactory and improved results compared to

the ML approach The authors consider that using a more

representative db and perfecting the set of variables can

improve performance.

The contribution of Su Liu et al. (Liu S et al., 2021) stresses

the importance of integrating echo images with

cardiotocographic data for improving the classification of

fetal states. The goal of the study was to improve the

feasibility and economic benefits of an artificial intelligence

based medical system when Doppler ultrasound (DUS)

imaging technology are combined with fetal heart detection

to predict the fetal distress in pregnancy-induced

hypertension (PIH).

Finally, the review by Ki Hoon Ahn, et al. (Ahn and Lee.,

2022) presents a comprehensive overview of the possible

application of AI, DL and ML in Obstetrics for the early

diagnosis of various maternal-fetal conditions such as preterm

birth and abnormal fetal growth. The paper purpose was to

review recent advances on the application of artificial

intelligence in this medical field. The paper summarizes in

table form the main characteristics of the different studies

using AI, ML, DL methods. From this work we understand the

pervasiveness in the field of fetal medicine of AI

methodologies. There is also a perception of the complexity

of the work still to be done to build reliable and validated

classification systems. The data shown shows the great variety

in terms of applications and the number of data collected/used

that define the final performance of the analysis tools.

As a general remark, it is possible to notice that the global

accuracy and performance of AI methods for perinatal medicine
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so far published in the literature are almost inversely

proportional to the number of cases: the best results are

obtained with limited and selected datasets.

In fact, themain limitation imposed by deep learning techniques

is the huge number of data needed to train the neural architectures.

Hence, the use of an inadequate number of records could lead to an

overestimation of the generalization capabilities of the model.

In the present work we propose a neural model with two

branches consisting respectively of an MLP network and a

Convolutional Neural Network (CNN). This neural architecture

receives heterogeneous input data, i.e., a set of parameters and

images. The aim is to exploit the neural network generalization

capacity by integrating FHR quantitative regressors, known to

summarize the pathophysiological condition of the fetus, (either

in time, frequency, and non-linear domains) with some new features

implicitly learned from images, consisting in various representations

of the raw FHR signal (time-frequency, recurrent patterns, etc.). A

further novelty in the field of fetal monitoring consists of using a

dataset containing 14,000 real cardiotocographic entries, with a

perfect balance between healthy and pathological subjects.

The framework proposed is depicted in Figure 1.

2 Methods

2.1 Database description and preparation

The FHR signals used in the present study were obtained

from ambulatory CTG recordings collected from 2013 to 2021 at

the ObGyn Department of the University Hospital Federico II,

FIGURE 1
Proposed framework for the present study. From the denoised 20 min FHR sequence a set of images and quantitative parameters are extracted
and fed to a CNN andMLP branch respectively. The outputs of these two typical neural networks are then concatenated in a singleMixed TypeNeural
Architecture for the classification task.
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Napoli, Italy, during standard antepartum non-stress

monitoring.

Each CTG exam was performed in a controlled clinical

environment with the patient lying on an armchair. The CTG

tracings were measured using Philips and Corometrics

cardiotocographs, equipped with an ultrasound transducer

and a transabdominal tocodynamometer. Raw signals were

provided by the cardiotocographic devices to the

2CTG2 software (Magenes et al., 2007), which stores both the

FHR and the Toco signals at a sampling frequency of 2 Hz.

Therefore, every minute of recording consists of 120 points for

each of the two signals. Each CTG exams lasted at least 60 min.

Each record was then classified and labelled by the medical

team as healthy or belonging to a specific pathological

group. Different numerical codes were associated to different

antenatal pathologies, thus making easy to extract recordings

belonging to the different categories from the whole DB.

The 2CTG2 software computes and automatically stores a set

of regressors describing the statistical characteristics of the

signals themselves, as described in (Magenes et al., 2007). The

whole cohort consisted of 9476 pregnant women with a total

number of 24095 CTG records.

The database was then cleaned and structured, by eliminating

records without valid annotations and/or missed anamnesis. This

procedure produced a clean version made of 17483 valid entries,

with 7733 healthy and 9750 pathological tracings.

Pathological group included tracings of subjects with different

diseases both of maternal and fetal origin, such as diabetes,

malformations, intrauterine growth restriction (IUGR), etc.

As the goal of the study aimed at the separation between

healthy and pathological fetuses, each entry of the dataset was

binary categorized. Recordings belonging to the physiological

pregnancy group (Normal) were denoted with 0 and those

presenting a disease condition (Pathologic) were denoted with 1.

