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Single-cell techniques have become more and more incorporated in cell biological
research over the past decades. Various approaches have been proposed to isolate,
culture, sort, and analyze individual cells to understand cellular heterogeneity, which is at
the foundation of every systematic cellular response in the human body. Microfluidics is
undoubtedly the most suitable method of manipulating cells, due to its small scale, high
degree of control, and gentle nature toward vulnerable cells. More specifically, the
technique of microfluidic droplet production has proven to provide reproducible single-
cell encapsulation with high throughput. Various in-droplet applications have been
explored, ranging from immunoassays, cytotoxicity assays, and single-cell sequencing.
All rely on the theoretically unlimited throughput that can be achieved and the
monodispersity of each individual droplet. To make these platforms more suitable for
adherent cells or to maintain spatial control after de-emulsification, hydrogels can be
included during droplet production to obtain “microgels.” Over the past years, a multitude
of research has focused on the possibilities these can provide. Also, as the technique
matures, it is becoming clear that it will result in advantages over conventional droplet
approaches. In this review, we provide a comprehensive overview on how various types of
hydrogels can be incorporated into different droplet-based approaches and provide novel
and more robust analytic and screening applications. We will further focus on a wide range
of recently published applications for microgels and how these can be applied in cell
biological research at the single- to multicell scale.
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INTRODUCTION

The vast complexity of the human body is gradually being unraveled. However, the more we discover
about various types and sub-populations of cells, the more questions are often raised. Furthermore,
the complex web of intercellular interactions they maintain makes fully understanding the depth of
biological processes and regulators challenging. Over the years, research has downsized by moving
from a tissue, to cell population, and to single-cell resolution, in order to grasp the most basic
interactions underlying systemic responses (Altschuler and Wu, 2010; Satija and Shalek, 2014). This
miniaturization has not only allowed the reduction of noise in measuring systems but also allowed
more precise measurement, smaller sample sizes, and less reagent consumption. In addition, it has
broadened the view on how homogenous, cellular behavior within well-defined populations of cells,
really is. As technology advanced and cell behavior was studied at a smaller and smaller level, it
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became clear that cell populations displayed much more
heterogenous behavior than previously thought (Woodland
and Dutton, 2003a; Gordon and Taylor, 2005; Villani et al.,
2017). This allowed for characterization of vast amounts of
sub-populations of cells with specific specializations. By
looking at individual cells instead of populations, the masking
cloud of averaged measurements could be elevated, showing that
some cells are more potent at specific tasks than others (Dueck
et al., 2016). This way of looking at cellular heterogeneity could
explain the fact that cell-therapies are often less effective in vivo as
they are predicted to be in vitro, and often vary immensely
between subjects (Chattopadhyay et al., 2014; Satija and
Shalek, 2014). To fully dissect the complexity of cellular
heterogeneity and cell–cell interactions, reliable methods of
high-throughput single-cell research must be developed. The
developments in the field of microsystems and microfluidics
have proven to be a valuable tool in establishing such novel
approaches.

Since the rise of soft lithography (Xia and Whitesides, 1998),
microfluidics has been making major leaps forward with
increasingly complex device designs (Murphy et al., 2017;
Shinde et al., 2018; Jammes and Maerkl, 2020). Generally,
these have consisted of intriguing labyrinths of channels
connected to low-volume fluidic pumps. These designs allow
for very low sample sizes but high precision experimental setups,
which efficiently scales down but improves experimental control.
More importantly, the micrometer scale is ideal for physical
manipulation of cells using fluidics (Sims and Allbritton, 2007;
Shinde et al., 2018; Luo et al., 2019; Yeh and Hsu, 2019). The
relatively gentle nature of moving cells around with fluids puts it
at a high advantage over mechanical approaches. Nevertheless,
the production of these conventional microfluidic devices with
various capture chambers, wells, and often multilayered channels
can be tedious and generally the throughput is limited by the
device dimensions.

Droplet-based microfluidics uses relatively simple device
designs in which laminar flow under low Reynolds number
allows for fast, reliable, and reproducible droplet production
(Shang et al., 2017). These droplets, ranging from sizes in the
pico-to nanoliter scale can be used as a tool to encapsulate and
thus spatially control cells, similar to what capture chambers and
wells aim to do in conventional microfluidic devices. In droplets
however, the number of processed cells is only limited by the
available amount of reagent, as samples are continuously flushed
through the microfluidic device. This potential for theoretically
unlimited throughput together with flexibility and a huge range of
applications has allowed droplet-based microfluidics to rapidly
become a discipline of its own (Shembekar et al., 2016; Sinha
et al., 2018).

Even though variations exist, typical droplet-based approaches
for cell encapsulation utilize two phases of fluids. The dispersed
phase is a water-based cell suspension, and the continuous phase
is an oil. This approach has gained much interest as the focus of
cell biological research has shifted from studying cell populations
to conducting experiments with single-cell resolution (Matuła
et al., 2020). Droplet microfluidics has proven suitable to
encapsulate these single cells, bringing them from a “bulk” cell

suspension to a “single-cell” suspension where cells are separated
by water–oil interfaces. However, capturing cells in oil also makes
it very difficult to further influence, manipulate, measure, or
process them without breaking the emulsion and returning to the
“bulk” cell suspension (Luo et al., 2019).

Over recent years, the combination of hydrogel and
microfluidic droplets has been applied to maintain spatial
control over cells after de-emulsification or to provide cells
with a solid droplet environment (Zhu and Yang, 2017;
Kamperman et al., 2018; Mohamed et al., 2020). Various
hydrogels, gelation methods, droplet production techniques,
and cell types gave rise to large amounts of unique research
(Goy et al., 2019). This strong combination is utilized for a variety
of innovative single cell techniques, which can be applied to
in vitro analytical approaches (Figure 1). Here, we will discuss the
current state-of-the-art of single- and multicell droplet
techniques, and how these can be complemented with the use
of hydrogel. We will start with discussing the basic principles of
microfluidics and droplet formation and how commonly used
hydrogels can be integrated into this approach. We will then
discuss various microgel applications, starting with a single-cell
analysis and single-cell pairing and how these can benefit from
microgels, followed by the application of semi-permeable
hydrogel shells, and finishing with microgel coculture. We
believe recent advances in this field demonstrate that this
multifaceted combination will allow for promising new
applications, facilitate a high-throughput droplets analysis, or
provide more suitable culture conditions for adherent cells.

HYDROGEL DROPLETS

Microfluidics
Microfluidic devices for droplet production are commonly
produced using soft lithography of polydimethylsiloxane
(PDMS) (Xia and Whitesides, 1998). The technique has
persisted and remained relevant over years of research due to
its ease of use, low cost, and precision, which together allow for
fast prototyping of novel microfluidic designs. Such prototyping
has mostly been an advantage for complex microfluidic systems,
whereas for droplet production, the basics of device designs have
remained mostly the same. A generic droplet device consists of
two inlets for the continuous and the dispersed phase followed by
an outlet for collecting the produced emulsion (Figure 2A).
Inside the device, co-flow, flow-focusing, or T-junction
geometries ensure the controlled mixing of the two immiscible
fluids, which due to laminar flow produces highly homogenous
droplet sizes. The distribution of cells in the dispersed phase
follows a Poisson distribution (Collins et al., 2015), allowing
droplets to be tuned to contain multiple cells or approach single-
cell encapsulation. The concepts behind the fluid dynamics of
droplet formation have been extensively described previously
(Cubaud and Mason, 2008; Shembekar et al., 2016; Tawfik,
Griffiths; Zhu and Wang, 2017), and will therefore not be
discussed in detail.

