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Background: The ability to assess adverse outcomes in patients with community-
acquired pneumonia (CAP) could improve clinical decision-making to enhance clinical
practice, but the studies remain insufficient, and similarly, few machine learning (ML)
models have been developed.

Objective:We aimed to explore the effectiveness of predicting adverse outcomes in CAP
through ML models.

Methods: A total of 2,302 adults with CAP who were prospectively recruited between
January 2012 and March 2015 across three cities in South America were extracted from
DryadData. After a 70:30 training set: test set split of the data, nine ML algorithms were
executed and their diagnostic accuracy was measured mainly by the area under the curve
(AUC). The nine ML algorithms included decision trees, random forests, extreme gradient
boosting (XGBoost), support vector machines, Naïve Bayes, K-nearest neighbors, ridge
regression, logistic regression without regularization, and neural networks. The adverse
outcomes included hospital admission, mortality, ICU admission, and one-year post-
enrollment status.

Results: The XGBoost algorithm had the best performance in predicting hospital
admission. Its AUC reached 0.921, and accuracy, precision, recall, and F1-score were
better than those of other models. In the prediction of ICU admission, a model trained with
the XGBoost algorithm showed the best performance with AUC 0.801. XGBoost algorithm
also did a good job at predicting one-year post-enrollment status. The results of AUC,
accuracy, precision, recall, and F1-score indicated the algorithm had high accuracy and
precision. In addition, the best performance was seen by the neural network algorithm
when predicting death (AUC 0.831).

Conclusions: ML algorithms, particularly the XGBoost algorithm, were feasible and
effective in predicting adverse outcomes of CAP patients. The ML models based on
available common clinical features had great potential to guide individual treatment and
subsequent clinical decisions.
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1 INTRODUCTION

Lower respiratory tract infections are a serious threat to
human health, as evidenced by injuring 471.8 million
people and causing 2.6 million deaths in 2017 alone (GBD
2017 Causes of Death Collaborators, 2018). Three cities in
South America revealed the region’s high illness burden of
adult community-acquired pneumonia (CAP), with an
incidence rate ranging from 1.76 to 7.03 per 1,000 person-
years (Lopardo et al., 2018). Obviously, CAP is still one of the
most serious clinical and public health problems in the world,
despite advances in technology and perspectives related to
CAP (Aliberti et al., 2019). Physicians frequently apply various
severity scoring systems to evaluate the prognosis of CAP
patients, and the CURB-65 score is one of the preferred scoring
systems, especially in predicting short-term mortality (Ito
et al., 2017). However, research into the predictive variables
of CAP remains a major issue in clinical practice. On the other
hand, different projects use different prognostic factors and
develop distinct prediction models for various CAP groups.
Not surprisingly, multicenter investigations are also required.

Machine learning (ML) is a field of artificial intelligence and
has many advantages. First, it enables predictions to be made
using a range of approaches. Second, ML-based techniques
could often be rigorously validated compared with that
traditional statistical methods (Li R. et al., 2020). Third,
model development is more data-driven and readily
accommodates a large number of variables (Obermeyer and
Emanuel, 2016), which allows the identification of previously
unnoticed features to improve predictions (Woodman et al.,
2021).

Most studies have reported the application of ML algorithms to
novel coronavirus disease (COVID-19), but few to CAP (Mondal
et al., 2021; Podder et al., 2021). Furthermore, manyML studies have
focused on disease diagnosis; For example, ML could be applied to
distinguish COVID-19 from CAP (Li L. et al., 2020; Podder et al.,
2021; Qi et al., 2021), rather than on the prediction of outcomes.
There are few studies that use machine learning to predict the dire
outcomes in patients with CAP, especially one-year post-enrollment
status. Therefore, in this study, we performed nine machine learning
algorithms to evaluate the adverse outcomes of adult CAP patients.