At this point, the FHR signals were submitted to a pre-

processing procedure, as described in Section 2.2. On the basis of

the FHR quality in each recording, a balanced set of

14000 tracings was selected (7000 normal and

7000 pathological). Thus, our final dataset contains a quite

large number of fetal records, balanced by category.

These characteristics are fundamental as the training of most

AI algorithms requires large balanced structured datasets to

avoid polarized and inconsistent results which are both

weaknesses affecting deep learning method applications.

2.2 Signal pre-processing

In clinical practice, the FHR signal is recorded using an

ultrasound probe placed externally on the abdomen of the

pregnant woman. Movements produced by the opening and

closing of the fetal cardiac valves represent the information

content of the United States signal. By an algorithm based on

the autocorrelation function, the firmware of the CTG monitors

reconstructs with good accuracy the occurrence of the fetal beats

providing the FHR signal (Lawson and Belcher, 1983).

However, there are several factors that can affect the

measurement of FHR, such as the movement of the mother

and fetus, the displacement of the transducer till events in the

external clinical environment. This can result in artifacts and

signal losses which are the major sources of noise in the fetal

signal. Therefore, the main goal of the pre-processing phase is to

reduce these disturbances that worsen the successive phases of

the analysis of the signals. Signal intervals with losses having a

duration of less than 15 s, were removed through linear

interpolation procedures. Losses of longer duration instead,

were completely removed from the signal.

To avoid polarizations induced by the difference in the length

of the FHR sequences, we decided to use sequences of exactly

20 min each, corresponding to 2400 points. Even in this subset,

the intervals with an excessive level of corruption by noise and

with signal loss were removed from the dataset. Figure 2

illustrates an example of a raw 20-min signal before

correction (a) and after denoising (b).

Once clean recordings were available, the system was ready to

extract the parameters of interest (detailed description in Section 2.3).

All the pre-processing steps have been implemented in

MATLAB 2021a (The Math Works, Inc.).

2.3 Feature extraction

With the intent of feeding the MLP branch with a set of

quantitative regressors describing the statistical characteristics of

FIGURE 2
(A) original raw FHR signal before pre-processing (B)
denoised FHR signal after pre-processing.
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recorded signals, we considered a set of parameters for each of the

20 min split and processed FHR signals in our dataset.

Among the features calculated from the FHR signal, the

subgroup that constitutes the selection of the ones included in

the analysis, was made based on the literature study. This was

followed by a process of feature selection and correlation

analysis, starting from a wide group of more than

30 regressors, commonly used in fetal monitoring, and

known to provide pathophysiological meaning related with

the control mechanisms of heart. In particular, we decided to

include in our study all the parameters evaluated in (Signorini

and Pini, 2020), which provided good results in the

classification of Normal and IUGR fetuses, although with a

small dataset.

The final set consists of 15 quantitative parameters. The

parameter set includes 4 linear parameters describing signals

in time domain, namely: DELTA, Interval Index (II), Short-

Term Variability (STV), Long-Term Irregularity (LTI)

computed as described in (Arduini and Rizzo, 1994),

3 linear parameters related to frequency domain signal

content i.e., Low Frequency (LF), Movement Frequency

(MF), High Frequency (HF) as described in (Signorini

et al., 2003) and the complex, non-linear parameter

Approximate Entropy (ApEn) (Signorini et al., 2003).

These parameters were automatically extracted by the

2CTG2 software. Moreover, we also included the FHRB

that is the mean value of baseline, extracted with a

modified version of Mantel’s Algorithm (Mantel and van

Geijin, 1990), the ratio in the power spectrum bands (LF/(MF

+ HF), the number of small accelerations (>10 bpm

and <15 bpm for 15 s), the number of large accelerations

(>15 bpm for 15 s), the number of decelerations (>20 bpm

for 30 s or >10 bpm for 60 s) (Arduini and Rizzo, 1994). Two

more indices were considered as input values for the MLP

branch: the Gestational Week and Mother’s age.

This parameter set covers most of the information the FHR

signal contains as it takes into account time domain changes,

frequency domain linear components and complexity signal

characteristics associated to nonlinear dynamic evolution.

Since the considered parameters have different scales, before

providing them as inputs to the MLP, we applied a normalization

procedure by scaling all parameters in the range 0–1 using the

min-max normalization.

2.4 From FHR signal to images

The major goal of our approach was to exploit the implicit

ability of neural networks to learn complex features directly

from the available data, without summarizing them by means

of the statistical regressors described in Section 2.3. Thus, in

parallel to the MLP branch we created a convolutional neural

network (CNN) branch because CNNs have already shown

great abilities in extracting important features from images

and in image classification tasks (Krizhevsky et al., 2012).