When droplet volume and cell concentration are tuned
correctly, this can result in a cell distribution, which closely
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approaches single-cell encapsulation. Deviation from this
optimized point will result in either more empty droplets, or
more multicell droplets, as in compliance with Poisson

distribution (Collins et al., 2015). Single-cell research is
commonly used to deprive cells from cell–cell interactions and
discover their innate capabilities and potential for responding to

FIGURE 1 | Hydrogel microfluidic droplets: applications. From top-left clockwise: single-cell sequencing, pairing for cell interaction, pairing for cytotoxicity,
coculture, changing and measurement of mechanical properties, and selectively permeable hydrogel shells. Figure created using Biorender.

FIGURE 2 |Microfluidic droplet formation. (A)Generic emulsification device, two inlets for the continuous and dispersed phaseswhichmix at the channel intersection (pop-
out), droplets then continue flowing toward collection from outlet. (B) Transfer of alginate solution from a double-emulsion toward a CaCl2 solution causes gelation within 100 ms
(Martinez et al., 2012). (C)Microfluidic design utilizing pico-injection of CaCl2 after droplet formation point to prevent premature gelation of alginate solution (Ahmed et al., 2021).
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specific stimuli. When comparing droplet-based approaches to
well- or trap-based applications, the main advantage is the
potential for high-throughput, which is indispensable when
screening for rare cell behavior or sub-populations. In
addition, the oil–water interface ensures complete isolation
between cells, while in some well/trap-based microfluidic
approaches paracrine signaling cannot be ruled out (Guldevall
et al., 2016; Zhou et al., 2020). However, the absence of cellular
adhesion and the difficulty to manipulate cells when in oil–water
emulsion are inherent challenges of single-cell droplet
encapsulation. The addition of hydrogel in droplets to produce
microgels proves a double-edged sword, providing solutions to
both problems. Cellular adherence and mechanical cues can be
provided via biocompatible hydrogels providing a semi-solid
extracellular matrix-like environment (Dumbleton et al., 2016;
Hasturk and Kaplan, 2019; Tiemeijer et al., 2021). On the other
hand, the hydrogel can maintain spatial control over cells after
de-emulsification while allowing for diffusion and downstream
processing using analytes or other reagents (Leonaviciene et al.,
2020; di Girolamo et al., 2020; Yanakieva et al., 2020;
Chokkalingam et al., 2013).

Some variations of the basic droplet production approach are
needed when hydrogel is added to the dispersed water phase. The
implementation strongly depends on the type of hydrogel and
method of cross-linking. Droplet breakoff is dictated by the ratio
of viscosity between the continuous and dispersed phases
(Günther and Jensen, 2006). Thus, premature hydrogel
gelation, resulting in increased viscosity of the dispersed phase,
is detrimental for a consistent droplet size. Therefore, the type of
crosslinking dictates droplet formation and adjustments that
need to be made to device design. Commonly used types are
ionic cross-linking (Choi et al., 2007;Workman et al., 2007; Utech
et al., 2015; Ahmed and Stokke, 2021), photo-cross-linking (Zhao
et al., 2016; Mohamed et al., 2019; Nan et al., 2019), and thermo-
responsive cross-linking (Dolega et al., 2015; Yanakieva et al.,
2020; Tiemeijer et al., 2021; Zhang et al., 2021). By design, the
latter two do not require on-chip mixing of different aqueous
phases and can still be used in conventional device designs.
However, the first might require gelators to be mixed in,
which means an extra dispersed phase inlet is required for on-
chip mixing, just prior to or right after, droplet formation (figure
of various designs). Various types of hydrogels have been used in
droplet microfluidics, which can roughly be divided into natural
polymers and synthetic polymers (Table 1).

Hydrogels and Cross Linking
Natural Hydrogels
Natural polymers have the advantage of being natively
biocompatible and are generally cross-linked via relatively
mild gelation processes increasing cell survival. They form
structures that are very comparable to mammalian
extracellular matrix and thus ideal for harboring cells
(Gasperini et al., 2014).

Alginate is potentially the most used natural polymer to
produce microfluidic hydrogel droplets with. The brown
algae–derived polysaccharide has been favored due to its
biocompatibility (Lee and Mooney, 2012) and various

strategies for cross-linking. The polymer forms a hydrogel
either due to lowering of pH or in the presence of divalent
cations due to ionic interactions (Gurikov and Smirnova,
2018). These ionic interactions allow the alginate fibers to
form a supramolecular “Egg-box” structure (Braccini and
Pérez, 2001). In droplet applications, the latter is by far more
commonly used and often calcium is used for this as released in a
CaCl2 solution. This will result in extremely fast gelation, and
although it has been demonstrated that droplets can be produced
by on-chip mixing (Choi et al., 2007), this will generally result in
instant and uncontrolled gelation. Illustrative for this instant
gelation was the formation of “rain-droplet” shaped hydrogels
when alginate was retrieved from double-emulsions into a CaCl2
solution (Figure 2B) (Martinez et al., 2012). Therefore, other
strategies can be needed for on-chip droplet formation to ensure
constant low viscosity during droplet production. Recently,
Ahmed et al. demonstrated a unique device design which
produced alginate droplets following a conventional approach
but used on-chip pico-injection of CaCl2 solution to prevent
problems with premature gelation and obtain monodisperse
hydrogel droplets (Figure 2C) (Ahmed and Stokke, 2021).
Alternatives to CaCl2 are partially soluble or insoluble calcium
salts such as calcium sulfate (Kong et al., 2003) and calcium
carbonate (Tan and Takeuchi, 2007; Workman et al., 2007),
respectively. As these have lower solubility in water compared
to calcium chloride, gelation occurs slower, although this still
proves challenging to control (Kuo and Ma, 2001). A promising
approach comes in the triggered release of Ca ions from strong
chelators such as EDTA. Calcium–chelator complexes are mixed
with alginate solutions where the high chelator affinity prevents
direct gelation. By decreasing pH, calcium is released which
allows cross-linking. This approach proved suitable to
maintain stability of droplet formation while triggering
gelation directly on-chip (Shao et al., 2020), or at a later time
point by acidifying the continuous oil phase off-chip (Utech et al.,
2015). Adaptations of this approach utilize competitive chelator
kinetics (Bassett et al., 2016), aiming to have more control over
gelation dynamics and improved cell viability (Håti et al., 2016).
Alginate has a large pore-size of 5–150 nm (Martinsen et al.,
1989), which is dictated by the calcium concentration used for
cross linking. Although small molecules can diffuse in, large
protein diffusion can be limited (Tanaka et al., 1984), which is
most likely due to a combination of a non-homogenous pore size
on gelation surface, and protein charge at neutral pH (Smidsrød
and Skjåk-Bræk, 1990). This should be considered when
designing cell studies in alginate droplets. Although perfectly
biocompatible, alginate does not provide cells with adherence and
will, thus, have to be functionalized with, for example, Arg-Gly-
Asp (RGD)motifs (Yu et al., 2009), or be used in a composite with
adherent polymers (Xu et al., 2007; Dixon et al., 2014).