The primary purpose was to develop feasible models based on
multicenter data to predict specific adverse outcomes (including
hospital admission, mortality, ICU admission, and one-year post-
enrollment status), rather than to compare various learning
algorithms as a research endpoint. Moreover, we hoped that
the ML models based on available and common clinical-related
feature variables developed in the study could be simple and
accurate when medical practitioners assessed the prognosis of
CAP patients.

2 PARTICIPANTS AND METHODS

2.1 Study Participants and Design
Through the PLOS ONE and DATADRYAD policy, we
retrieved the raw data encompassing 2,302 adults with

CAP who were prospectively recruited between January
2012 and March 2015 and performed a secondary analysis.
(Lopardo et al., 2018) conducted a prospective cohort study
of adult individuals across three cities in South America
[General Roca (Argentina), Rivera (Uruguay), and
Concepción (Paraguay)]. Participants were eligible for
inclusion in the study if they 1) age ≥18 years old, 2)
exited evidence of an acute lower respiratory infection,
and 3) manifestation of radiologically confirmed
pneumonia, defined as new or progressive pulmonary
infiltrate(s) consistent with pneumonia detected on chest
radiography or CT scan, and specific inclusion criteria can
be found in the study by Lopardo et al. (Lopardo et al., 2018).

We did not infringe the rights of the authors when we used
these data for secondary analysis, due to the original research has
been ethically approved, and its authors have relinquished all
copyright and related proprietary rights of these data. Therefore,
no separate ethical approval was required for this study.

2.2 Outcome Definitions
Hospital admission, mortality, ICU admission, and one-year
post-enrollment status were enrolled as outcomes in this
study. One-year post-enrollment status indicated whether the
CAP patients died at the one-year follow-up.

2.3 Candidate Predictors
34 clinically relevant variables were included in this study. The
variables incorporated into our models included clinical signs (3
variables), clinical characteristics (6 variables), laboratory tests (8
variables), and comorbidities (17 variables).

2.4 Machine Learning Algorithms
The first stage in the data preprocessing step was to impute the
missing values of continuous features such as clinical
characteristics and laboratory testing using the feature’s mean
value. Then, the data was divided into two sets at random in
the ratio of 70:30, with the training set used to construct amodel for
each algorithm, and the test set used for a final evaluation of the
accuracy of each algorithm. The prediction models were developed
utilizing a systematic machine learning-based framework, and nine
different machine learning algorithms included decision trees
(DTs), random forests (RFs), eXtreme Gradient Boosting
(XGBoost), support vector machines (SVM), naïve Bayes,
K-nearest neighbors (KNN), ridge regression (logistic regression
with L2 regularization), logistic regression without regularization,
and neural networks (NNs). All features were employed, but no
interactions or higher-order words were created.

A grid search of hyper-parameters was implemented for each
algorithm to determine the optimal set of hyper-parameters for
training data accuracy, and each grid search was carried out by
using 10-fold cross-validation. The process was repeated 10 times,
with each fold being used for one of the 10 training steps and for
evaluating the model accuracy of the training data. Throughout the
grid search, we employed the AUC as the accuracy statistic which is
the most commonly used in clinical settings for comparison with
other studies. However, for the completeness and accuracy of
results, accuracy, precision, recall, and F1-score were also reported.
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TABLE 1 | Characteristics of the dataset used for machine learning before
imputation.

All n

n = 2,302

Clinical signs
Cough (%) 2,302
No 146 (6.34%)
Yes 2,156 (93.7%)
Dyspnea, tachypnoea, or hypoxemia (%) 2,302
No 543 (23.6%)
Yes 1,759 (76.4%)
Fever or hypothermia (%) 2,302
No 805 (35.0%)
Yes 1,497 (65.0%)

Clinical characteristics
Age (year) (mean (SD)) 63.3 (19.7) 2,302
Respiratory frequency (/min) (mean (SD)) 28.0 (20.3) 2,100
Heart rate (/min) (mean (SD)) 91.1 (16.5) 2,125
Systolic blood pressure (SBP) (mmHg) (mean (SD)) 120 (24.5) 2,134
Diastolic blood pressure (DBP) (mmHg) (mean (SD)) 73.6 (16.5) 2,133
CURB-65 (%) 1,449
Uncertain/Unknown 130 (8.97%)
1 280 (19.3%)
2 562 (38.8%)
3 386 (26.6%)
4 58 (4.00%)
5 33 (2.28%)

