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Background: Functional impairment of the knee joint affected by osteoarthritis and loss of
muscle strength leads to a significant increase in the number of falls. Nevertheless, little is
known about strategies for coping with gait perturbations in patients with knee
osteoarthritis (KOA). Thus, this study aimed to examine the compensatory strategies of
patients with KOA in response to a backward slip perturbation compared with healthy
older adults.

Methods: An automated perturbation program was developed by using D-Flow software
based on the Gait Real-time Analysis Interactive Lab, and an induced backward slip
perturbation was implemented on nine patients with severe KOA (68.89 ± 3.59 years) and
15 age-matched healthy older adults (68.33 ± 3.29 years). Step length, gait speed, range
of motion, vertical ground reaction forces, lower extremity joint angles, and joint moments
were computed and analyzed.

Results: Compared with older adults, patients with KOA had significantly lower step
length, gait speed, and vertical ground reaction forces in both normal walking and the first
recovery step following backward slip perturbations. Inadequate flexion and extension of
joint angles and insufficient generation of joint moments predispose patients with KOA to
fall. Hip extension angle and flexion moment, knee range of motion, and vertical ground
reaction forces are key monitoring variables.

Conclusion: The risk of falls for patients with KOA in response to backward slip
perturbations is higher. Patients with KOA should focus not only on quadriceps muscle
strength related to knee range of motion but also on improving hip extensor strength and
activation through specific exercises. Targeted resistance training and perturbation-based
gait training could be better options.
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INTRODUCTION

Knee osteoarthritis (KOA) is a highly prevalent degenerative joint
disease in older adults (Sharma, 2021), with an incidence that has
doubled since the mid-20th century (Wallace et al., 2017). It poses
major socioeconomic challenges throughout the world (Cross
et al., 2014; Cui et al., 2020).

KOA commonly causes considerable pain (Neogi, 2013) and
dysfunction (Alencar et al., 2007). In addition to the direct
impairment, these deficiencies are also likely to cause falls during
normal walking (Manlapaz et al., 2019; Deng et al., 2021). Falls by
themselves can lead to a high burden of musculoskeletal diseases like
fractures of the hip, distal radius, and proximal humerus, among
others (Lamb et al., 2020). Considering patients with KOA, women
with OA have a 25% higher risk of falls and a 20% higher risk of
fracture than their peers without OA (Prieto-Alhambra et al., 2013).
Moreover, an increase in the number of joints with symptomatic
KOA of the lower extremities increases the risk of falling (Doré et al.,
2015). Therefore, preventing falls among patients with KOA is a
critical but often-overlooked topic. An in-depth understanding of
the compensatory response to a slip is fundamental to help fall-
prone populations reduce the incidence of falls (Marigold et al.,
2003; Gholizadeh et al., 2019). To the best of our knowledge, there is
only a limited understanding of compensatory strategies after gait
perturbations in patients with KOA, especially for a slip-induced
perturbation.

“Slip” is a type of external dynamic perturbation of walking,
which can induce a sudden displacement of the base of support
(BoS) into the anterior or posterior direction relative to the center
of mass (CoM) (Debelle et al., 2020; Lee et al., 2020). Both a single
session of slip perturbation training and single-repeated slip
training have positive effects on improving dynamic stability
(Pai and Bhatt, 2007; Lee et al., 2020). Humans can quickly regain
stability and maintain balance from the same type of perturbation
(Debelle et al., 2020). The “first-trial effect” has been used to
describe the training effects of older adults experiencing the first
slip perturbation, suggesting that first-exposure trials generate
rapid adaptive effects, and such effects could be maintained for up
to a full year (Pai and Bhatt, 2007; Liu et al., 2017). Subsequently,
Inkol et al. (2019) found that the first response of a slip
perturbation has the largest effect on the gait variables
compared with the subsequent perturbations of the same type
(Inkol et al., 2019), and the first step following the perturbation is
the most important protective postural strategy (Maki and
McIlroy, 1997; Melzer et al., 2008). Further, the step length of
the first recovery step after a slip perturbation determines the
stability of the subsequent steps and is corrected with balance
recovery mechanics (Debelle et al., 2021). It has been found that
the frequency of backward slip on the oiled surfaces is twice as
high as that of the forward slip (Nagano et al., 2013), implying a
high risk of falls, yet this perturbation is also most prevalent in
daily life (Debelle et al., 2020). However, there is still a lack of
research on the effects of backward slip perturbations in people at
high risk of falls, such as patients with KOA, and it is unclear how
the first step after the perturbation plays a protective role.
Therefore, effective monitoring of the first step after a slip
perturbation in patients with KOA is crucial.