Another commonly used natural polymer is agarose, which is
like alginate derived from specific types of algae. Unlike alginate it
cross-links due to temperature changes and exhibits hysteresis
(Indovina et al., 1979). The polysaccharide dissolves at
temperatures around 90°C and cross-links due to hydrogen
bonds when cooled to around 35–50°C depending on which
type of algae was the source. The polymer chains form helical
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fibers which aggregate into a 3D supramolecular structure (Xiong
et al., 2005). Although these transition temperatures are not
suitable for cell applications, agarose can be methylated to
lower gelling temperature (Gu et al., 2017). Therefore, ultralow
gelling point agarose has proven very suitable for hydrogel
droplet encapsulation of cells (Chokkalingam et al., 2013;
Sinha et al., 2019; Yanakieva et al., 2020). With a gelling
temperature of 8°–17°C, it can be dissolved at high
temperatures but used to encapsulate cells safely at much
lower biological compatible temperatures, without premature
gelation. Gelation can easily be triggered by cooling down
anywhere between droplet production and droplet-
demulsification. Agarose droplets are especially useful for cell
processing after de-emulsification due to their stability and
relatively large pore-size, which is partially dependent on
polymer concentration (Narayanan et al., 2006). Their pore
size within the range of 100–600 nm facilitates diffusion of
virtually any soluble molecule including antibodies (~10 nm
(Reth, 2013)), which allows inflow of nutrients or fluorescent
markers for analysis. This property combined with their stability
at lower temperatures has facilitated a whole-droplet flow
cytometric analysis (Chokkalingam et al., 2013), and even
sorting (Fang et al., 2017; Yanakieva et al., 2020). Agarose is
inherently non-adherent to cells, and thus needs
functionalization with extracellular matrix molecules to obtain
cellular attachment in droplets (Karoubi et al., 2009).
Furthermore, agarose is non-degradable by mammalian cells,
and thus bacteria-derived agarose (Fu and Kim, 2010), or
production of degradable composite hydrogels (Zhang et al.,
2012), is needed to retrieve cells. This can be a limiting factor
when downstream cell recovery is required as reheating to above
the melting point will kill cells and destroy proteins of interest.

Although alginate and agarose are frequently used and offer
several desirable characteristics, they are not inherently cell-
adherent. Therefore, an alternative can be connective
tissue–derived hydrogels which contain peptide motifs
facilitating cell attachment. Collagen (Antoine et al., 2014) and
its derivative gelatin (Jaipan et al., 2017) are arguably the most
commonly used. Gelatin is obtained by breaking collagen down to
single-strain molecules (Kuijpers et al., 1999). Both yield thermo-
reversible hydrogels with transition temperatures within
biocompatible ranges. Uniquely, collagen will cross-link when
heated to physiological temperature (Xu et al., 2009), whereas
gelatin will cross-link when it is cooled below 35°C (Hellio and
Djabourov, 2006). As collagen is the main component of
extracellular matrix, these hydrogels are highly biomimetic and
often used in tissue engineering approach due to their
biodegradability (Antoine et al., 2014; Tondera et al., 2016). In
droplet microfluidics, Matrigel® is a commonly used
commercially available collagen-based hydrogel (Dolega et al.,
2015; Zhang et al., 2021). Below room temperature allows droplet
formation, and by simply bringing droplets to culturing
temperature, cross-linking occurs. This process is fully
reversible, allowing for cell retrieval. As gelatin-based
hydrogels will return to the liquid phase at culture
temperatures, these have routinely been chemically modified.
A commercially available gelatin-based hydrogel is GelMA,

which is enriched with methacrylate groups to facilitate UV-
triggered cross-linking (van den Bulcke et al., 2000; Sun et al.,
2018). These have allowed for both on-chip (Mohamed et al.,
2019; Nan et al., 2019) and off-chip (Zhao et al., 2016) gelation
and production of microfluidic droplets. A major downside of
collagen and gelatin-based hydrogel droplets is their tendency to
merge and aggregate after de-emulsification, as was observed for
both Matrigel® and GelMA. This makes downstream processing
after removal of the continuous phase very challenging.

Synthetic Hydrogels
Examples of synthetic polymers used in production of hydrogel
droplet microfluidics are poly(ethylene glycol) (PEG),
poly(acrylic acid), poly(vinyl alcohol) (PVA), poly(acrylamide),
and their derivatives (Wan, 2012). The main advantages of
synthetic over natural polymers are their reproducibility of
synthesis and the possibility for chemical modification (Hern
and Hubbell, 1998). They are inherently non-adhesive to cells and
unless modified they are non-biodegradable. Functionalization
with molecules such as Arg-Gly-Asp (RGD) motifs (Sionkowska,
2011; Kim et al., 2019), or mixing of natural and synthetic
polymers (Krutkramelis et al., 2016), is therefore required for
many cellular applications. Alterations of these polymers can be
used to provide useful cross-linking approaches such as
photopolymerization as demonstrated in PEG (Young et al.,
2013; Xia et al., 2017) and PVA (Zhao et al., 2010). Similarly,
combinations of natural and synthetic polymers can be
combined with temperature responsive moieties to obtain
hydrogels with unique swelling and gelling properties (Jiang
et al., 2019a). Such composite hydrogels can also allow for fine-
tuning of hydrogel degradation (Benavente Babace et al., 2019;
Neubauer et al., 2019), which offers lots of potential for in vivo
applications. In addition, alterations can facilitate complex
techniques that would be extremely difficult or impossible with
natural hydrogels. Some examples are detection of cell forces
(Allazetta et al., 2017), tuning hydrogel stiffness (Rahimian
et al., 2019), and controlling diffusion (Zhu, 2010;
Leonaviciene et al., 2020). The possibilities for adaptations
to synthetic hydrogels are too wide to be covered in this review,
but its applications for tissue engineering purposes are very
adequately discussed in a review by Jumnin Zhu (White et al.,
2021).

Recovery of Microgels
A hydrogel in oil emulsification using microfluidics is praised for
its production of highly monodisperse microgels in a high-
throughput fashion. To recover the microgels for downstream
applications, the emulsion must be broken to separate the water
and oil phases. Generally, this separation can be achieved using
chemical breaking, electrostatic displacement, or washing. All
three can be performed either on-chip or in bulk after droplet
collection. For off-chip chemical breaking, destabilizing of
droplet surface tension using 1H,1H,2H,2H-perfluoro-1-
octanol (PFO) is very common practice for fluorinated oils
(Karbaschi et al., 2017). This chemical displaces the
surfactants in the oil forcing the droplets to coalesce, with
the advantages of being quick and easy. As a downside, the
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approach is generally regarded to affect viability of vulnerable
cells. Therefore, a chemical-free alternative can be washing
(Chokkalingam et al., 2013) or the use of electrostatics to be
gentler on cells (Chokkalingam et al., 2014). On-chip
recovery of microgels can also be achieved using PFO
(Shao et al., 2020) and electrostatic manipulation to allow
direct recovery of microgels in water. The electrostatic
approach can either be used to force droplets to coalesce
(Huang et al., 2015) or the charge difference can be used to
push/pull hydrogels across an oil–water interface (Huang and
He, 2014). The latter technique has recently been
demonstrated by White et al. as an automated method to
selectively sort cell-containing microgels from empty
microgels (Wang et al., 2021), thus increasing downstream
efficiency and avoiding empty droplets. For washing, on-chip
designs have been proposed to get microgels from the oil
phase into the water phase. Passive methods use the
interfacial tension of the water–oil droplets to allow
microgels to merge into a parallel flowing extraction
aqueous phase (Wong et al., 2009; Deng et al., 2011). More
active approaches use filtering (Bavli et al., 2021) or slow
infusion of the aqueous phase (Tang et al., 2009).