Laboratory tests
Hematocrit values (%) (mean (SD)) 37.4 (11.0) 1,790
Hemoglobin values (g/dl) (mean (SD)) 12.6 (7.02) 1,765
Leukocytes values (10̂9/L) (mean (SD)) 14.6 (76.2) 1,811
Segmented neutrophils values (%) (mean (SD)) 79.1 (12.8) 1,673
Platelet values (10̂9/L) (mean (SD)) 879 (23,412) 1,377
Creatinine (mg/dl) (mean (SD)) 1.56 (4.55) 1,434
BUN (mg/dl) (mean (SD)) 53.0 (38.8) 1,535
Glucose (mg/dl) (mean (SD)) 137 (76.0) 1,377

Comorbidity
Chronic obstructive pulmonary disease (COPD) (%) 2,302
Uncertain/unknown 59 (2.56%)
No 1,898 (82.5%)
Yes 345 (15.0%)
Heart disease (%) 2,302
Uncertain/unknown 25 (1.09%)
No 1,288 (56.0%)
Yes 989 (43.0%)
Diabetes (%) 2,302
Uncertain/unknown 16 (0.70%)
No 1,924 (83.6%)
Yes 362 (15.7%)
Immunosuppression (%) 2,302
Uncertain/unknown 12 (0.52%)
No 2,151 (93.4%)
Yes 139 (6.04%)
Malignancy (%) 2,302
Uncertain/unknown 12 (0.52%)
No 2,171 (94.3%)
Yes 119 (5.17%)
Cerebrovascular disease (CBVD) (%) 2,302
Uncertain/unknown 15 (0.65%)
No 2,126 (92.4%)
Yes 161 (6.99%)
Kidney disease (%) 2,302
Uncertain/unknown 15 (0.65%)
No 2,130 (92.5%)

(Continued in next column)

TABLE 1 | (Continued) Characteristics of the dataset used for machine learning
before imputation.

All n

n = 2,302

Yes 157 (6.82%)
Liver disease (%) 2,302
Uncertain/unknown 9 (0.39%)
No 2,234 (97.0%)
Yes 59 (2.56%)
Intravenous drug use (%) 2,302
Uncertain/unknown 8 (0.35%)
No 2,284 (99.2%)
Yes 10 (0.43%)
Alcoholism 2,302
Uncertain/unknown 30 (1.30%)
No 2,134 (92.7%)
Yes 138 (5.99%)
Neurological psychiatric disorder (%) 2,302
Uncertain/unknown 33 (1.43%)
No 1,927 (83.7%)
Yes 342 (14.9%)
Suspected aspiration (%) 2,302
Uncertain/unknown 20 (0.87%)
No 2,223 (96.6%)
Yes 59 (2.56%)
Hospitalization due to CAP in previous year (%) 2,302
Uncertain/unknown 9 (0.39%)
No 2,004 (87.1%)
Yes 289 (12.6%)
Overcrowding (%) 2,302
Uncertain/unknown 39 (1.69%)
No 2,211 (96.0%)
Yes 52 (2.26%)
Smoking (%) 2,302
Uncertain/unknown 175 (7.60%)
No 1,284 (55.8%)
Yes 843 (36.6%)
Received flu shot in the last 12 months (%) 2,302
Uncertain/unknown 34 (1.48%)
No 1,559 (67.7%)
Yes 709 (30.8%)
Received antipneumococcic vaccine at any given

time (%)
2,302

Uncertain/unknown 30 (1.30%)
No 1,869 (81.2%)
Yes 403 (17.5%)