Moreover, lower extremity joint kinematics and kinetics
partially influence the outcome of perturbations and hence
play a critical role in understanding the complicated link
between gait and slip-induced falls (Karamanidis et al., 2020).
The application of joint moments to clinical-pathological gait
analysis, such as knee and hip OA, is of increasing interest
(Lathrop-Lambach et al., 2014). For example, changes in the
magnitude of knee joint moments indicate the progression and
severity of OA development (Asay et al., 2018). The quadriceps
strength is directly related to knee flexion moment (Lisee et al.,
2019), and the medial-lateral load distribution is usually
expressed in terms of knee adduction moments (Zeighami
et al., 2021). However, few studies have addressed the effect of
joint moment application in response to gait perturbations in
patients with KOA.

Given the above-mentioned research gap, this study aimed to
examine the compensatory strategies of patients with KOA and
healthy older adults in response to backward slip perturbations,
mainly focusing on comparing the differences and similarities
between the first recovery step (Rec1) after the perturbation and
the normal gait (Normal), and thus to determine whether patients
with KOA are more prone to falls. We developed and
implemented a procedure to automatically trigger a slip
perturbation and then measure the effects of gait
spatiotemporal parameters and the lower extremity kinematics
and kinetics on the recovery of dynamic stability. We
hypothesized patients with KOA are at higher risk of falls
relative to healthy older adults and the protective strategy in
the first step following the backward slip perturbation focuses on
the effective compensatory effect of the lower extremity.

MATERIALS AND METHODS

Subjects
Nine patients (age: 68.89 ± 3.59 years; body height: 1.69 ± 0.11 m;
body mass: 97.53 ± 19.16 kg) with advanced left KOA with
persistent pain [Kellgren and Lawrence (K-L) grade 4] and
15 age-matched healthy older adults (age: 68.33 ± 3.29 years;
body height: 1.76 ± 0.10 m; body mass: 81.13 ± 13.99 kg)
participated in this investigation. The dominant leg was right
in all participants. The inclusion criteria for patients with KOA
were those who were about to undergo total knee arthroplasty on
the left knee within 3months, and the inclusion criterion for older
adults was no lower extremity history of disorders and injuries.
Patients with KOA were recruited through the Rostock
Orthopedic Clinic, and older adults were recruited from
different communities. Written consent was obtained from all
participants prior to the measurement. Ethical approval was
granted by the committee of the Rostock University Medical
Center, Germany (A2019-0231). All measurements were carried
out in compliance with the Declaration of Helsinki.

Experimental Protocol
The Gait Real-time Analysis Interactive Lab (GRAIL) (Motek
Medical B.V., Houten, Netherlands), which integrates multiple
devices, was utilized for the investigation. A 10 infrared cameras
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motion capture system (Vicon Bonita B10, Vicon Metrics Ltd.,
Oxford, United Kingdom) was utilized to track the marker
trajectories at 100 Hz, and an embedded treadmill force plate
(ForceLink B.V., Culemborg, Netherlands) was used to record the
ground reaction forces (GRFs) at 1,000 Hz. The D-flow software
(v3.34, Motek Medical B.V.) synchronized all hardware and
triggered signals for data collection. Participants felt like they
were in an industrial-style virtual reality scenario during the
entire measurement (Figure 1A).

Prior to the investigation, the subjects’ demographic
parameters and leg length were recorded and the Timed Up
and Go test (TUG) was performed. Subsequently, 26 reflective
markers with a diameter of 1.4 cm (Figure 1B) were attached to
the anatomical landmarks according to the Human Body Model
(HBM, v2, Motek Medical B.V.). Self-selected speeds were
obtained during the participants’ 6-min treadmill
familiarization (Meyer et al., 2019; Oudenhoven et al., 2019).
In the first trial, normal walking was collected for 2 min. In the
second trial, right-side treadmill belt posterior acceleration (to
induce a “slip-like” effect) and deceleration (to induce a “trip-
like” effect) perturbations were performed (van den Bogaart et al.,
2020). Two different types of perturbations were set up in each
trial, which were randomly and automatically triggered by a
custom program. The acceleration and deceleration intensities
were set at 3 m/s2. The perturbation occurred and lasted for
300 ms after the speed reached a specific value, then returned to
normal speed. All perturbations happened at the moment of the
right heel strike. Each perturbation occurred at a pseudo-random
interval of 15–20 s for a total of six times. There were sufficient
breaks to prevent fatigue and knee pain. The whole session took
around 15 min for each participant, and each participant
successfully completed the measurements. During the entire
session, each participant was protected from falling by a
harness and was able to cope with the perturbation task and
did not grasp the handrails of the treadmill.