Signal to image transformations are becoming more and

more common since the recent successes got by deep learning

in the field of computer vision.

Thus, we decided to encode the denoised FHR signals,

obtained after preprocessing, into a set of images representing

the FHR behavior by means of various computational

transformations. In other words, the convolutional branch

exploits the CNN’s ability to analyze two-dimensional objects

(images) by encoding the FHR signal information content in a

2D domain.

For our purpose we decided to use eight transformation

techniques which are represented in Figure 3, with the same

fictious “parula” colormap, and briefly described in the

following subsections, to allow the system to automatically

grasp different aspects about the nature of the FHR signal

from the different images provided.

The choice of the particular set of techniques employed to

encode the FHR signals into images has followed an in-depth

literature search. Our intent was to exploit the intrinsic capacity

of CNNs to automatically select the most relevant features,

starting from the images provided as input. For that aim we

selected a set of transformation techniques to obtain a group of

images that could allow a description of the FHR signals, from

different points of view, as much complete as possible. To

provide a time-frequency view of FHR tracings, both

spectrograms and scalograms were considered. Scalograms

represent the analog to power spectrums when dealing with

wavelet transforms; they generally provide a better time

localization for rapid, high frequency events and a better

frequency localization for low-frequency, longer-duration

events. However, since the best time-frequency representation

depends on the specific application, both spectrograms and

scalograms were included in our study. The use of scalograms

to encode FHR tracings into images, used as inputs for a CNN

net, were already proposed in the work by (Zhao et al., 2019).

However, their dataset was limited to 552 records (of which

447 normal and 105 pathological), so that a process of data

augmentation was necessary to obtain a sufficient number of

records for the training of the proposed neural model.

Moreover, persistence spectrums were included in our

study, since they provide information about the persistence

of a certain frequency in a signal during its evolution.

Together with the aforementioned techniques, which are

used to obtain time-frequency representations of signals,

other methos were employed to explore different aspects of

FHR tracings, such as their evolutional dynamics. Among

these, Markov Transition Fields were taken into account. The

latter allow to obtain a visual representation of the transition

probabilities, for each time point in the sequence, that

maintains their sequentiality, in order to preserve

information in the temporal dimension.
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To explore the presence of recurrent patterns or

irregular cyclicities in the FHR tracings, recurrence plots

were also considered, as they provide visual representations

that reveal all the times when the phase space trajectory of a

dynamical system visits roughly the same area in the phase

space.

Another transformation technique that we included in our

work is Gramian Angular Field, which provides a description of

the temporal correlation structure of a time series, through the

use of a polar coordinate system.

Markov Transition Fields, Recurrence Plots and Gramian

Angular Fields have already been employed as methods to

transform time series into images, as illustrated, for example,

in the work from (Wang and Oates, 2015). However, none of the

studies in the literature reports the use of these techniques to

encode FHR tracings.

The different transformations were applied to encode each

20 min of clean FHR signal into corresponding images, as

illustrated from Section 2.4.1 to 2.4.6.

Even in this case, the images generated through the different

methods were characterized by different scales and were so

mapped in [0,1] range through min-max normalization.

Moreover, all images so far obtained, were reduced in size to

a dimension of 64 × 64 × 1.

Signals to images encodings were implemented by using the

software MATLAB 2021a (The Math Works, Inc.).

2.4.1 Continuous Wavelet Transform
The wavelet transform (WT) (Daubechies, 1990) is a

mapping from L2(R) → L2 (R2), with superior time-frequency

localization as compared to the Short Time Fourier Transform

(STFT). This characteristic opens up the possibility of a

multiresolution analysis.

WT has been extensively employed in biomedical

engineering to analyze non-stationary and nonlinear signals

over the last decades. CWT presents great abilities, such as its

flexible capacity to extract general and fine-grained feature

information from the input signal.

FIGURE 3
Examples of images obtained through the different transformations applied to a 20-min FHR signal. (A)Wavelet Transform, (B)GASF, (C)GADF,
(D) Markov Transition Field, (E) S, (F) R, (G) Power Spectrogram, (H) Persistence Spectrum.
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Continuous Wavelet Transform (CWT) is a formal tool that

provides a hyper-complete representation of a signal by

performing the convolution of a signal with a rapidly

decaying oscillating finite-length, waveform, called mother

wavelet, whose translation and scaling varies continuously.