HYDROGEL DROPLET SINGLE-CELL
APPLICATIONS AND ANALYSIS

The interest in single-cell analysis has spiked over the past
years because of highly heterogenous cell populations being
discovered and proving their importance (Altschuler and Wu,
2010; Satija and Shalek, 2014). Droplet microfluidics allow for
a high-throughput approach for single-cell encapsulation and
thus isolation, creating reproductive nano-bioreactors
facilitating, for example, single-cell sequencing.
Furthermore, incorporation of hydrogels allowed control
over mechanical properties at single-cell resolution.

Single-Cell Sequencing
Being able to discern which RNAmolecules originate from which
cell, while maintaining high throughput, has likely been the
biggest challenge in performing single-cell RNA (scRNA)
sequencing. Lysis of cell suspensions will result in an
indiscernible mixture of nucleic acids. Therefore, the first
published case of scRNA sequencing performed lysis of just
1 cell within just one tube (Islam et al., 2011). To increase
throughput, this was followed up by parallel processing in well

TABLE 1 | List of recently published research using various types of natural and synthetic hydrogels for innovative single-cell microgel techniques.

Type Hydrogel Cross linking Application Reference

Natural Alginate Calcium release from EDTA
complex

Controlled gelation of microgels for cell encapsulation Utech et al. (2015)

On-chip picoinjection of CaCl2 Picoinjection of CaCl2 for controlled gelation of microgels for cell
encapsulation

Ahmed and Stokke,
(2021)

On-chip mixing of alginate with Ca
chelators

Testing of different chelators for cell encapsulation in microgels Shao et al. (2020)

Competitive ligand exchange
crosslinking

Cell encapsulation with increased gelation control and improved cell viability Håti et al. (2016)

Alginate + CaCl2 in oil phase Monodisperse microgels for cell aggregate encapsulation Wang et al. (2021)
Agarose Cooling below 18°C Pairing of secreting cell with reporter cell and flow cytometric sorting Yanakieva et al. (2020)

Pairing of secreting cell with detection beads for flow cytometric measurement Chokkalingam et al.
(2013)

Encapsulation of cells to monitor cell egress Neubauer et al. (2019)
Gelatin based Cooling on ice and genipin addition Monitoring single tumor-cell response to adherence on gelatin microgels Nan et al. (2019)

Off-chip UV exposure (GelMA) Rapid generation of injectable stem cell-laden microgels fore tissue
engineering

Zhao et al. (2016)

On-Chip UV exposure (GelMA) On-chip gelation and retrieval from oil phase for cell encapsulation Mohamed et al. (2019)
On-chip gelation and sorting into aqueous medium Hong et al. (2012)

Collagen based Emulsification in the 37°C oil phase On-chip gelation for cell encapsulation Bavli et al. (2021)
Heating to 37°C (Matrigel

®
) Production of large monodisperse organoids for drug testing Zhang et al. (2021)

Production of endothelial cell organoids Dolega et al. (2015)

Synthetic PEG based Mixing acrylated PEG with dextran Production of semi-permeable shell capsules for multistep processing of large
biomolecules

Leonaviciene et al.
(2020)

Mixing thiolated PEG with PEG-
dimaleimide

Production of hydrogel beads with force-responsive fluorescence Allazetta et al. (2017)

Mixing vinylsulfone-PEG with
thiol-PEG

Production of hydrogel beads with tunable stiffness and tunable RGD
functionalization

Rahimian et al. (2019)

Mixing maleimide-PEG with
dithiotrietol

Production of semi-permeable hydrogel shells for immunoassays Zhu, (2010)

Mixing of PEGDT with MALDEX Single-cell encapsulation for culture of clones and subsequent mRNA
sequencing

Zhao et al. (2021)

Mixing of thiol-hyaluronic acid with
PEGDA

Monodisperse microgels for cell encapsulation with semi-permeable silica
coating

Mazutis et al. (2013)

Polyisocyanide Heating to above 15°C Prolonged encapsulation of adherent cells for culture with cell retrieval
afterward due to thermoreversibility

Tiemeijer et al. (2021)
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plates (Klein et al., 2015). Labeling of RNA strands in wells
allowed for bulk polymerase chain reaction (PCR) and retracing
cell identity after sequencing. However, this approach was still
physically limited by wells’ plate size. In 2015, two separate
publications described the application of microfluidics droplet
encapsulation to process single-cells with high througput (Leng
et al., 2010; Macosko et al., 2015). Co-encapsulation of cells and
functional beads allowed for cell lysis, labeling of strands, and
reverse transcription inside the droplets, before amplifying the
transcripts with PCR in bulk. These applications used droplets for
labeling purposes only and performed PCR afterward. To
perform PCR in droplets, agarose droplets have been proposed
to entrap large molecules of nucleic acid. Such techniques were
reported for applications like single-cell molecule amplification
(Novak et al., 2011), single-cell DNA trapping (Zhu et al., 2012),

or rare pathogen detection (Zilionis et al., 2016). A more recent
application of RNA sequencing using hydrogel presented
“CloneSeq”, which utilizes in-droplet labeling but with
hydrogel droplet pre-cultured single-cell clones to improve
sequencing sensitivity (Zhao et al., 2021). Bavli et al.
performed a first round of single-cell encapsulation of
barcoded cells in PEGDT-Maldex hydrogel droplets, followed
by a period of expansion to obtain a clump of clone cells from a
single mother cell. The clone-cell clump is then re-encapsulated
along with a barcoded bead as in the InDrops protocol
(Kumachev et al., 2011) (Figure 3A). Their approach exploits
the fact that clonal daughter cells maintain transcriptional
similarities, to obtain a 10-fold larger library of unique RNA
transcripts allowing for an increased sensitivity. This allowed
them to prove that 3D culturing in these microgels maintains

FIGURE 3 | Single-cell applications. (A) CloneSeq platform: single-cells are encapsulated in a hydrogel droplet and cultured to form a population of clones. This
population is sequenced using an adapted sequencing protocol. (B) CloneSeq protocol exhibits improved separation of different stem cell differentiation states
compared to conventional single-cell RNA sequencing (Bavli et al., 2021). (C) Microfluidic device for production of a library of droplets with unique mechanical and
functionalization properties, which can be detected based on fluorescent signature. Adjusting the ratios of branched PEGs and the fluorophore channels allows
tuning of droplet properties during production (Allazetta et al., 2017). (D) PEG-based hydrogel droplets incorporated with FRET pairs display fluorescence as a result of
deformation, creating the potential to measure cell-exerted forces in-droplet (Neubauer et al., 2019). (E) Hydrogel droplets with attached cells are re-encapsulated in
droplets along with FRET sensors which become fluorescent when bound by various proteases. This platform allows the single-cell measurement of proteases on
different types of tumor cells to probe their metastatic behavior (Wang et al., 2021).
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more cellular stemness compared to bulk 2D culturing. In
addition, they showed that in a mouse model of embryonic
stem cells, CloneSeq was much more capable of discerning
endo-, ecto-, and mesoderm differentiation states compared to
conventional scRNA sequencing (Figure 3B). Also, in the
detected differentiation states much more significantly
enriched early differentiation genes were measured. In this
approach, the implementation of hydrogel facilitates the
expansion and spatial control of single-cell clones while
allowing re-encapsulation with barcoded beads for sequencing
with improved sensitivity. It underlines the potential for hydrogel
droplets to improve similar novel techniques while providing
suitable culture conditions for cells.