Data Processing
The Gait Offline Analysis Tool (GOAT, version 4.1, Motek
Medical B.V.) (Oudenhoven et al., 2019; Bahadori et al., 2021)

was used for data processing with a built-in HBM computational
model, which had been verified previously (Van Den Bogert et al.,
2013; Falisse et al., 2018; Flux et al., 2020). The local maximum of
the anterior-posterior position of the heel marker relative to the
pelvis was used to determine the heel-strike event (Zeni et al.,
2008). A second-order low-pass Butterworth filter at 6 Hz was set
to filter kinematic data, which were found to be the highest
frequency in kinematics related to gait (Winter et al., 1974). To
prevent artifacts, GRFs were processed with the same filter cutoff
as for kinematics (Bisseling and Hof, 2006; Van Den Bogert et al.,
2013). Inverse kinematics and inverse dynamics algorithms were
conducted to calculate the gait spatiotemporal parameters, joint
angles, and joint moments of the lower extremity by deploying
HBM (Van Den Bogert et al., 2013). The joint moments were
normalized to the participant’s body mass to reduce the
confounding effect (Moisio et al., 2003). To compare
continuous time series variables, each joint angle and moment
was normalized to the percentage of the gait cycle (101 data
points, 0%–100%).

For normal walking, 20–25 consecutive strides were averaged
for each participant, an approach consistent with previous studies
(Kribus-Shmiel et al., 2018; Kroneberg et al., 2019; Riazati et al.,
2019). For slip-perturbed walking, only the slip_Rec1 of the first
trial was used for analysis (Debelle et al., 2020). In the current
study, the focus was on treadmill belt acceleration perturbations
in the posterior direction, and only the participants’ recovery
compensatory strategies in response to slip perturbations were
analyzed. The following parameters were processed: step length,
gait speed, vertical GRFs (vGRFs), and lower extremity joint
angles, joint moments in the sagittal plane. It has been reported
that anteroposterior gait perturbations mainly affect parameters
in the sagittal plane (Yoo et al., 2019).

Statistical Analyses
Before determining the type of statistical analysis, the normality
of the data was assessed by using the Shapiro–Wilk test.
Independent and paired sample t-tests were utilized for zero-
dimensional data analysis of demographic characteristics, leg
lengths, TUG scores, step length, gait speed, and peak vGRFs.

FIGURE 1 | TheGait Real-Time Analysis Interactive Lab (GRAIL) and the industrial-style virtual reality scenario involved in this study (A); front and rear view ofmarker
set used in Human Body Model (v2) with its specific 26 markers (green), which involves the anatomical positions of the lower extremities and trunk (B).
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One-dimensional time-series statistical analysis of joint angles
and joint moments was conducted by using open-source
statistical parametric mapping (SPM), which is based on
random field theory (Pataky et al., 2015). All statistical
analyses were performed by using GraphPad Prism (v8.0.2,
GraphPad Software Inc., La Jolla, CA, United States) and
Matlab 2018b (The MathWorks Inc., Natick, MA,
United States). The significance level was set at p < 0.05.

RESULTS

Basic Information of Participants
Demographic characteristics, leg length, and TUG score from the
participants are presented in Table 1. Body mass (p = 0.0242),
body mass index (BMI) (p = 0.0010), leg length (p = 0.0423), and
TUG scores (p = 0.0053) were significantly different between the
patients with KOA and older adults.

Spatiotemporal Parameters and vGRFs
The step length normalized to body height (BH) and gait speed
normalized to leg length (

���
gl0

√
, with g = 9.81 m/s2, l0, leg length)

of Normal and the five consecutive steps following the
perturbation are presented in Figure 2. There were no
changes in step length and gait speed in patients with KOA,

while there were significant differences in step length between
Normal and slip_Rec2 and slip_Rec5 (p < 0.0001 and p = 0.0251,
respectively) (Figure 2A), and significant differences in gait speed
between Normal and slip_Rec3 and slip_Rec4 (p < 0.0001 and p <
0.0001, respectively) (Figure 2B).