Outcomes
Hospital admission (%) 2,302
Uncertain/unknown 2 (0.09%)
No 735 (31.9%)
Yes 1,565 (68.0%)
Death (%) 2,302
Uncertain/unknown 21 (0.91%)
No 2,004 (87.1%)
Yes 277 (12.0%)
ICU admission (%) 2,302
Uncertain/unknown 72 (3.13%)
No 1,887 (82.0%)
Yes 343 (14.9%)
One-year post-enrollment status (%) 2,302
Uncertain/unknown 144 (6.26%)
No 537 (23.3%)
Yes 1,621 (70.4%)
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2.5 Statistical Analysis
All analyses were performed using Python version 3.8.8 and R
version 4.1.1. The XGBoost algorithm was built with its own
Python package, while other machine learning algorithms were
developed using Python’s scikit-learn library.

3 RESULTS

3.1 Characteristics of the Datasets Used for
Machine Learning
A total of 2,302 patients were enrolled in the study. In the
cohort, hospital admission occurred in 1,565 (68.0%) patients,
death in 277 (12.0%) patients, ICU admission occurred in 343
(14.9%) patients, and one-year post-enrollment status in 1,621

TABLE 2 | Patient characteristics according to hospital admission stratification.

Hospital admission p
overallNo Yes

n = 735 n = 1,565

Cough (%) 0.001
No 28 (3.81%) 118 (7.54%)
Yes 707 (96.2%) 1,447 (92.5%)
Dyspnea, tachypnoea, or
hypoxemia (%)

<0.001

No 250 (34.0%) 292 (18.7%)
Yes 485 (66.0%) 1,273 (81.3%)
Fever or hypothermia (%) <0.001
No 205 (27.9%) 600 (38.3%)
Yes 530 (72.1%) 965 (61.7%)
Age (year) (mean (SD)) 54.7 (19.6) 67.4 (18.4) <0.001
Respiratory frequency (/min)
(mean (SD))

29.6 (23.9) 27.3 (16.7) 0.019

Heart rate (/min) (mean (SD)) 89.0 (12.1) 92.0 (17.3) <0.001
SBP (mmHg) (mean (SD)) 120 (18.2) 120 (25.7) 0.944
DBP (mmHg) (mean (SD)) 77.0 (16.6) 72.0 (15.2) <0.001
CURB-65 (mean (SD)) 2.16 (0.36) 2.28 (0.80) <0.001
Hematocrit values (%) (mean (SD)) 38.1 (3.23) 37.1 (11.5) 0.001
Hemoglobin values (g/dl) (mean (SD)) 13.2 (7.72) 12.4 (5.23) 0.005
Leukocytes values (10̂9/L)
(mean (SD))

13.5 (3.37) 15.1 (82.0) 0.425

Segmented neutrophils values (%)
(mean (SD))

79.2 (5.72) 79.1 (12.6) 0.796

Platelet values (10̂9/L) (mean (SD)) 1,861 (32,030) 418 (296) 0.222
Creatinine (mg/dl) (mean (SD)) 1.48 (0.54) 1.60 (4.34) 0.257
BUN (mg/dl) (mean (SD)) 50.1 (15.0) 54.3 (37.0) <0.001
Glucose (mg/dl) (mean (SD)) 134 (30.5) 138 (68.1) 0.105
COPD (%) <0.001
Uncertain/unknown 19 (2.59%) 39 (2.49%)
No 645 (87.8%) 1,252 (80.0%)
Yes 71 (9.66%) 274 (17.5%)
Heart disease (%) <0.001
Uncertain/unknown 2 (0.27%) 23 (1.47%)
No 508 (69.1%) 780 (49.8%)
Yes 225 (30.6%) 762 (48.7%)
Diabetes (%) <0.001
Uncertain/unknown 6 (0.82%) 10 (0.64%)
No 662 (90.1%) 1,260 (80.5%)
Yes 67 (9.12%) 295 (18.8%)
Immunosuppression (%) 0.001
Uncertain/unknown 2 (0.27%) 10 (0.64%)
No 707 (96.2%) 1,442 (92.1%)
Yes 26 (3.54%) 113 (7.22%)
Malignancy (%) <0.001
Uncertain/unknown 5 (0.68%) 7 (0.45%)
No 717 (97.6%) 1,452 (92.8%)
Yes 13 (1.77%) 106 (6.77%)
CBVD (%) <0.001
Uncertain/unknown 3 (0.41%) 12 (0.77%)
No 712 (96.9%) 1,412 (90.2%)
Yes 20 (2.72%) 141 (9.01%)
Kidney disease (%) <0.001
Uncertain/unknown 6 (0.82%) 9 (0.58%)
No 708 (96.3%) 1,421 (90.8%)
Yes 21 (2.86%) 135 (8.63%)
Liver disease (%) 0.009
Uncertain/unknown 5 (0.68%) 4 (0.26%)
No 720 (98.0%) 1,512 (96.6%)
Yes 10 (1.36%) 49 (3.13%)
Intravenous drug use (%) 0.252