The result of these convolutions is a series of coefficients,

obtained for each time point, that are used to create a 2D

representation of the signal, called scalogram. The x-axis

coincides with the time axis and the y-axis with the scaling

factor of the mother wavelet.

Each point of this 2D map represents the intensity of the

corresponding (associated) coefficient and it is shown using a

particular colormap.

More detailed information about the mathematics behind

this approach can be found in Supplementary Appendix SA.

The primary reason for applying the CWT in this research is

that the CWT can provide a better method than others for

observing and capturing the local characteristic information

which is hidden in the FHR signal both in time and frequency

domains.

An example of image obtained by applying the CWT to

20 min FHR signal of our DB is shown in Figure 3A. The yellow

portions in the image represent the coefficients with the higher

intensity values while the blue portions define the coefficients

with the lower intensities.

2.4.2 Gramian Angular Field
Gramian Angular Field (GAF) (Wang and Oates, 2015)

generates an image, obtained from a time series, which shows

the temporal correlations between each time point in the

time signal. GAF images represent a time series in a polar

coordinate system instead of the typical Cartesian

coordinates.

GAF images depict the relationship between every point and

each other in the time series, that is, it displays the temporal

correlation structure in the series. The greatest advantage of GAF

is that it can preserve temporal dependencies and leading to

bijective encodings.

It is possible to obtain two different kinds of GAF, i.e., the

Gramian Angular Difference Field (GADF) and the Gramian

Angular Summation Field (GASF).

The details for obtaining GADF and GASF are illustrated in

detail in Supplementary Appendix SB. Figure 3B and Figure 3C

respectively report an example of a GASF and a GADF Gramian

Angular Difference Field) images, obtained from an FHR signal

of 20 min of our dataset.

2.4.3 Markov Transition Field
Markov Transition Field (MTF) (Wang and Oates, 2015)

provides an image which is obtained from a time series. The

image contents represent a field of transition probabilities for a

discretized time series. Given an n-length time series, MTF is a n

x n matrix containing the probability of a one-step transition

from the bin for xk to the bin for xl, where xk and xl are two points

in the time series at arbitrary time steps k and l.

To make the image size manageable and the computation

more efficient, we reduced the MTF size by averaging the pixels

in each non-overlapping m × m patch, that is we aggregate the

transition probabilities in each subsequence of length m together.

More details about the construction of aMTF can be found in

Supplementary Appendix SC. Figure 3D shows an example of an

MTF image obtained from a 20 min FHR sequence belonging to

the dataset used in our work.

2.5 Recurrence plot

Recurrence plots (RP) were introduced as a visualization tool

to measure the time constancy of dynamical systems (Wang and

Oates, 2015).

Natural processes can have distinct recurrent behaviors like

periodicities (as seasonal cycles) or irregular cyclicities. A RP,

generally defined as R, depicts all the time instants when the

phase space trajectory of a dynamical system visits the same area

in the phase space. A recurrence of a state at time i at a different

time j is marked within a two-dimensional squared matrix where

both axes represent time.

A RP can be generated by first computing a distance matrix S

that contains each distance from one point in the time series with

each other and then applying a threshold ε to binarize the values.
An example of S and R images obtained from an FHR series

included in our dataset is shown in Figure 3E, F, respectively.

More details about the construction of S and R can be found

in Supplementary Appendix SD.

2.6 Power spectrogram

A power spectrogram (PS) (Sawa et al., 2021) is a visual

representation of the frequency spectrum of a signal (y-axis)

as it varies with time (x-axis). The most common way to

show a spectrogram is using a heat map which uses a system

of color-coding to represent different intensity values.

Given a time series, we can estimate spectrograms withmethods

based on Fourier transform (FT) or by using filter banks. Our choice

was to adopt a FFT approach. This method splits data into chunks,

which usually overlap, and proceed to compute the Fourier

transform of each chunk to calculate the relating frequency

spectrum magnitude. Each vertical line in the image corresponds

to a chunk, a measurement of magnitude versus frequency for a

specific moment in time. These so-called spectra are then put

sequentially to form the image. Hence, given a time series s(t), to

retrieve the image we need to apply a short-time Fourier transform

(STFT) on the signal s(t) and window width ω (see Eq. 10).

spectrogram(t,ω) � |STFT(t,ω)|2 (1)
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The spectrogram of a 20 min FHR signal from the DB used in

this work is shown in Figure 3G.

2.7 Persistence spectrum

The persistence spectrum of a signal is a time-frequency

representation that shows the percentage of time a given

frequency is present in a signal.

