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As a microenvironment where cells reside, the extracellular matrix (ECM) has a complex
network structure and appropriate mechanical properties to provide structural and
biochemical support for the surrounding cells. In tissue engineering, the ECM and its
derivatives can mitigate foreign body responses by presenting ECM molecules at the
interface between materials and tissues. With the widespread application of three-
dimensional (3D) bioprinting, the use of the ECM and its derivative bioinks for 3D
bioprinting to replicate biomimetic and complex tissue structures has become an
innovative and successful strategy in medical fields. In this review, we summarize the
significance and recent progress of ECM-based biomaterials in 3D bioprinting. Then, we
discuss the most relevant applications of ECM-based biomaterials in 3D bioprinting, such
as tissue regeneration and cancer research. Furthermore, we present the status of ECM-
based biomaterials in current research and discuss future development prospects.
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INTRODUCTION

Three-dimensional (3D) printing, also called additive manufacturing, is a rapid prototyping
technology that creates 3D physical objects layer by layer (Chatterjee and Ghosh, 2020). Since
the invention of the first 3D printing technology, stereolithography, in 1983, numerous 3D
printing technologies have been developed (Kulkarni et al., 2000). According to different
principles, the American Society for Testing and Materials International Standard has classified
3D printing technologies into seven categories: 1) material extrusion, 2) powder bed fusion, 3)
vat photopolymerization, 4) material jetting, 5) binder jetting, 6) sheet lamination, and 7)
energy deposition. These technologies are described in Table 1 and illustrated in Figure 1. 3D
printing can quickly fabricate various structures with little waste of material. Coupled with the
gradual reduction of the cost and personalized customization, 3D printing has become widely
used in many fields, especially in medical fields, such as tissue engineering (Ma et al., 2022).
Thus, 3D bioprinting came into being. An important branch of 3D printing, 3D bioprinting is a
combination of 3D printing and biology (Munaz et al., 2016). It generates biological tissues or
organs using bioinks to achieve the purpose of mimicking their natural counterparts in
structure and function (Figure 2) (Matai et al., 2020). The natural or synthetic biomaterials
loaded with living cells are called bioink, and are the raw material of 3D bioprinting processes
(Hospodiuk et al., 2017). Therefore, the selection of bioinks is a basic factor to be considered in
3D bioprinting, and it is also one of the biggest challenges. Such materials must have
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TABLE 1 | Summaries of seven types of 3D printing technologies (Hubs, 2018; Additive Manufacturing Research Group, 2019; Carew and Erlrrickson, 2020).

Categories

Material extrusion

Powder bed fusion

Vat

Typical technologies

Fused Deposition
Modeling (FDM)

Selective laser
sintering (SLS)

Stereolithography (SLA)

photopolymerization

Material jetting

Binder jetting

Sheet lamination

Direct energy
deposition

Material jetting (MJ)

Binder jetting (BJ)

Laminated object
manufacturing (LOM)

Direct energy
deposition (DED)