The step length for Normal was 0.28 ± 0.10 [95% confidence
interval (CI) 0.20, 0.36] and 0.40 ± 0.05 [95% CI 0.37, 0.42] for
patients with KOA and older adults, while in the slip_Rec1 gait,
the values were 0.26 ± 0.08 [95% CI 0.20, 0.32] and 0.38 ± 0.05
[95% CI 0.36, 0.41], respectively. There were no changes in the
step length of Normal and slip_Rec1 in patients with KOA and
older adults. There were significant differences in the step lengths
of Normal (p = 0.0129) and slip_Rec1 (p < 0.0001) between
patients with KOA and older adults (Figure 3A). The step length
of patients with KOA was significantly smaller than that of older
adults.

The gait speeds for Normal and slip_Rec1 between patients
with KOA and older adults were 0.29 ± 0.12 [95% CI 0.20, 0.38]
and 0.45 ± 0.05 [95% CI 0.42, 047] versus 0.31 ± 0.10 [95% CI
0.23, 0.39] and 0.46 ± 0.05 [95% CI 0.43, 0.49], respectively. There
was no significant difference in the same group, whereas there
were differences between the groups under the same condition
(p = 0.0016 for Normal and p = 0.0021 for slip_Rec1) (Figure 3B).
Patients with KOA had a significantly lower gait speed than older
adults.

TABLE 1 | Basic information of patients with knee osteoarthritis (KOA) and older adults.

Variables Patients with KOA
(n = 9; 4 females)

Older adults
(n = 15; 4 females)

p-value

Age (years) 68.89 ± 3.59 [66.13, 71.65] 68.33 ± 3.29 [66.51, 70.15] 0.7020
Body height (m) 1.69 ± 0.11 [1.60, 1.77] 1.76 ± 0.10 [1.71, 1.81] 0.0989
Body mass (kg) 97.53 ± 19.16 [82.81, 112.30] 81.13 ± 13.99 [73.38, 88.88] 0.0242*
BMI (kg/m2) 34.03 ± 3.43 [31.39, 36.67] 26.24 ± 4.83 [23.56, 28.91] 0.0010**
Leg length (m) 0.86 ± 0.09 [0.79, 0.93] 0.93 ± 0.07 [0.89, 0.97] 0.0423*
TUG (s) 15.28 ± 3.96 [12.24, 18.32] 10.32 ± 1.23 [9.64, 11.00] 0.0053**

The data are presented as the mean ± standard deviation [95% Confidence Interval]. *p < 0.05, **p < 0.01. Abbreviations: BMI, body mass index; TUG, timed up and go test.

FIGURE 2 | The step length (A) and gait speed (B) in normal walking (Normal) and the five steps following the perturbation. Blue bars indicate patients with knee
osteoarthritis (KOA) and red bars indicate older adults.
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The vGRF normalized to body mass (BM) for Normal and
slip_Rec1 in patients with KOA and older adults during the gait
cycle are presented in Figure 4A. The Normal and slip_Rec1
phases of vGRFs reaching zero in patients with KOA were 71%
and 67%, respectively, while these values were 66% and 65% in
older adults. Peak vGRFs for Normal and slip_Rec1 in the vertical
direction for patients with KOA and older adults were 10.21 ±
2.38 [95% CI 8.38, 12.04] and 12.70 ± 3.29 [95% CI 10.17, 15.22]
versus 11.30 ± 0.46 [95% CI 11.05, 11.55] and 14.64 ± 0.70 [95%
CI 14.25, 15.02], respectively. There were significant differences
between the two conditions in the same group (p = 0.0008 for
patients with KOA and p < 0.0001 for older adults). The vGRFs
significantly increased during slip_Rec1. The increases were
24.39% for patients with KOA and 29.56% for older adults.
Patients with KOA showed a significantly smaller value than
older adults in Normal (p = 0.0042) (Figure 4B). However, such a
difference was not observed in slip_Rec1.