(Continued in next column)

TABLE 2 | (Continued) Patient characteristics according to hospital admission
stratification.

Hospital admission p
overallNo Yes

n = 735 n = 1,565

Uncertain/unknown 4 (0.54%) 3 (0.19%)
No 729 (99.2%) 1,554 (99.3%)
Yes 2 (0.27%) 8 (0.51%)
Alcoholism (%) 0.001
Uncertain/unknown 7 (0.95%) 23 (1.47%)
No 703 (95.6%) 1,429 (91.3%)
Yes 25 (3.40%) 113 (7.22%)
Neurological psychiatric disorder (%) <0.001
Uncertain/unknown 5 (0.68%) 28 (1.79%)
No 699 (95.1%) 1,227 (78.4%)
Yes 31 (4.22%) 310 (19.8%)
Suspected aspiration (%) <0.001
Uncertain/unknown 4 (0.54%) 16 (1.02%)
No 729 (99.2%) 1,492 (95.3%)
Yes 2 (0.27%) 57 (3.64%)
Hospitalization due to CAP in
previous year (%)

<0.001

Uncertain/unknown 3 (0.41%) 6 (0.38%)
No 685 (93.2%) 1,318 (84.2%)
Yes 47 (6.39%) 241 (15.4%)
Overcrowding (%) 0.797
Uncertain/unknown 14 (1.90%) 24 (1.53%)
No 705 (95.9%) 1,505 (96.2%)
Yes 16 (2.18%) 36 (2.30%)
Smoking (%) 0.009
Uncertain/unknown 39 (5.31%) 136 (8.69%)
No 432 (58.8%) 850 (54.3%)
Yes 264 (35.9%) 579 (37.0%)
Received flu shot in the last
12 months (%)

0.092

Uncertain/unknown 5 (0.68%) 29 (1.85%)
No 504 (68.6%) 1,054 (67.3%)
Yes 226 (30.7%) 482 (30.8%)
Received antipneumococcic vaccine
at any given time (%)

<0.001

Uncertain/unknown 4 (0.54%) 26 (1.66%)
No 633 (86.1%) 1,234 (78.8%)
Yes 98 (13.3%) 305 (19.5%)
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(70.4%) patients. For age and clinical signs, there were no
missing values. There were some missing values in laboratory
tests and comorbidity among the variables utilized for machine
learning. The patients’ characteristics were listed in Table 1
before the mean imputation for missing values. Moreover, the
characteristics of the patients after mean imputation for missing
values were also described according to four specific outcomes.
According to hospital admission stratification, there were
significant differences between the two groups for all features
except for systolic blood pressure, leukocytes values, segmented
neutrophils values, platelet values, creatinine, glucose, the
history of intravenous drug use, the history of overcrowding,
and the history of the received flu shot in the last 12 months
(Table 2). And we could get similar results when stratifying
based on other outcomes (Supplementary Tables S1–S3).