Description

The material is melted, and deposited via a

heated nozzle

The powder of material is fused by a high

energy source

Liquid photopolymer material is selectively

cured using a light source

The droplets of liquid photosensitive
fusing agent are deposited on a powder

bed and cured by light

The liquid binding agent is deposited on a

Typical materials

Thermoplastics

Thermoplastics, metal
powders, caramic
powders

Liquid resin

Liquid photopolymer
material

Liguid bonding agent

bed of powder material, which is later

sintered together

The sheets of material are cut to shape

and laminated together

The material is fused simultaneously

deposited

Paper, metal, plastic

Polymer, ceramic, metal

Characteristics

Advantages

Common material
Low cost

No support Scalable

Relatively quick Fine
details

High accuracy
Multiple material

No support No
warping or shrinking

Multi-material layers
Fast

Range of materials
Larger parts

Disadvantages

Rough surface,
Warping

Higher cost

Require supports UV
sensitive

High cost Brittle

Post processing

Limited materials

High cost Poor
surface

Material Extrusion:
Fused Deposition Modelling

Vat Polymerisation:
Stereolithography

Binder Jetting

Material Jetting

BJ MJ
(FDM) (SLA) (BJ) (MJ)
: UV Laser
Build material
Liquid binder Support material
Print heads
Heat nozzle Recoating
blade Y
UV lights
— Print head
i Platform l Platform l Platform l Platform
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FIGURE 1 | llustrations of the seven types of 3D printing technologies. Adapted with permission from (Carew and Errickson, 2020).
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FIGURE 2 | The schematic of 3D bioprinting.
good printability, biocompatibility, and excellent mechanical
and degradation properties (Mao H. et al., 2020). e A
At present, the materials used for 3D bioprinting are Glycosaminoglycan  or laminin Hyaluronic  ps100glycan

generally divided into two categories: naturally derived
biomaterials (such as collagen, hyaluronic acid, and gelatin)
and synthetic biomaterials (such as polylactic acid,
polycaprolactone, and polyurethane). These materials have
different advantages and disadvantages. The naturally derived
biomaterials have good biocompatibility, but their mechanical
properties are weak. Despite the poor biocompatibility of
synthetic biomaterials, they have adjustable properties
(Park et al., 2022). To successfully construct a functional
living tissue microenvironment, it is necessary to simulate
the composition and distribution of target tissues or organs.
No single material can replace all the functions of native
tissues and organs.

Biological tissues are composed of various cell types and
the extracellular matrix (ECM). The ECM is a 3D network
consisting of extracellular macromolecules and minerals. One
of its roles is to provide structural and biochemical support to
surrounding cells (Xing et al., 2020). The ECM has several
applications in improving wound healing and tissue
reconstruction. Especially in tissue regeneration, the
biocompatibility, and degradation properties of the ECM
and its derivatives are considered superior to those of
synthetic materials. Compared to synthetic materials, ECM-
based biopolymers can mitigate foreign body responses by
presenting the ECM molecules at the interface between the
material and tissue, and can also evoke innate immune
responses to replace the implanted matrices with new
ECMs. Therefore, ECM-based biomaterials are of great
significance in 3D bioprinting (Xing et al., 2020).

In this review, we first discuss ECM-based 3D bioprinting
materials, including natural ECM, ECM derivatives, and ECM

', 1' acid\ -

Interaction

Extracellular
matrix

Cytoplasmic

~
..o"' S
oo0 membrane

FIGURE 3 | The 3D structure model of the natural ECM. Reprinted with
permission from (Aghmiuni and Khiavi, 2017).

composites and blends. Then, some applications of ECM-
based biomaterials are summarized along with the most recent
research works. Finally, the challenges and future prospects
for ECM-based 3D bioprinting materials are discussed.

Extracellular Matrix-Based 3D Bioprinting

Materials

The ECM is an intricate network composed of an array of
multidomain macromolecules organized in a cell/tissue-
specific manner. The structures and properties of the ECM
vary from cell to cell (Yue, 2014). For example, the ECM of the
cornea is a transparent and soft sheet, and the ECM of the
bone is hard like a rock. Therefore, the research and
development of 3D printing materials with native ECM
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FIGURE 4 | Different ECM-based biomaterial types and resulted constructs. (A) Tube construct printed with collagen. Adapted with permission from (Lee et al.,
2019). (B) Scaffold printed with collagen/heparin sulfate. Adapted with permission from (Jiang et al., 2020). (C) The non-porous human L3 vertebrae printed with MeHA.
Adapted with permission from (Poldervaart et al., 2017). (D) The scaffolds printed with gelatin-alginate-hyaluronic acid. Adapted with permission from (Bertuola et al.,
2021). (E) The nerve guidance conduits printed with GelMA. Adapted with permission from (Ye et al., 2020). (F) The scaffold printed with gelMA and hydroxyapatite