Ankle Joint
At the ankle joint, for Normal, patients with KOA showed
significantly larger dorsiflexion angles throughout 26.79%–42.6%
of the gait cycle (p = 0.003) and smaller plantarflexion angles
throughout 56.18%–69.91% of the gait cycle (p = 0.005) than

older adults (Figure 5A); lower plantarflexion moments
throughout 45.77%–56.41% of the gait cycle (p = 0.001) and
higher plantarflexion moments throughout 74.67%–77.91% of the
gait cycle (p = 0.004) (Figure 5B). Nevertheless, for slip_Rec1, there
were no significant differences for ankle angle or moment between
groups (Figures 5C,D). The ankle range of motion (ROM) is
presented in Table 2, with no significant differences between the
two groups for both Normal and slip_Rec1.

Knee Joint
Regarding the knee joint, for Normal, patients with KOA
developed significantly smaller extension angles across
0%–8.188% (p = 0.027), 31.23%–48.69% (p = 0.003), and
85.63%–100% (p = 0.007) of the gait cycle (Figure 6A),
smaller flexion moments across 35.30%–48.90% of the gait
cycle (p = 0.005) (Figure 6B) than older adults. For slip_Rec1,
patients with KOA only developed significantly smaller extension
angles across 96.48%–98.18% of the gait cycle (p = 0.048)
(Figure 6C) and smaller extension moments across
15.47%–18.23% of the gait cycle (p = 0.026) (Figure 6D). The
knee ROM is presented in Table 2, with significant differences
between the two groups for both Normal (p = 0.0200) and
slip_Rec1 (p = 0.0047).

FIGURE 3 | Zero-dimensional statistical analysis of step length (A) and gait speed (B) between Normal and slip_Rec1 among patients with knee osteoarthritis
(KOA) and older adults.

FIGURE 4 | The vertical ground reaction force (vGRF) curves in Normal and slip_Rec1 (A); zero-dimensional statistical analysis of peak vGRFs among patients with
knee osteoarthritis (KOA) and older adults (B).
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Hip Joint
At the hip joint, for Normal, patients with KOA showed
significantly smaller extension throughout 26.98%–60.94% of
the gait cycle (p = 0.005) and flexion angle throughout
91.18%–99.23% of the gait cycle (p = 0.044) (Figure 7A),

smaller flexion moments throughout 41.04%–58.24% of the
gait cycle (p < 0.001) and larger extension moments
throughout 77.17%–84.87% of the gait cycle (p < 0.001)
(Figure 7B). For slip_Rec1, patients with KOA also showed
significantly smaller extension throughout 22.4%–62.01% (p =

FIGURE 5 | Comparison between patients with knee osteoarthritis (KOA) and older adults for the ankle angle and ankle moment in Normal and slip_Rec1 in the
sagittal plane. Ankle angle for patients with KOA and older adults in Normal (A), ankle moment for patients with KOA and older adults in Normal (B), ankle angle for
patients with KOA and older adults in slip_Rec1 (C), and ankle moment for patients with KOA and older adults in slip_Rec1 (D). The upper and lower panels present the
average and standard deviation of patients with KOA and older adults and the corresponding outcomes of the one-dimensional statistical parametric mapping
(SPM) scalar trajectory t-test, respectively. For each analysis, the significance level is set at 0.05, and the corresponding t* is presented as the horizontal red dashed line.
The p values associated with the supra-threshold clusters, denoted as the grey shaded regions, are presented whenever the test statistic continuum SPM{t} or SnPM{t}
exceeds the threshold.
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0.002) (Figure 7C) and smaller flexion moment throughout
40.23%–52.26% of the gait cycle (p < 0.001) (Figure 7D). The
hip ROM is presented in Table 2, with significant differences
between the two groups for slip_Rec1 (p = 0.0043).

DISCUSSION

This study investigated the compensatory strategies between
normal walking and the first recovery step following a
backward slip perturbation in patients with KOA compared
with age-matched older adults. The novelty of this study is
that the adapted gait perturbation procedure induces the
mechanism of human falls and quantifies the lower limb
response to gait compensation after the onset of a slip
perturbation. Our findings indicate that the pathological
condition of patients with KOA limits the normal gait pattern
compared with older adults. The spatiotemporal parameters, as
well as joint kinematics and kinetics of the lower extremities,
showed significant differences in response to the perturbed gait,
confirming that patients with KOA have a higher risk of falling
relative to healthy older adults. Based on the fact that no falls
occurred, effective compensatory strategies in the first step
following backward slip perturbations might act primarily
through lower extremity joints to prevent falls.