3.2 Performance of the Machine Learning
Model
3.2.1 Outcome 1: Hospital Admission
The test accuracy results were shown in Table 3 and Figure 1.
The AUC for XGBoost (AUC = 0.921) was considerably higher
than other ML algorithms. The results of the accuracy score,
precision score, recall score, and F1-score for the nine ML
algorithms were also provided. Overall, the best-performing
ML algorithm was XGBoost. As with the AUC, values for
accuracy score and precision score were comparable across the
various models with a range of 0.716 (Naïve Bayes) to 0.877
(XGBoost) for accuracy score, a range of 0.816 (Ridge) to 0.9
(KNN) for the precision score, a range of 0.662 (Naïve Bayes)
to 0.957 (random forest) for recall score and a range of 0.801
(KNN) to 0.911 (XGBoost) for F1-score.

3.2.2 Outcome 2: ICU Admission
Although machine learning algorithms did not perform as well in
the prediction of ICU admission as they did in the prediction of
other outcomes, there were still the most, but not all, of the ML
algorithms with AUC values > 0.7 (Table 3 and Figure 1).
Furthermore, the AUC for XGBoost (AUC = 0.801) was
considerably higher than other ML algorithms. Unfortunately,
the recall scores and F1-score did not farewell.

3.2.3 Outcome 3: Clinical Evolution (Death)
For the prediction of death, the neural network had a much
higher AUC than other machine learning methods (AUC =
0.831) (Table 4 and Figure 2). Table 4 showed that the
precision, recall, and F1-score were all rather low, although
the model had a high accuracy score of 0.893. We also noticed
that XGBoost displayed the second highest AUC of 0.825.

3.2.4 Outcome 4: One-Year Post-Enrollment Status
(Death)
Overall, the nine machine learning algorithms did a good job at
predicting one-year post-enrollment status. Similarly, the AUC for
XGBoost (AUC = 0.837) was much higher than that of
other machine learning algorithms. Except for the AUC values,
the results of accuracy, precision, recall, and F1-score also indicated
that the nine ML algorithms had high accuracy and precision, with
values for accuracy and precision being comparable across the
various models with a range of 0.736 (Naïve Bayes) to 0.816
(XGBoost) for accuracy score, a range of 0.798 (KNN) to 0.858
(Naïve Bayes) for the precision score, a range of 0.815 (Naïve Bayes)
to 0.959 (KNN) for recall and a range of 0.815 (Naïve Bayes) to 0.883
(XGBoost) for F1-score.

3.3 Feature Importance and Distributions
Given the high accuracy and precision of the XGBoost for the
prediction of all four outcomes, the feature importance plot of the
XGBoost algorithm for the test dataset is also shown. For the
prediction of hospital admission, creatinine had the highest feature
importance. For the prediction of ICU admission, heart rate had
the highest feature importance. For the prediction of death, age,
and CURB-65 score had the highest feature importance. For the
prediction of one-year post-enrollment status, age and CURB-65
score had the highest feature importance.

4 DISCUSSION

Machine learning has become increasingly applied in medicine
because of its computational power and the availability of massive
new datasets. Most of the current research about machine
learning focuses on distinguishing CAP from other diseases,

TABLE 3 | Diagnostic accuracy for the nine machine learning algorithms with the test dataset for the prediction of hospital admission and ICU admission.

Hospital admission ICU admission

Accuracy
score

Precision
score

Recall
score

F1-
score

AUC Accuracy
score

Precision
score

Recall
score

F1-
score

AUC

Ridge 0.799 0.816 0.902 0.857 0.836 0.846 0.444 0.039 0.072 0.711
DT 0.854 0.857 0.937 0.895 0.892 0.848 0.500 0.098 0.164 0.745
RF 0.857 0.848 0.957 0.899 0.912 0.846 0.455 0.049 0.088 0.793
XGB 0.877 0.879 0.946 0.911 0.921 0.846 0.478 0.108 0.176 0.801
KNN 0.761 0.900 0.722 0.801 0.871 0.854 0.667 0.078 0.140 0.660
NN 0.832 0.856 0.900 0.877 0.883 0.839 0.312 0.049 0.085 0.694
SVM 0.810 0.833 0.896 0.863 0.861 0.854 0.833 0.049 0.093 0.759
NB 0.716 0.884 0.662 0.757 0.851 0.205 0.157 0.961 0.269 0.707
LR 0.778 0.822 0.852 0.837 0.817 0.831 0.359 0.137 0.199 0.686