(Das and Basu, 2022). (G) The scaffold printed with skin-derived dECM bioink. Adapted with permission from (Kim et al., 2018). (H) The scaffold printed with liver-derived
dECM/PCL bioink. Adapted with permission from (Elomaa et al., 2020). (I) The dual cross-linked constructs printed with oxidized hyaluronate (OHA)/glycol chitosan
(GC)/adipic acid dihydrazide (ADH)/hyaluronate-alginate hybrid (HAH). The gel constructs maintained their original dimension after 3weeks at 37°. Adapted with
permission from (Kim et al., 2022). (J) Nose-shaped construct printed with PU-gelatin. Adapted with permission from (Hsieh and Hsu, 2019). Copyright (2019) American
Chemical Society. (K) The scaffold printed with tetrameric peptides as bioinks. Adapted with permission from (Rauf et al., 2021).
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components, structures, and biological properties are very
important.

Native Extracellular Matrix and Derived

Biomaterials

As the natural microenvironment in which cells reside, the ECM
of each tissue and organ is unique in both physicochemical and
biological properties (Watt and Huck, 2013). The ECM provides
cells with mechanical support and biochemical signals to promote
cell proliferation and differentiation, among other functions
(Gattazzo et al, 2014). The natural ECM obtained from
human skin, heart, lung, and other organisms through
mechanical disruption, enzymatic digestion, chromatography,
and precipitation has been studied by researchers in the
context of 3D bioprinting. For example, Kupfer et al. (2020)
used an ECM-based bioink containing collagen methacrylate,
laminin-111, and fibronectin to print human-induced

pluripotent stem cell-laden structures with two chambers and
a vessel inlet and outlet. After the stem cells proliferated to
sufficient density, they demonstrated the function of the
resulting human luminal muscle pump. This is important for
studying cardiac function and remodeling in health and disease.

The native ECM is complex in terms of its composition, and it
mainly contains collagen, non-collagen glycoproteins (such as
fibronectin, laminin, and tenascin), glycosaminoglycans (such as
hyaluronic acid), and proteoaminoglycans (such as asperlecan
and aggrecan) (Figure 3) (Choudhury et al., 2018; Dzobo et al,,
2019). In 3D bioprinting, bioinks containing isolated ECM
components have been widely used (Figure 4). Collagen is the
most abundant and ubiquitous protein in the body, accounting
for approximately 25-30% of the total vertebrate protein (Ricard-
Blum, 2011). Type I collagen is the dominant fibrillar component
of the ECM in mammals. It provides cells with a 3D environment
that supports cell growth and influences morphology and
function. The triple helix structure of collagen provides
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thermal stability and mechanical strength for cellular functions
(Shoulders and Raines, 2009). To manufacture collagen, collagen
rich tissues as skin and tendon of mammals are intensively
processed by physical and chemical means (Meyer, 2019).
Nocera et al. (2018) used collagen isolated from the bovine
Achilles tendon to construct scaffolds by 3D printing. A
porous mesh of fibrillar collagen was observed using scanning
electron microscopy. In addition, the 3D-printed collagen
scaffold was not cytotoxic, with cell viability higher than 70%
using Vero and NIH 3T3 cells. In vitro evaluation demonstrated
that the collagen scaffolds had the ability to support cell
attachment and proliferation.

Although type I collagen has been widely used in 3D
bioprinting, it has limitations, such as poor mechanical
properties, low viscosity, and long gelation time (Sorushanova
et al, 2019). In recent years, researchers have used different
strategies to improve the printing properties of collagen,
including chemical modification of collagen, adjustment of
pH, temperature, collagen concentration, and mixing of
collagen with other materials (Kim et al, 2016). Collagen
methacrylamide is a chemically modified collagen with
photosensitive groups, which can be rapidly cured by UV
irradiation (Drzewiecki et al., 2017). Isaacson et al. (2018) 3D-
bioprinted corneal structures from a methacrylated collagen
bioink containing encapsulated corneal keratinocytes, which
exhibited high cell viability both at day 1 (>90%) and at day 7
(83%) after printing. Diamantides et al. (2017) investigated the
effect of pH on the rheological properties of type I collagen
bioink. The results showed that the gelation kinetics and final gel
moduli of the bioink were highly pH-dependent. It was also found
that cell viability in collagen bioink was not affected by the pH. To
fabricate multilayered, heterogeneous constructs with high-
resolution microchannels (150 um-1 mm) precisely spaced
(500-600 um) to simulate integrated vascular networks, Attalla
et al. (2018) used silicon carbide (SiC) nanoparticles as an
adhesive to achieve adhesion between hybrid hydrogel films
composed of alginate and collagen by 3D printing. The
bonding strength between the mixed hydrogels reached 0.39 +
0.03 kPa after the introduction of SiC. The hollow microchannels
of the hydrogels were not blocked by the SiC nanoparticles, and
high cell viability (90.61 £ 3.28%) was maintained in the scaffold.