In line with previous studies (Debi et al., 2012; Sun et al., 2017;
Wiik et al., 2017), patients with KOA showed significantly shorter
step lengths relative to older adults in Normal. In this regard, the
step length of slip_Rec1 is considered to be a critical element for
improving balance recovery after a perturbation, as sufficient step
length may help restore balance and may be more effective in
avoiding falls (Debelle et al., 2021). In the current study, the step
length of slip_Rec1 decreased slightly compared with Normal,
even though statistical significance was not reached between
Normal and slip_Rec1 in either group. This indicates that the
step length is controlled within the effective range after the
occurrence of a slip perturbation. Milner et al. (2018)
indicated that the purpose of shortening step length in
patients with KOA is to reduce knee joint loading, thereby
preventing falls (Milner et al., 2018). However, patients with
KOAmay be at greater risk of falling in response to perturbations
relative to older adults, as there was also a significant difference in
the step length of slip_Rec1 between the two groups.

Gait speed is a predictor of morbidity in patients with KOA
(Alenazi et al., 2021); this factor is related to functional capacity in
adults with mobility impairments (Peel et al., 2013). Gait speed
reduction has been documented as a risk factor for falls in patients

with KOA (Purser et al., 2012; Taş et al., 2014; Gill et al., 2017). In
the current study, the gait speed of patients with KOA in Normal
was significantly smaller than that of older adults, which is
consistent with previous studies (Debi et al., 2012; Queen
et al., 2016; Wiik et al., 2017; Vennu and Misra, 2018; Alenazi
et al., 2021). The difference between the groups was still present in
slip_Rec1, whereas the gait speed of slip_Rec1 did not differ from
the Normal gait speed within the groups. This means that both
patients with KOA and older adults are within their capabilities
for speed control after a backward slip perturbation, and gait
speed does not serve as an indicative indicator of their response to
the perturbation but may be considered a predictor of increased
fall risk in KOA patients compared to healthy older adults.
Patients with KOA not only showed lower gait speed, but this
also declined over time, even after controlling for BMI and other
covariates (Vennu and Misra, 2018; Alenazi et al., 2021).
However, in the present study, the difference in BMI between
the two groups was significant (p = 0.001), which may have
contributed to the decrease in gait speed, although no correlation
analysis between the two was performed. A large population-
based cohort study found that decreased gait speed was
significantly and independently associated with BMI in
patients with symptomatic KOA (King et al., 2018). On the
other hand, knee ROM (Brinkmann and Perry, 1985),
quadriceps muscle weakness (Spinoso et al., 2018), and
quadriceps tendon stiffness (Ebihara et al., 2021) are factors
that influence the gait speed of patients with KOA. Quadriceps
tendon stretching (Ebihara et al., 2021) and resistance training (Li
et al., 2021) may be effective in improving gait speed. As gait
speed increases, step length also increases (Bovi et al., 2011;
Fukuchi et al., 2019). Therefore, we strongly recommend that
patients with KOA focus on strengthening the quadriceps
muscles, regardless of the severity of KOA. This may also be
an important part of improving gait stability.

GRFs are a screening tool for rapid detection of abnormal
joint loading (Tang et al., 2004) and a key factor in predicting
KOA severity (Kotti et al., 2014). Among patients with KOA, the
significant reduction in push-off force and push-off impulse
during the terminal stance phase makes GRFs abnormal, which
leads to an overall decrease in gait speed (Wiik et al., 2017). In
addition, it has been shown that vGRFs are lower in patients
with severe KOA (Moustakidis et al., 2010). Our results showed
that the normalized vGRFs of patients with KOA were
significantly lower than that of older adults, regardless of
whether it is in Normal or slip_Rec1. Kotti et al. (2014)
found that vGRFs reached zero after approximately 73% of
the gait cycle in healthy subjects, compared with approximately

TABLE 2 | Ankle, knee, and hip range of motion (ROM) in the sagittal plane.