The persistence spectrum is a histogram in power-

frequency space. The longer a particular frequency persists

in a signal as it evolves, the higher its time percentage and thus

the brighter or “hotter” its color in the display.

The calculation of the persistence spectrum is obtained by

first computing the spectrogram for a time segment. After

that, power and frequency values are partitioned into 2-D

bins. For each time value, a bivariate histogram of the

logarithm of the power spectrum is computed. For every

power-frequency bin where there is signal energy at that

instant the corresponding matrix element is increased by

one. The persistence spectrum is obtained through the

computation of the sum of all the histograms related to

every time value. The image obtained presents the

Frequency (Hz) on the x-axis and the Power Spectrum

(dB) on the y-axis. Figure 3H shows an example of

Persistence Spectrum extracted from an FHR signal

belonging to the dataset used in our study.

2.8 Neural network architecture

As reported at the beginning of the Methods section, the core

idea was to design a neural network capable of dealing with

heterogenous data, i.e., a set of scalar values summarizing a

signal processing pipeline and a set of images which represent

the whole FHR signal in different domains (time-frequency,

recurrent periodicities).

Our aim is to integrate the information automatically grasped

by two connected branches, each of which is provided with a

different kind of input (i.e., images and arrays of values).

This type of approach combines parameters already known to

provide information about the physiologicalmechanisms responsible

of the FHR signal, with other characteristics obtained from an

implicit understanding made by the model itself. More precisely,

the network we designed was fed with an array of 15 quantitative

regressors and a set of images, obtained from each FHR sequence of

2400 samples (20 min length, as reported in the previous sections).

The proposed neural architecture includes two branches: an

MLP and a CNN. Our purpose was to exploit the ability of CNNs

to automatically extract useful features from image data to enrich

the information provided by the set of quantitative parameters

fed to the MLP branch, which is the most employed architecture

when dealing with static data.

The final model was obtained after testing different

combinations of layers and parameters for both MLP and

CNN branches. We decided to bring together the MLP and

CNN branches that individually provided the best results in

terms of classification accuracy.

The specifics for the combined CNN + MLP model are listed

below.

2.9 MLP branch

Input layer: composed of 15 neurons, one for each

quantitative parameter passed in input. These neurons are

fully connected to the ones of the first hidden layer.

Hidden layer 1: Composed of 500 neurons with ReLU

activation function, followed by a Dropout layer with a

probability of 0.4, to avoid overfitting.

Hidden layer 2: Composed of 250 neurons with ReLU activation

function, followed by a Dropout layer with a probability of 0.4.

Hidden layer 3: Composed of 150 neurons, with ReLU

activation function. L1 and L2 regularization penalty is

applied. The value for L1 is set to 10–5, for L2 is 10–4.

Hidden layer 4: Composed of 50 neurons, with ReLU activation

function followed by a Dropout layer with a probability of 0.4.

Output layer: The 50 nodes of the fourth hidden layer are

fully connected to the 2 last neurons of the output layer, with

Softmax activation function.

2.10 CNN branch

Input layer: The CNN input layer receives as input an array

64 × 64 × 1 x n, where n stands for the number of images fed to

the net. The array is created by concatenating n images on the

fourth dimension, with n = 1 . . . 8. The images building up the

input array are the ones described in Section 2.4.

Convolutional 2D Layer: The input layer nodes are

convoluted by using 16 filters of 5 × 5 kernel, with no

padding and ReLU activation function. A Batch

Normalization layer is then used to re-scale and recenter the

input layer to make the network more stable and faster.

Max Pooling 2D Layer: The first convolutional layer is

followed by a Max Pooling Layer with pool size 2 × 2. The

pooling operation reduces the eigenarrays of the convolution

output and the number of parameters, so it can lower the model

complexity and speed up the computation while preventing

overfitting.

Convolutional 2D Layer: The second convolutional layer is

formed by 32 filters with 5 × 5 kernels, ReLU activation function

and no padding, followed by a Batch Normalization layer.

Max Pooling 2D Layer: After the second convolutional layer,

a Max pooling Layer with pool size 2 × 2 is added. Dropout is

applied with probability 0.8.

Frontiers in Bioengineering and Biotechnology frontiersin.org09

Spairani et al. 10.3389/fbioe.2022.887549

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.887549


Flatten Layer: To unroll the output of the convolutional

layers, a Flatten layer is applied.

Dense Layer: Each neuron of the Flatten Layer is fully

connected to the 64 neurons of the successive Dense Layer

with ReLU activation function, followed by a Batch

Normalization layer. A Dropout with 0.8 rate is then applied.