Tuning Hydrogel Mechanical Properties for
Screening of Cellular Responses
Incorporation of hydrogels in microfluidic droplets has allowed for
control over an extra parameter: mechanical properties. Tuning of
hydrogel stiffness and elasticity is achieved by varying polymeric
components and has been previously performed in droplets
(Rahimian et al., 2019; Dagogo-Jack and Shaw, 2017). This allows
for several directions of analytic tools, from testing individual cell
forces (Allazetta et al., 2017), to screening gradients of hydrogel
stiffness (Zhao et al., 2016), and the resulting cell responses (Nan
et al., 2019). Apart from creating separate batches of hydrogels with
varying properties, within a batch gradients of hydrogel stiffness can
be screened. By including an extra dispersed phase inlet for different
polymeric components and adjusting ratios, hydrogels can be
obtained within a wide spectrum of mechanical properties.
Kumachev et al. demonstrated this technique in 2011 by
combining two streams of different agarose concentrations to
create microgels with varying stiffness, suitable for cell
encapsulation (Dagogo-Jack and Shaw, 2017). Allazetta et al.
adapted the approach by using separate inlets for 4-armed PEG
macromers and 8-armed PEG macromers plus a third inlet for red
fluorescent maleimide groups (Rahimian et al., 2019). By changing
the flow speed ratio between the PEG channels and the fluorescent
channel, hydrogels with varying Young’s moduli and reversely
correlated fluorescent intensity could be created. These values
were shown to correlate linearly allowing for a direct readout of
the stiffnesses per individual microgel. Furthermore, by adding two
extra dispersed phase inlets, one for buffer and one for green-
fluorescent RGD molecules, microgels with tunable and detectable
amounts of RGD, covalently build into the polymer structure, could
be produced. In a final more complex microfluidic design, this
allowed for independent programming of microgel stiffness and
RGD-bioactivity along with direct fluorescent readout of exact
microgel properties (Figure 3C). In addition, they demonstrated
the potency of their platform by producing 100 unique microgel
compositions with different functionalization and stiffness. Such
tunable libraries of droplets with unique mechanical and chemical
characteristics are a potential asset for screening of cell responses to
different materials. Other recent research shows potential for in-
droplet measurement of such cellular behavior. Neubauer et al.
developed an interesting approach to a construct in which direct
measurement of exerted forces by single cells can be possible

(Allazetta et al., 2017). Their PEG-based hydrogel droplets were
incorporated with Alexa488 and Alexa555 as Förster resonance
energy transfer (FRET) pairs. These molecules will undergo a
fluorescence shift when they are moved into closer proximity.
Therefore, deformation of the hydrogel droplets will results in a
fluorescent readout (Figure 3D). Although only tested with atomic
force microscopy indention, the technique holds promise for real-
time visualization of cell forces as the polymers are easily
functionalized with cell-binding sites. A recent work by Wang
et al. also utilizes FRET signals to detect single-cell responses to
differences in mechanical properties of droplets. They produced
gelatin beads onto which single cells were allowed to adhere. After
adherence, the beads are re-encapsulated in microfluidic droplets
along with FRET sensors. These sensors consist of a FRET pair
which can be cleaved by specific cell-secreted proteases causing a
fluorescent shift. They report on the effects ECM stiffness has on
single tumor cells and their production of metastasis-related
proteases (Nan et al., 2019). They created gelatin microgels with
tunable stiffness onto which three types of human breast cells could
adhere: non-tumorigenic cells, non-metastatic cancer cells, and
metastatic cancer cells. By re-encapsulating these along with the
FRET sensors, the single-cell expression of MMP2, MMP3, MMP9,
and ADAM8 could be measured based on droplet fluorescence
(Figure 3E). This gave insight into heterogenous cell responses to
substrate stiffness correlating to metastatic or non-metastatic
behavior. Such research is of high value as therapy resistance is
generally attributed to tumor heterogeneity (Meacham and
Morrison, 2013; Xi et al., 2017).

HYDROGEL DROPLETS FOR CELL
PAIRING APPLICATIONS AND ANALYSIS

Just like with trap- or well-based microfluidics, droplet-based
microfluidics can be utilized to pair cells in close confinement.
This relatively untapped category of applications is specifically
promising in combination with hydrogels as it allows permanent
spatial control, independent of emulsion integrity. This enables
delivery of cell nutrients, allows for downstream processing, or
co-analysis, all at a high throughput.

Co-Encapsulation Efficiency and
Deterministic Encapsulation
When co-encapsulating a pair of heterotypic particles, the
Poisson distribution proves a difficult hurdle (Collins et al.,
2015), forcing a trade-off between either too few heterotypic
pairs or too many droplets containing homotypic particles. In
random encapsulation with a mixture of particles only a small
fraction of droplets will contain exactly one particle of each type,
which can only be optimized to a certain extent based on
concentration and droplet size. Droplets containing the desired
number of particles can be sorted on-chip (Hu et al., 2015; Segre
and Silberg, 1961), but this will only improve purity and not
increase production rate. Therefore, advances have been made in
deterministic encapsulation of particles in droplets to skew the
Poisson distribution into a desired direction. To achieve this,
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spatial control of particles inside microfluidic channels is
required, which can be achieved via inertial focusing through
radial particle displacement in long channels (Dean, 2009)
(Figure 4A), or Deans flow in spiral-shaped channels (Russom
et al., 2009; Kemna et al., 2012) (Figure 4B). Both will result in
ordering in an equally spaced train of particles, and when spacing
is matched with frequency of droplet production, this can double
the efficiency of single particle encapsulation compared to
random Poisson encapsulation (Lagus and Edd, 2012; Lagus
and Edd, 2013). When ordering is performed on particles in
two different inlets, the encapsulation efficiency of two unique
particles can be increased to around five times the efficiency of
random Poisson encapsulation (Yaghoobi et al., 20202020;
Duchamp et al., 2021). Performing such inertial ordering requires
relatively simple device designs while maintaining the high-
throughput nature characteristic to droplet microfluidics. Other
more complex approaches utilize droplet merging to obtain cell
pairs more efficiently. These can be performed either using traps
(Schoeman et al., 2014; Chung et al., 2017) or by merging droplets
inside the device channels (Wimmers et al., 2018). However, results
from these efforts have been limited by on-chip capacity or efficiency
and, thus, fall short compared to deterministic encapsulation.