DT, KNN, LR, NB, NN, RF, Ridge; SVM, and XGB represented decision tree, K-nearest neighbors, logistic regression without penalization, Naive Bayes, neural network, random forest,
ridge regression, support vector machine, and eXtreme gradient boosting respectively.
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such as COVID-19 (Li L. et al., 2020), while studies predicting the
outcomes of pneumonia based on commonly used clinical test
data are limited. In this study, we applied a systematic machine
learning framework to data from 2,302 adult CAP patients in
three cities in South America to develop and test predictive
models that could potentially be used in clinical settings to
assist with risk management. And a grid search of the
hyperparameter space and 10-fold cross-validation for each
algorithm was performed to ensure the reliability of the results.

As a result, ourmodels offered very high accuracy in detecting the
adverse outcomes of CAP patients. This study predicted multiple
adverse of pneumonia, which was innovative noticeably. In detail,

the test data accuracy using the clinical signs and clinical
characteristics and laboratory tests and comorbidities reached an
AUC of 0.921 using the XGBoost algorithm for the prediction of
hospital admission, an AUC of 0.831 using the neural network
algorithm for the prediction of death, an AUC of 0.801 using
XGBoost algorithm for the prediction of ICU admission, and an
AUC of 0.837 using XGBoost algorithm for the prediction of one-
year post-enrollment status.

Tomake themodels implementable in clinical practice, themodels
were trained using variables commonly available to medical
practitioners. We included four adverse outcomes and used 34
variables to generate the predictive models for adverse outcomes.

FIGURE 1 | Test accuracy of the nine machine learning algorithms for the prediction of hospital admission, ICU admission, death and one-year enrollment status.
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Then, the medical team could make a judgment and take immediate
action. Potentially important implications of the development of
predictive models for optimizing post-hospital monitoring and the
quality of care (Brajer et al., 2020; D’Ascenzo et al., 2021).

At present, only a few studies have reported the application of
machine learning in pneumonia-related studies. And several studies

have employed machine learning methods to predict mortality from
pneumonia (Cooper et al., 1997; Wiemken et al., 2017; Kang et al.,
2020), while other adverse outcomes have received less attention,
especially one-year post-enrollment status. Feng et al. built a three-
layer fully connected neural network to classify the prognosis of CAP
patients with high accuracy and good generalizability by using ML

TABLE 4 | Diagnostic accuracy for the nine machine learning algorithms with the test dataset for the prediction of death and one-year post-enrollment status.

Death One-year post-enrollment status

Accuracy
score

Precision
score

Recall
score

F1-
score

AUC Accuracy
score

Precision
score

Recall
score

F1-
score

AUC

Ridge 0.892 0.447 0.243 0.315 0.817 0.802 0.814 0.955 0.879 0.802
DT 0.876 0.368 0.300 0.331 0.807 0.775 0.801 0.930 0.861 0.749
RF 0.899 0.524 0.157 0.242 0.791 0.802 0.819 0.944 0.877 0.825
XGB 0.896 0.480 0.171 0.253 0.825 0.816 0.844 0.926 0.883 0.837
KNN 0.892 0.375 0.086 0.140 0.701 0.787 0.798 0.959 0.871 0.749
NN 0.893 0.465 0.286 0.354 0.831 0.810 0.843 0.918 0.879 0.810
SVM 0.895 0.469 0.214 0.294 0.763 0.804 0.827 0.934 0.877 0.802
NB 0.705 0.203 0.643 0.308 0.723 0.736 0.858 0.775 0.815 0.771
LR 0.896 0.488 0.286 0.360 0.789 0.804 0.842 0.909 0.874 0.808