Dense Layer: The 16 neurons with ReLU activation function

are fully connected to the last 2 neurons of the output layer.

Output Layer: Consists of 2 neurons, one per class, with

Softmax activation function.

2.11 Concatenation of MLP and CNN
branches

The outputs of MLP and CNN branches are then

concatenated to form a single output array passed to the

subsequent fully connected layers, through a concatenation

layer. From a structural viewpoint, the terminal neurons of

MLP and CNN branches are connected to form a flatten layer

so that the input to the final set of layers is the output of the layer

where MLP and CNN branches are concatenated. This one is

followed by a Dense layer of 128 neurons with ReLU activation

function. The nodes of the Dense layer are then fully connected to

each of the 2 neurons of the output layer, which use a Softmax

activation function. These ones give back the probability of the

input passed to the artificial network belonging to one of the

2 possible classes (healthy or unhealthy fetus).

2.12 Training and testing

The dataset used to train and test the performances of our

proposed neural classifier consists of 14′000 labelled examples, of

which 7′000 correspond to healthy fetuses and 7′000 to

pathological ones. Each example consists of a set of

15 quantitative parameters and a group of images.

80% of the dataset (i.e., 11′200 data) was used to train the

neural network, while 20% (i.e., 2800 data) was used for testing

the performances of the trained net.

The neural model setup was carried out by using Python

3.7 and for the training phase the online virtual machines

provided by (Kaggle, 2021) were used (https://www.kaggle.

com/).

We adopted the Adam optimizer with a learning rate of

10–4 and a decay rate of 10–4/200 for the training of the network.

Binary-cross-entropy was designed as the loss function to be

optimized. Early Stopping technique, with a patience of 2, was

employed as an overfitting prevention technique. We always

analyzed the relation between the accuracy and loss curves

obtained in the different training sessions, in order to verify

that overfitting was not occurring. For example, Figure 4 shows

the accuracy (a) and loss trends (b) on the training examples for

the CNN + MLP net, as functions of the epochs, compared with

the accuracy and loss curves on the validation examples. The use

of Early stopping, interrupts the training phase at the 90th epoch,

preventing the model from excessively adapting to the training

data. The crossing point of the red dashed lines in both diagrams

of Figure 4 identifies the point where the training is interrupted

by the stop criterion.

3 Results

As reported in the methods section, we separately evaluated

the performance of MLP and CNN branches and compared them

with the ones obtained by the CNN+MLPmixedmodel, in order

to state if the latter overperformed respect to MLP and CNN

branches singularly.

To provide robustness to the analysis, we repeated the training

process 30 times for each of the considered nets. After each training

phase was completed, accuracy (ACC), sensitivity (TPR), specificity

(TNR), precision (PPV), negative predictive value (NPV), false

positive rate (FPR), false negative rate (FNR), false discovery rate

(FDR) and Area Under the ROC Curve (AUC) were computed.

The definition of these metrics is reported in Supplementary

Appendix SE.

To infer significative statistical differences in terms of average

classification accuracy, between the three architectures proposed,

T-test was applied.

3.1 MLP branch

The MLP branch was fed in every trial with the selected set of

15 features, as described in Section 2.3. Themean accuracy reached by

the singleMLP, over the 30 train trials, on the 2800 test examples, was

75.5%, i.e., 2115 correct classifications against 685 misclassifications.

The average confusion metrics for the MLP branch is

reported in Table 1.

The average values, for the different performance metrics

computed for the model, are instead summarized in Table 2.

3.2 CNN branch

For what concerns the CNN branch, we firstly had to choose

which combination of images (see methods Section 2.4) provided

as input to the net, could lead to the best results. For that aim, we

tested all the different combinations of images, and for each of

them we trained the CNN a number of 15 times, computing the

classification accuracy at each step.

At the end of the process, we selected the combination of

images providing in average the highest accuracy. By looking at

the results achieved we can state that the most impactful images

are GADF, followed by PS and PSP.
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After selecting the most performing CNN architecture, we

trained the latter a number of 30 times and for each phase we

computed all the performance metrics, whose mean values are

summarized in Table 2. The overall accuracy obtained is 68.1%,

i.e., 1906 correct classifications against 894 misclassifications.

The confusion matrix for the CNN branch is summarized in

Table 1.

3.3 Combined model (CNN + MLP)

After evaluating MLP and CNN branches separately, we

tested the performances of the combined CNN + MLP model,

that concatenates MLP and CNN nets in a single mixed

architecture.