Pairing for Single-Cell Immune Assays
Cell–Cell Pairing
The ability of microfluidic droplets to bring two heterotypic cells
in confined proximity finds an ideal application in fundamental
immunological research. Many immune responses are heavily
dependent on cells being adjacent for paracrine signaling or even
connecting for juxtacrine signaling. High-throughput droplet
encapsulation was readily proven an ideal method to screen

immune cell heterogeneity in response to paracrine ques, as
modeled by co-encapsulation of various stimuli (Tiemeijer
et al., 2021; Konry et al., 2011; van Eyndhoven et al., 2021;
Konry et al., 2013). Co-encapsulation allows similar setups for
investigating contact-dependent juxtacrine interactions referred
to as immune synapses. These have been readily investigated at
single-cell level in context of contact-dependent activation
(Sarkar et al., 2015; Antona et al., 2020b), and contact-
dependent cytotoxicity (Subedi et al., 2021; Sarkar et al., 2017;
Dik et al., 2005). The first of the two arises primarily between
antigen-presenting cells and lymphoid cells to initiate the
adaptive immune response. When dendritic cells (DCs) use
the immune synapse to present T cells with antigens, T cells
are activated, start proliferating, and become potent killers of
virus-infected cells or tumor cells. Not only due to the immense
T-cell receptor variation (stPaul and Ohashi, 2020) but also
because of the high degree of T-cell heterogeneity (Woodland
and Dutton, 2003b; Dura et al., 2015; Ma et al., 2021), this can be a
very heterogenous process, in which droplet-based single-cell
approaches could improve fundamental research greatly and
pave the way for high-throughput screening for therapeutic
applications (Hondowicz et al., 2012; Shahi et al., 2017; Sarkar
et al., 2016). Konry et al. co-encapsulated mouse DCs and T cells
and visualized them in droplets, where they could observe
formation of immune synapses based on tubulin localization
(Sarkar et al., 2015) (Figure 5A), demonstrating that these
cellular interactions can be monitored real-time using
microscopy in droplet confinement. Later, in-droplet research
included detection of synapse-based activation via dynamic
calcium signals (Antona et al., 2020b) and demonstrated that
synapse duration is dependent on antigen presence

FIGURE 4 | Deterministic encapsulation. (A) Radial displacement leading to a particle train which can be synced with frequency of production rate to obtain
increased cell-pairing efficiency (Lagus et al., 2013). (B) Deans flow in spiral shaped channels can form particle trains on the inner wall, which can be used to obtain
deterministic encapsulation (Kemna et al., 2012).
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(Vanherberghen et al., 2013). In addition, they showed contact-
dependent T cell–mediated tumor cell cytotoxicity in droplets,
which they were able to boost or inhibit via added stimuli or
cytokine inhibition, respectively (Vanherberghen et al., 2013). In
addition to T cells, natural killer (NK) cells are very potent
cytotoxic cells, which on contact with a target cell exhibit
antigen-independent killing demonstrate serial killing and have
been shown to behave with a highly heterogenous nature
(Guldevall et al., 2016; Antona et al., 2020b). The immune
synapses via which their cytotoxicity is elicited are varying in
duration and can occur several times for a single target cell or
several target cells resulting in serial killing. These repeated killing
synapses were studied in droplets between NK cells and different
types of tumor cells by Antona et al. (2020a). They encapsulated
varying numbers or target cells in droplets of different sizes and
showed that serial killing was controlled by both variables. In a
different application, they complemented the cytotoxicity assay
with monitoring of IFN-γ secretion by NK cells (Sarkar et al.,
2020) (Figure 5B), which allowed them to show that only about
half of the NK cells killing K562 tumor cells produces IFN-γ in
the process, underlining their heterogenous nature. As these
assays are all monitored using microscopy over time, manual
analysis is tedious and can potentially be biased. Subedi et al.

developed an automated real-time analysis script which allows for
these killing assays to be performed in an unbiased manner
(Sarkar et al., 2017). In addition, they showed the suitability
for this platform for killing by primary isolated human NK cells
(Figure 5C). These droplet techniques for analysis of immune
synapses have proven valuable in progressing of basic knowledge
of immune cell interaction. They have underlined its potential for
elucidating heterogeneity and proven their usefulness in finding
sub-populations of therapeutic interest. Nevertheless, in terms of
the high-throughput potential droplet-microfluidics natively has,
there is still much progress to be made. These techniques rely on
microscopic visualization in observation wells and chambers for
the analysis of pairs which allows measurement of several
hundred (Scanlon et al., 2014; Antona et al., 2020a) to few
thousand events (Sarkar et al., 2017), respectively, but are
thereby inherently limited in its throughput to the size of the
microfluidic device. This is where application of hydrogel in
droplets can allow for upscaling to achieve not only very high
throughput but also recovery of droplets from the experimental
setup and maintaining the spatial bond between cell pairs after
de-emulsification of droplets. This has been previously performed
in screening of bacterial colonies. Scanlon et al. co-encapsulated
antibiotic expressing E. coli in agarose droplets along with S.

FIGURE 5 | Cell–cell pairing for single-cell immune interactions. (A) Microscopic visualization of DC/T-cell interactions. Tubulin localization indicates presence of
immune synapses present at different ratios of cells (Konry et al., 2013). (B)Monitoring of IFN-γ secretion during NK/tumor cells killing interaction (Antona et al., 2020). (C)
Primary NK cells killing tumor cells in droplets (Subedi et al., 2021).

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org June 2022 | Volume 10 | Article 89146110

Tiemeijer and Tel Single-Cell Hydrogel Droplets

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


FIGURE 6 |Cell-reporter pairing for immune assays. (A)Capture beads specific for three different cytokines are co-encapsulated in hydrogel droplets, after gelation
and emulsion breaking the whole droplet can be stained for captured cytokines and measured using flow cytometry. (B) Secretional heterogeneity of Jurkat T cells can
be detected using this method of multiparameter single-cell cytokine detection (Chokkalingam et al., 2013). (C) Bead-line encapsulation evades the Poisson distribution
as every droplet will contain around 1,000 nm-sized capture beads. (D) Cellular cytokine secretion can be observed and (E) quantified over time by measuring
translocation of co-encapsulated fluorescent antibodies (Bounab et al., 2020). (F) Yeast cells are co-encapsulated with murine IL-3 reporter cells. Gelation of droplets
and de-emulsification allows flow cytometric sorting of IL-3 producing yeast cells. Expansion and repeating of procedure allows enrichment of secreting yeast cells
(Yanakieva et al., 2020).
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aureus and a fluorescent viability marker (Kitaeva et al., 2020).
The combination of production rates up to 3,000 drops/s and off-
chip collection in centrifuge tubes allowed theoretical unlimited
flow through. An analysis was performed by gelation of the
agarose droplet, de-emulsification, and whole droplets
measurement of S. aureus viability using flow cytometry. This
ultrahigh-throughput allowed for the detection and sorting of up
to five million clones/day to screen for potential novel antibiotics.
Such upscaling is expected to greatly benefit the field of immune
therapy by allowing ultrahigh-throughput of cell pairs and their
immune synapses, which will improve drug testing (Jiang et al.,
2019b) and help in the discovery of tumor neoantigens (Heo et al.,
2020) and specialized cell populations (Altschuler andWu, 2010).