FIGURE 2 | Feature importance plot for the eXtreme gradient boosting algorithm using test data for the prediction of hospital admission, ICU admission, death and
one-year post-enrollment status.
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techniques to predict CAP mortality (Feng et al., 2021). The
proposed ML-based models including the CURB-65 score could
accurately predict the death within 30 days or initial admission to the
ICU from the emergency department with an AUC of 0.844 (Kang
et al., 2020). Cooper et al. constructed 11 statistical and machine
learningmodels that predict dire outcomes for CAP patients (such as
mortality or severe clinical complications) and discovered an
innovative neural network learning method that induced a model
using Multitask and Learning along with Rank-prop learning
(MTLR) with the largest ROC area (Cooper et al., 2005).

Models that highlight vital signs and laboratory testsmay bemore
valid in alerting healthcare workers to potentially modifiable organ
failure than models that rely heavily on comorbidities and
demographic characteristics (Jones et al., 2021). Based on this
spirit, our study established the accuracy of computerized
prediction and revealed that the XGBoost algorithm was reliable.
Moreover, the XGBoost algorithm is one of the powerful ML
algorithms that may also align more closely with human thought
(Fong et al., 2018). We found that many mainstream prognostic
features still held important weight. The feature importance plots for
the XGBoost algorithm for the prediction of admission, death, and
one-year post-enrollment status showed the importance of CURB-
65, which all ranked in the top 5. The CURB-65 score is one of the
most commonly used predictive models for the classification of
patients suffering from fever, dyspnea, and upper/lower respiratory
symptoms (e.g., coughing). CURB-65 is much less computationally
time-consuming; however, it has a disadvantage in that it contains
only five variables (Buising et al., 2006; Capelastegui et al., 2006;Man
et al., 2007). But in the cohort of elderly patients hospitalized for
pneumonia in Geneva University Hospitals, the CURB-65 score was
not predictive of one-year mortality (Malézieux-Picard et al., 2021).

It is incorrect to conclude that amodel is a prediction of events. In
fact, a model is a summarization of the collective clinical experience
of events that happen in patients with similar clinical characteristics
(Weick and Roberts, 1993). The value of prediction is that it places
the clinical features of a new patient in the context of that clinical
experience, providing a common basis for communication among
clinicians, especially for those unfamiliar with each other (Jones et al.,
2021). Credible models are essential to providing reliable, efficient,
and equitable health care, and the models we have built are paving
the way for that process.

This study has several limitations. First, despite the fact that patient
data were obtained prospectively, missing values were unavoidable,
and these missing values would skew the study’s conclusions. Second,
in comparison with standard statistical models, ML methods have
been found to generally require bigger data sets and, in particular, a
higher number of events before the stable measures of prediction
performance could be obtained (van der Ploeg et al., 2014).
Despite this limitation, we still achieved moderate to high
validation accuracy using data sets with a relatively limited
number of events. Third, although 34 variables were included
in this study, they still did not cover very comprehensively.
Moreover, four adverse outcomes were investigated in the
present study, but there are still many adverse outcomes
that occur in clinical practice that have not been addressed.

The prospective validation of operational data is a critical first
step in assessing the real-world performance of machine learning

models. In the future, we intend to undertake prospective
multicenter large-sample research to further prove the model’s
utility. Furthermore, more clinical features including imaging
features and more adverse outcomes should be included.

5 CONCLUSION

In the study, we have developed and tested the machine learning-
basedmodel to predict hospital admission, mortality, ICU admission,
and one-year post-enrollment status in CAP patients. The results
revealed that the ML algorithms (especially the XGBoost algorithm)
were feasible and effective. There is potential to improve clinical
practice if ML models based on available and common clinical-
related feature variables are incorporated into future clinical decision
aids when assessing the prognosis of patients withCAP. Furthermore,
prospectivemulticenter large-sample research includingmore clinical
features is required.
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