As for the single CNN case, we had to select the top

performing combination of images to feed the CNN branch of

the combined model. Even in this case, the most impactful

images have been proved to be GADF, PS and PSP.

After selecting the most suitable inputs for the CNN branch

of the combined model, we repeated the training phase of the

CNN + MLP net 30 times.

The confusion matrix obtained for the trained CNN + MLP

net on the 2800 data composing the test set is shown in Table 1,

while the average performance metrics obtained with the best

CNN + MLP model are summarized in Table 2.

FIGURE 4
CNN + MLP model: Accuracy curve on training and validation set vs epochs (a); loss curve on training and validation set vs epochs.

TABLE 1 Confusion Matrix for the MLP, CNN, CNN +MLPmodels obtained on the 2800 examples of test. TP = True Positive, TN = True Negative, FN =
False Negative, FP = False Positive.

MLP CNN CNN + MLP

Predicted
pathological

Predicted healthy Predicted
pathological

Predicted healthy Predicted
pathological

Predicted healthy

True pathological TP = 998 FN = 427 TP = 681 FN = 596 TP = 960 FN = 431

True healthy FP = 258 TN = 1117 FP = 298 TN = 1225 FP = 109 TN = 1300

TABLE 2 Performance metrics for the MLP, CNN, CNN + MLP models. It reports: True Positive Rate [TPR = TP/(TP + FN)], even called Recall or
Sensitivity, True Negative Rate [TNR = TN/(TN + FP)] or Specificity, Positive Predictive Value [PPV = TP/(TP + FP)] or precision, Negative predictive
value [NPV = TP/(TP + FN)], fall out or false positive rate [FPR = FP/(FP + TN)], False negative rate [FNR = FN/(TP + FN)], False discovery rate [FDR = FP/
(TP + FP)].

Performance metrics

TPR TNR PPV NPV FPR FNR FDR AUC

MLP 0.7 0.81 0.79 0.72 0.18 0.29 0.2 0.76

CNN 0.53 0.80 0.69 0.53 0.19 0.46 0.3 0.67

CNN + MLP 0.69 0.92 0.90 0.75 0.08 0.31 0.1 0.81
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3.4 Comparison between MLP, CNN and
CNN + MLP models

A summary of the overall accuracy achieved by the different

models evaluated is reported in Table 3, while the corresponding

boxplot and ROC curves are illustrated in Figures 5, 6

respectively.

To prove significative statistical differences among the three

nets explored, T-test was applied to challenge the null hypothesis

(H0) of equality, in terms of average classification accuracy,

between the three models. With a level of significance of 0.01,

H0 was refused for every comparison performed.

From the observation of the obtained results, it appears how

the use of the convolutional branch alone does not allow to reach

an adequate classification accuracy, showing lower performances

than those obtained with the single MLP branch. However, the

results achieved with the combined CNN + MLP model show a

significant increase in the classification capacity of the model,

compared to the MLP and CNN architectures individually

considered. The combined CNN + MLP model, in fact,

reached an overall classification accuracy of 80.1%. This

corresponds to a total number of 2260 correct classifications

against 540 misclassifications.

The combined model proposed, hence, seems to be able to

exploit the good accuracy of the MLP to influence and boost the

performance of the CNN on the provided images, confirming

how the combined use of known quantitative regressors and

features, implicitly learnt from the neural model, could increase

the classification capabilities.

There is however to point out that the neural model realized

tends to better classify the signals related to healthy fetuses (FP =

109, FN = 431). In fact, the CNN-MLP model presents a high

specificity (TNR) of 92%, but its sensitivity (TPR) is of 69%. This

TABLE 3 Summary of overall accuracy achieved for the MLP, CNN and CNN + MLP models.

Mean accuracy (%) Number of correct
classifications

Number of wrong
classifications

MLP 75.7 2120 680

CNN 68.1 1907 893

CNN + MLP 80.1 2260 540

FIGURE 5
boxplots for the mean accuracy values reached, over the
30 replications of the training phase, for the 3 models compared,
i.e., MLP, CNN, combined CNN + MLP.

FIGURE 6
ROC curves for MLP, CNN and CNN + MLP combined neural
model developed.
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means that the proposed architecture misclassifies a signal

related to a healthy subject the 8% of times while misses the

classification 31% of times when dealing with a signal referred to

an unhealthy subject.

4 Conclusion

The possibility to identify early signs of fetal sufferance

antepartum still remains a dream in the Ob-Gyn management

of pregnancies. An accurate disambiguation between healthy and

suffering fetuses can allow obstetricians to intervene in a timely

manner and take appropriate actions to prevent permanent

damages to the fetus. Among the prenatal exams, the CTG

represents the major source of information on the correct

development of the fetus.