Cell–Reporter Pairing
In addition to using pairing of heterotypic cells in droplets to
measure their interactions, a cell of interest can also be
encapsulated alongside a “reporter” particle or cell. After
periods of culture/stimulation fluorescent signal can be
measured on the reporter cell either due to translocation of
co-encapsulated markers (Fang et al., 2017; Sarkar et al., 2020;
Bounab et al., 2020; Gérard et al., 2020; Garti and Bisperink, 1998)
or by direct staining after de-emulsification (Yanakieva et al.,
2020; Chokkalingam et al., 2013). The main advantage of co-
encapsulation of fluorescent markers is that microscopic imaging
allows continuous measurement to obtain temporal information.
For staining after de-emulsification, a hydrogel is indispensable as
it maintains the spatial coupling of the interrogated cell and
reporter particle. This latter approach was demonstrated in
research by Chokkalingam et al. where Jurkat T cells were co-
encapsulated with functionalized cytokine capture beads
(Chokkalingam et al., 2013) (Figure 6A). Beads contained
antibodies specific for IL-2, TNF-α, and IFN-γ so that
cytokines secreted by co-encapsulated cells would be captured
on the beads during incubation in the droplets. As they co-
encapsulated a solution of low melting-point agarose, simple
cooling of the droplets after culturing allowed spatial linking
of the Jurkat T cells with the capture beads allowing for flow
cytometric detection of cytokines for each individual cell. This
revealed heterogenous secretion behavior and distinct secretion
profiles (Figure 6B). Since analysis for such experiments is
performed using flow cytometry, it has the potential to
immediately sort cells of interest, as was demonstrated for
bacteria by Scanlon et al. Another recently published protocol
by Bounab et al. cleverly utilizes fluorescent translocation to
monitor timing of cytokine secretion by monocytes and T cells
or IgG production by B cells, at a single-cell level (Gérard et al.,
2020). In addition, they were able to cheat the Poisson
distribution hurdle by co-encapsulating with a high
concentration of nanometer-sized magnetic particles. After
droplet capture these form a “beadline” in response to a
magnetic field, and they will be present in every droplet due
to the high concentration of particles (Figure 6C). The magnetic
particles are functionalized with cytokine-specific capture
antibodies and fluorescent detection antibodies are co-
encapsulated in the droplets. Cytokine secretion by
encapsulated cells will therefore result in a real-time

observable antibody-cytokine sandwich which can be
visualized by fluorescent translocation to the beadline (Figures
6D,E). Although the throughput is limited by the size of their
observation chamber, the approach still allows for analysis of up
to 300,000 single cells per experiment. The versatility of this
technique was demonstrated by immobilization of heat killed
bacteria on the beadline (Bounab et al., 2020). This “Bactoline”
allowed screening of IgG and IgM production by mice B cells
before and after immunization, which provided valuable insights
into single-cell heterogeneity of antibody specificity, affinity, and
cross-reactivity. Apart from beadline measurement in
observation chambers, translocation of fluorophores can also
be measured in droplets flow on-chip (Garti and Bisperink,
1998). This allowed for direct sorting of B cells producing
antibodies to co-encapsulated antigens and sequencing of their
IgG sequences. The method was further shown to be suitable for
screening of ex vivo stimulated human peripheral memory B cells,
indicating the potential for these types of techniques to contribute
to development of immune techniques.

In addition to reporter particles, several applications have been
demonstrated using reporter cells (Garti and Bisperink, 1998;
Fang et al., 2017; Yanakieva et al., 2020). Fang et al. used hydrogel
droplet sorting to enrich rare antibody clones as produced by
transfected yeast cells. They co-encapsulated antibody producing
yeast cells with A431 tumor cells expressing the relative antigen.
Gelation of the agarose droplets before de-emulsification spatially
bound the producer and reporter cell. After de-emulsification
pairs of yeast and A431 cells in hydrogel droplet were washed to
get rid of non-specific IgG`s and stained using fluorescent anti-
human IgG to visualize A431 bound antibodies. During flow
cytometric sorting these A431 could be detected based on
fluorescence and sorted out. As they were spatially confined to
the corresponding yeast cells, these were collected as well, thus
increasing purity of yeast cells of interest. More recently, a
similar approach using agarose droplets was demonstrated for
enrichment of cytokine secreting yeast by Yanakieva et al.
(2020) (Figure 6D) Here, however, no additional fluorescent
staining was required as they used mCherry positive murine
IL-3 secreting yeast cells in combination with murine reporter
cells, which expressed green fluorescent protein (GFP) upon
stimulation with IL-3. Co-encapsulation of both cells would
therefore result in a double positive signal for mCherry and
GFP. By flow cytometric sorting of double positive droplets,
IL-3 producers could be enriched and expanded before
additional rounds of encapsulation with reporter cells. This
allowed them to enrich yeast that produced functional IL-3
from yeast producing inactive IL-3 from a 1:10,000 mixture by
70-fold with only two rounds of sorting. This technique of
repeated enrichment combined with unlimited throughput
proves suitable for efficient selection of yeast clones
secreting biorelevant proteins.

SEMI-PERMEABLE HYDROGEL SHELLS

The production of double emulsions of water and oil has been
investigated for a few decades (Chong et al., 2015), but the rise of
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droplet microfluidics has enabled stable and high-throughput
production (Huang et al., 2017). Adding hydrogel into the “shell”
has resulted in the facile production of semi-permeable particles
suitable for cell analytical procedures (Choi et al., 2016). Shells
can be obtained by direct on-chip formation of hydrogel layers
(Cai et al., 2019; Mak et al., 2008), deposition of silica (Mazutis
et al., 2013), or polyelectrolytes (Fischlechner et al., 2014; Ferreira
et al., 2013) after droplet production. The latter is used to
drastically decrease permeability to selectively retain
macromolecules but allow diffusion of small molecules. di
Girolamo et al. (2020) utilized the technique to further
increase the selectivity of their chitosan-shell alginate-core
droplets, which allowed for retention of ~30 kDa molecules
and diffusion of ~1 kDa molecules. First, they produced
alginate beads using common microfluidic techniques that
allowed for cell encapsulation. These microgels could then be
coated with chitosan, after which the alginate core was dissolved
using sodium citrate. These hollow core chitosan–alginate
capsules could then be coated with subsequent layers of
poly(styrene sulfonate) and poly(allylamine hydro-chloride) to
control permeability (Figure 7A). Their particles were suitable for
encapsulation and cultivation of E. Coli and by culturing these
from single-cells to over two million per capsule, they
demonstrated the shell did not prevent diffusion of nutrients
and oxygen. Subsequently lysis buffer could be washed in to digest
the cells, after which cellular large proteins and DNA were
retained by the coating. Fluorescent probes specific for
enzymes of interest could be washed in to detect which

droplets contained cells producing these enzymes. Such an
approach can be combined with fluorescence-based sorting
techniques to facilitate directed evolution (Figure 7B).
Hydrogel shells without polyelectrolyte generally have larger
pore size and are thus selective to a different range of
molecular sizes. A dextran-core PEGDA-shell particle was
designed by Leonaviciene et al. which they approximated to
have a pore size of around 30 nm, thus successfully retaining
DNA fragments of around 340 kDa and higher (Leonaviciene
et al., 2020). This allowed them to wash lysis buffer and genome
amplification reagents in and out of the particles in a multistep
process. As the amount of reagent was not dependent on the
droplet volume, this resulted in a 2-fold higher yield of DNA
macromolecules compared to conventional water-in-oil droplets,
in which supply of reagent is limited by what is initially
encapsulated. By using their approach to cultivate
biodegradable plastic producing bacteria, they demonstrated
detection of functional products as a readout, in addition to
amplification of genomic contents. An opposite approach of such
semi-permeable shells is to prohibit cells from entering the core
but allowing specific analytes in. Rahimian et al. applied this
concept in an immunoassay for the ex vivo analysis of whole
blood for specific secreted factors (Zhu, 2010). A thin PEG shell
was produced surrounding a 400-μm size particle containing
antibody-coated beads specific for both TNFa and IFNy, which
are important pro-inflammatory markers. The coating prevented
leukocyte interactions with the detection beads while secreted
cytokines could enter and bind the beads (Figure 7C). Retrieval of

FIGURE 7 | Semi-permeable hydrogel shells. (A) Hydrogel shell droplets are coated with polyelectrolytes to decrease permeability. This successfully allows the
diffusion of nutrients and lysis buffer, but keeps DNA inside after lysis. (B) Particles can be analyzed and sorted based on fluorescence in a large particle sorter (di
Girolamo et al., 2020). (C) Selectively permeable hydrogel shell particles used as sensors preventing cells to reach the microbeads but letting cytokine and detection
antibodies diffuse in. (D) Sensor particles submerged in whole blood and after washing and incubation with detection antibodies. IFN-γ specific particles are green,
and TNF-α specific particles are red (Rahimian et al., 2019).