Variable Normal p-value Slip_Rec1 p-value

Patients with KOA Older adults Patients with KOA Older adults

Ankle ROM (°) 25.96 ± 4.07 [22.84, 29.09] 28.69 ± 3.38 [26.82, 30.57] 0.0900 19.06 ± 4.66 [15.47, 22.64] 22.25 ± 6.99 [18.38, 26.12] 0.2380
Knee ROM (°) 51.34 ± 10.80 [43.04, 59.64] 61.86 ± 4.38 [59.43, 64.28] 0.0200* 42.01 ± 13.22 [31.85, 52.16] 55.45 ± 7.87 [51.09, 59.81] 0.0047**
Hip ROM (°) 37.61 ± 10.96 [29.19, 46.04] 43.64 ± 6.95 [39.80, 47.49] 0.1114 27.64 ± 10.17 [19.82, 35.46] 41.40 ± 10.32 [35.69, 47.12] 0.0043**

The data are presented as the mean ± standard deviation [95% Confidence Interval]. *p < 0.05, **p < 0.01. Abbreviations: KOA, knee osteoarthritis; Rec1, first recovery step.
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71% in patients with KOA (Kotti et al., 2014). The end of the
stance phase was the most distinctive difference between the
healthy individuals and patients with KOA, with the stance
phase being prolonged in healthy subjects compared with
patients with KOA (Kotti et al., 2014). Our results appear to

be contrary to the above-mentioned study, with the vGRFs
reaching zero for older adults (66% in Normal and 65% in
slip_Rec1) earlier relative to patients with KOA (71% in Normal
and 67% in slip_Rec1). These findings corroborate a previous
study (Spinoso et al., 2018). Patients with KOA remain in the

FIGURE 6 | Comparison between patients with knee osteoarthritis (KOA) and older adults for the knee angle and knee moment in Normal and slip_Rec1 in the
sagittal plane. Knee angle for patients with KOA and older adults in Normal (A), kneemoment for patients with KOA and older adults in Normal (B), knee angle for patients
with KOA and older adults in slip_Rec1 (C), and knee moment for patients with KOA and older adults in slip_Rec1 (D). The upper and lower panels present the average
and standard deviation of patients with KOA and older adults and the corresponding outcomes of the one-dimensional statistical parametric mapping (SPM) scalar
trajectory t-test, respectively. For each analysis, the significance level is set at 0.05, and the corresponding t* is presented as the horizontal red dashed line. The p values
associated with the supra-threshold clusters, denoted as the grey shaded regions, are presented whenever the test statistic continuum SPM{t} or SnPM{t} exceeds the
threshold.
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stance phase for a longer time, suggesting that the prolonged
effect of a minor overload could be comparable to the short
effect of intense joint stress (Kirkwood et al., 2011). From a
clinical perspective, the negative effects of the prolonged stance
phase are joint overload and early fatigue, leading to a gradual
increase in joint wear (Spinoso et al., 2018).

Concerning the joint ROM of the lower extremity, only the
knee joint ROM was significantly different in both Normal and
slip_Rec1. Restricted ROM of knee flexion appears to be an
important determinant of locomotor disability in patients with
KOA (Steultjens et al., 2000). Knee flexion ROM was lower in
patients with KOA than in older adults throughout the stance

FIGURE 7 | Comparison between patients with knee osteoarthritis (KOA) and older adults for the hip angle and hip moment in Normal and slip_Rec1 in the sagittal
plane. Hip angle for patients with KOA and older adults in Normal (A), hip moment for patients with KOA and older adults in Normal (B), hip angle for patients with KOA
and older adults in slip_Rec1 (C), and hipmoment for patients with KOA and older adults in slip_Rec1 (D). The upper and lower panels present the average and standard
deviation of patients with KOA and older adults and the corresponding outcomes of the one-dimensional statistical parametric mapping (SPM) scalar trajectory
t-test, respectively. For each analysis, the significance level is set at 0.05, and the corresponding t* is presented as the horizontal red dashed line. The p values associated
with the supra-threshold clusters, denoted as the grey shaded regions, are presented whenever the test statistics continuum SPM{t} or SnPM{t} exceeds the threshold.
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phase in the present study, showing decreased flexion angles at
the stance phases of loading response and terminal stance phase.
This finding enriches the existing literature (Astephen et al., 2008;
Zeni and Higginson, 2009; McCarthy et al., 2013). Likewise, the
knee flexion moment was decreased and the knee extension
moment was increased across the stance phase in patients
with KOA, a finding that is comparable to the peak moment
values in a previous study (Astephen et al., 2008). This behavior is
considered to be a compensatory strategy used by patients with
KOA in response to pain (McCarthy et al., 2013). A recent study
reported that the activation effect of the quadriceps is improved
with an increased knee joint extension moment (Hyodo et al.,
2020), which plays a critical role in improving gait speed. This
finding is supported by the significant difference between patients
with KOA and older adults across the mid-stance phase for
slip_Rec1. In our study, there were significant differences in
the knee extension angle across the terminal swing phase for
both Normal and slip_Rec1, but there were no significant
differences of flexion moment. This is in line with a previous
study in which the improvement in the knee was attributed to the
overactivity of the rectus femoris muscle (McCarthy et al., 2013).
From a biomechanical point of view, the strength of the
quadriceps might be the main contributor to the difference
between patients with KOA and older adults. In both Normal
and slip_Rec1, the quadriceps muscle seems to be insufficient to
fully extend the knee joint. Thus, it needs to be strengthened and
activated effectively to increase the ROM of the knee extensor
angles during walking. Therefore, effective training is needed to
increase the ROM of the knee extensor angles. In this context,
future studies using musculoskeletal multibody simulation are
needed to examine the differences between patients with KOA
and healthy older adults in quadriceps and other muscle forces
(Tischer et al., 2017; Kebbach et al., 2020).