Despite the fast increase of the digital technology in medical

devices, in the clinical practice, the analysis of CTG signals, both

antepartum and during labor, is mostly carried out by visual

analysis of the tracings. This procedure is obviously affected by

significant inter-observer and intra-observer variability, which

often causes erroneous interpretations of real fetal conditions.

The introduction of computerized CTG analysis decreased

the qualitative and subjective interpretation of the CTG exam,

but didn’t lead to a reliable clinical decision-making strategy,

despite the great effort produced in the past 20 years for

extracting significant quantitative indices from the FHR signal.

Artificial Intelligence techniques, with a particular focus on

Deep Learning, represent a further tool to investigate the

information content of CTG tracings, although they need

huge datasets in order to provide reliable conclusions. As we

had available a considerable amount of annotated CTG exams,

we decided to approach the problem of classifying normal and

pathological fetuses by means of those methods.

The availability of a very large and structured database,

consisting of real labeled data that were collected in the same

clinical department, represents the first important aspect of this

work. This feature is difficult to find in the field of fetal

monitoring. It has made possible to exploit machine learning

and deep learning methods to the best of their abilities. In fact, it

is known that the classification power of AI methods is best

expressed only with large amounts of data, which was not allowed

until now for the analysis of the fetal heart variability signal.

A second factor is the correspondence between the

quantitative values of the parameters used for classification

and the fetal and maternal physiology. Each parameter we

have employed (and the 15-feature set is an example), can

contribute to the understanding of the physiological

mechanisms that controls fetal heart. These features make

readable and interpretable the data set in terms of control

developed by physiological systems.

The classification proposed in this paper benefits from the

information contained in these parameters. Therefore, it is

possible to formulate a classification between healthy and

pathological fetuses that is interpretable according to involved

pathophysiology, whose measurements take place through the

parameters extracted in the FHR.

We designed and implemented a neural architecture able to

deal with heterogeneous data, i.e., images and quantitative

parameters describing the statistical characteristics of the FHR

signal. The neural network consists of two branches, a MLP

receiving an array of 15 regressors and a CNN one fed with a set

of 64 × 64 images. The latter have been obtained through several

transformations (e.g., MTF, GADF, RP, etc.) applied to the pre-

processed denoised FHR signal.

To understand if the novel mixed-type architecture

overperforms the MLP and CNN branches singularly, we

compared the results obtained from the three neural

architectures in terms of overall classification accuracy. After

the hyperparameters’ optimization for each NNs, the MLP, CNN

andMLP-CNN architecture have been trained and tested on a set

of 14 K data (split in 80% for the training and 20% for the test).

The results obtained have shown that the MLP-CNN network is

the best performing architecture. Hence, with the best set of

hyperparameters, this mixed-type net achieved an overall

classification accuracy of 80.1%.

The major limitation of the Method still lies in the sensitivity,

which is not yet fully satisfactory. In fact, with the combined

model (CNN + MLP) the TPR reached is of 69%, that

corresponds to a probability of erroneous classification of an

unhealthy subject of 31%.

There is, however, to consider that unhealthy subjects

contained in the database and used for this work, are a

heterogeneous group, which includes several types of diseases:

intra uterine growth restriction (IUGR), metabolic alterations,

fetal malformations, and even maternal pathological conditions,

such as diabetes.

The decision to include all the different categories of disease

in the unhealthy class made it possible to balance the number of

healthy and unhealthy subjects with a sufficient numerosity to

allow the use of Deep Learning techniques. This could lower the

performance of our neural model, both in terms of accuracy and

specificity, since different pathologies could show different

behaviors in the FHR signals, reducing the classification

capacities and increasing the variability of FHR features.

These analyses must be considered as a starting point in the

direction of more complex studies, that look at the different

classes of pathologies separately, once the amount of data for

each pathology will reach an acceptable value for Deep Learning

methods.

Nevertheless, the obtained results are promising, since they

have been achieved by using a noticeable amount of clinical data,
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whose variability closely represents the real population. Although

this fact may reduce the classification performance, as compared

to other existing works, it can however increase the robustness

and the generalization ability of the model.

Further developments for this work include the search for

other techniques for converting the CTG signals into images, in

order to provide new kinds of inputs to the CNN branch. In

addition, more quantitative parameters, to feed the MLP branch,

will be investigated. Moreover, other mixed-type neural

architectures will be explored and will include other types of

neural branches such as Recurrent NN or Temporal CNN.
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