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org June 2022 | Volume 10 | Article 89146113

Tiemeijer and Tel Single-Cell Hydrogel Droplets

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


beads by simple filtering, followed by addition of fluorescent
detection antibodies allowed for cytokine analysis without
preceding cell-separation steps. They demonstrated the
feasibility of the platform by detection of IFNy in blood of
patients with a latent tuberculosis infection (Figure 7D).
Comparison to the current gold standard method resulted in
11 out of 14 patients getting the correct diagnosis, and the three
incorrect diagnoses were false-negatives. Although most of the
aforementioned methods are executed with bacteria, these can
easily be translated to mammalian cells. Such approaches would
yield unique opportunities for prolonged single-cell cultures or
single-cell cloning due to unlimited inflow of cell nutrients. In
addition, hydrogel-shell particles can be utilized as miniaturized
bioreactors for chemical reactions such as PCR.

HYDROGEL DROPLETS FOR
COCULTURES

Although exact cell pairing efficiency remains a challenging hurdle,
various efforts have been made to utilize hydrogel droplets for
cellular coculture with multiple cells. As cellular interactions are
fundamental in biology, downscaling can help understand them at
the most basic level. Hydrogel droplets facilitate this type of research
by bringing few-cells in tight proximity and keeping them there after
de-emulsification. As this allows inflow of nutrients these cocultures
can be maintained over a much longer period (Tumarkin et al.,
2011) to study cell–cell effects (Kmiec, 2001). A great example is the
effect of cocultures of liver cells on activity and viability of
hepatocytes, as such interactions have proven complex (Kmiec,
2001) and hepatocytes alone display very little liver specific
functions (van Poll et al., 2006; Cho et al., 2010). These
cocultures were demonstrated in organoids previously
(Darakhshan et al., 2020), but for further downscaling and
increased throughput, droplet microfluidics was applied.
Cocultures of hepatocytes were produced as spheroids (Chan
et al., 2016) or in a core-shell orientation (Lu et al., 2015; Chen
et al., 2016). Chan et al. used a coculture of endothelial progenitor
cells and hepatocytes in hydrogel droplets with a mix of alginate and
collagen type I172. They utilized alginate-in-oil-in-water double
emulsions to produce droplets and eliminated the oil phase in
the presence of calcium ions to gelate the droplets. They showed
that even at these miniature scales of only several cells, coculture
effect was observed in increased production of several functional
liver metabolites. Furthermore, tuning composition of alginate and
collagen hydrogel in droplets proved to outperform the golden
standard for 2D hepatocyte culture in terms of metabolite
production (Dunn et al., 1991; Chan et al., 2016). In research by
Chen et al., it was shown that in shell-core hydrogel droplets
coculture different types of cells could be confined to either
encapsulation in the core or shell part of the droplets (Chen
et al., 2016). They were able to achieve this distribution by quick
on-chip gelation of the alginate shell by acidification of
calcium–EDTA complexes using a 4-inlet microfluidic device. In
addition, they showed that cell viability was unaffected, and that
coculture resulted in increased secretion of liver specific metabolites
albumin and urea. Such miniaturized in vitro coculture models

prove a valuable tool for understanding basic biology, high-
throughput drug screening (Darakhshan et al., 2020) or
potentially therapeutic applications.

CONCLUDING REMARKS

Single-cell technologies are increasingly more integrated into
modern cell biological research. As this leads to discovery of
more heterogeneity and rare subpopulations the need for robust
high-throughput platforms becomes clearer. The role of
microfluidics in achieving single-cell resolution has been cut
out for almost 2 decades due to its possibilities to physically
manipulate single cells using fluids. Droplet-based microfluidics
has obtained its own prominent seat within this field due to the
high-throughput and reproducible nature of the resulting micro-
scale emulsions. An impressive resume of single-cell applications
(Klein et al., 2015; Macosko et al., 2015; Wimmers et al., 2018;
Antona et al., 2020b; Bounab et al., 2020; Gérard et al., 2020;
Subedi et al., 2021; van Eyndhoven et al., 2021) predicts that
droplet encapsulation will continue to play an important role in
isolation of individual cells over years to come. A promising
addition to the field is the application of hydrogel to produce
microgels for single-cell encapsulation. This allows the
development of various novel techniques, has the potential to
greatly increase throughput, provides improved spatial control,
and gives encapsulated cells a mechanically active environment.

Encapsulation of cells in aqueous droplets will result in cells
being in forced suspension. This is fine for non-adherent cells but
might affect the viability and phenotype of adherent cells that
require mechanical stimuli and attachment molecules (Gilmore,
2005; Taddei et al., 2012; Tiemeijer et al., 2021). As hydrogels
often mimic the stiffness of extracellular matrix and can be
functionalized to facilitate adherence, production of microgels
can open the technology to a broader range of cell applications.
Current research is still based on proof-of-principle experiments
to explore possibilities for adherent cells. But future work can
include more complex experimental setups including tunable
mechanical properties (Allazetta et al., 2017) and screening of
resulting cellular responses (Neubauer et al., 2019; Wang et al.,
2021). Such experiments can gain invaluable insights in the
fundamentals of cell interactions with their environment and
their responses to stiffness, which will be especially usefully for
development of tissue engineering approaches (Liebschner et al.,
2005; Kurazumi et al., 2011; Wissing et al., 2017).

Although still limited by the Poisson distribution, cell pairing in
droplets has been applied previously to bring two types of cells in
isolated proximity (Hondroulis et al., 2017; Antona et al., 2020b;
Gérard et al., 2020; Subedi et al., 2021). In conventional aqueous
droplets, this pairing can only be maintained if droplets are kept in
emulsion; however, this will limit downstream processing and
prohibits diffusion of nutrients and additional reagents. Pairing
of cells in microgels will result in maintained spatial control after
de-emulsification. Continuing the culture of cells in microgels after
emulsion breaking allows for paracrine cell communication
between droplets and should, therefore, be used with caution.
However, the most promising microgel pairing application will

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org June 2022 | Volume 10 | Article 89146114

Tiemeijer and Tel Single-Cell Hydrogel Droplets

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


be the downstream analysis of cell pairs. Especially in the field of
immunology, this will create many new experimental
opportunities, as immune synapses are the key to the onset and
progression of immune responses. Performing single-cell pairing
experiments at a high-throughput scale is therefore indispensable
to obtain fundamental knowledge required for designing immune
therapeutic techniques.

In conclusion, the field of single-cell droplet-based
microfluidics will greatly benefit from incorporation of
various types of hydrogels. The addition of these “solids” in
microfluidics will improve control and robustness, thereby
paving the way for standardized high-throughput screening
techniques and immune assays. Although until now most
applications have been proof-of-principles and focused on
finding possibilities, once matured, these technologies will
be highly compatible with the future of cell biological
research and immunotherapy.
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