There were significant changes at the ankle angles, particularly
across the mid and terminal stance phases and the pre- and initial
swing phases in Normal, most notably as a marked lack of
plantarflexion in patients with KOA. Correspondingly, for
Normal, there were lower ankle plantarflexion moments across
the terminal stance phase and the pre- and mid-swing phases in
patients with KOA, findings that are consistent with a previous
study on ankle plantarflexion moment extremes (Gonçalves et al.,
2017). It has been shown that the use of ankle plantar flexors in the
later stance phase of the gait cycle in patients with OA could lead to
increase knee joint reaction forces (Fisher et al., 1997). Therefore,
patients with KOA should try to avoid using ankle plantar flexors
during gait to reduce the compressive force on the knee joint.

For Normal, there were significant differences in the hip joint
involved in the mid/terminal stance phases and the pre- and
terminal swing phases, whereas for slip_Rec1 the differences only
involved themid/terminal stance phases and the pre-swing phase.
The main manifestation was an inadequate extension of the hip
joint, leading to an insufficient hip flexion moment. Slip-induced
falls could be exacerbated by an inability to generate sufficient
joint moments (Chandler et al., 1990; Wojcik et al., 1999; Liu and
Lockhart, 2009). Apparently, the muscles responsible for hip
extension are primarily the gluteus maximus (Neumann, 2010;
Alnahdi et al., 2012) and adductor magus (Neumann, 2010). A

recent systematic review revealed that patients with KOA have
significant hip strength deficits with hip abduction (Deasy et al.,
2016); nevertheless, there is no clear result that indicates hip joint
strength in the sagittal plane. It could be speculated from our
results that adequate joint moments generated in the sagittal
plane of the hip joint play a crucial role in both patients with KOA
and older adults. This also confirms our hypothesis that relatively
weaker hip muscle strength and inadequate activation account for
the greater susceptibility to falls in patients with KOA compared
with older adults.

Some limitations should be noted. First, the sample size of the
KOA group in the current study is relatively small, with only nine
patients including both males and females. Small samples may
result in reduced statistical power, less reliability, and inflated
effect sizes, which in turn may limit the general applicability of
the findings (Mullineaux et al., 2001). However, a recent study
suggests that a target power of 0.8 involving one-dimensional
data effects could be achieved with small to moderate sample sizes
(n = 5–40) in biomechanical experiments (Robinson et al., 2021).
Therefore, we believe that our study should be feasible. For the
follow-up study, we will recruit more patients with similar
severity to further confirm our results. Second, we did not
consider sex-induced differences in the investigated
biomechanical parameters, since Phinyomark et al. (2016)
found no significant differences in any discrete gait kinematic
variables between KOA and healthy subjects by gender
(Phinyomark et al., 2016). Furthermore, we did not directly
analyze muscle forces acting in the lower extremity, which is
an interesting aspect for future studies.

CONCLUSION

Compared with healthy older individuals, patients with KOA
have a higher risk of falling in response to a backward slip
perturbation, which could be monitored effectively by key
parameters such as hip angle, moment, knee ROM, and
vGRFs. Patients with KOA should focus on the strength and
activation of the muscles that play a major role in hip extension
during gait from another perspective, i.e., the gluteus maximus
and adductor magus, etc., and improve hip extension with
specific exercises, such as targeted resistance training and
perturbation-based stepping state training while focusing on
knee-related quadriceps strength. This could be essential in
addressing backward slip-induced gait perturbations.
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