Hyaluronic acid (HA), another main component of the ECM, is a
high molecular weight natural polysaccharide composed of
repeating disaccharide units of D-glucuronic acid and N-acetyl-
D-glucosamine. Hyaluronic acid has been widely used in tissue
engineering because of its biodegradability, biocompatibility,
hydrophilicity, and non-immunogenicity. Therefore, HA has been
approved by the FDA for other medical applications. For example,
HA has been incorporated into many scaffold systems. HA-based
scaffolds are biocompatible and can simultaneously perform
different biological functions (Unterman et al., 2012). Park et al.
(2014) investigated the behavior of chondrocytes to HA hydrogels.
They demonstrated that chondrocytes on HA hydrogels exhibited
better proliferation and cellular function than cells on non-native
ECM hydrogels. In addition, 3D cartilage tissue-mimicking
structures consisting of chondrocyte-encapsulated HA hydrogels
were bioprinted, and it was found that the viability and function of

ECM-Based Bioinks and 3D Bioprinting

chondrocytes were well-maintained in the 3D structures up to
14 days in vitro (Ozbolat and Hospodiuk, 2016).

However, the precursor solutions of HA hydrogels usually have
low viscosity and slow gelation kinetics, which lead to flow before
gelation (Kesti et al,, 2015). Moreover, HA hydrogels have poor
mechanical properties and rapid degradation (Jeon et al., 2007).
Therefore, many other approaches have been studied to improve
these problems. Poldervaart et al. (2017) modified HA to obtain
methacrylate hyaluronic acid (MeHA) with photo-crosslinkable
property. Under the irradiation of UV light, the storage modulus
and elastic modulus of the gel increased. Subsequently, human bone
marrow mesenchymal stromal cells (MSCs) were incorporated into
the MeHA hydrogel, and the cell viability was 64.4% after 21 days of
culture. Si et al. (2019) synthesized methacrylic anhydride HA (HA-
MA) and sulthydryl-containing HA (HA-SH). A 3D-bioprinted,
double-crosslinked, and HA-based hydrogel for wound dressing was
prepared by mixing HA-MA and HA-SH at different weight ratios.
The test showed that the storage modulus of the HA-SH/HA-MA
hydrogel increased with the increase in the HA-MA content. The
hydrogel had a high swelling ratio and a highly controllable
degradation rate. And the HA-SH/HA-MA hydrogel had
promise in wound repair applications.

UV light can cause cell damage, which can affect cell viability.
To avoid the use of UV radiation, Petta et al. (2018) prepared a
tyramine-modified HA biofunctional ink. The bioink did not
require premixing of components or addition of stabilizers. It was
first enzymatically crosslinked to tune extrusion properties,
followed by visible light-induced crosslinking to achieve final
shape fixation. Optimizing printing parameters resulted in 3D
constructs with high resolution and shape fidelity that could be
seeded with HMSCs. Nedunchezian et al. (2021) also created an
HA-based double crosslinking reaction to avoid the use of UV
light. First, HA-biotin (HAB) was synthesized via a reaction of
HA and adipic acid dihydrazide. Then, HAB and streptavidin
were mixed to form a partially crosslinked HA-biotin-
streptavidin (HBS) hydrogel. The HBS hydrogels were mixed
with sodium alginate and subsequently printed using a bioprinter
to form HBSA (HBS + alginate) hydrogel 3D scaffolds. Finally,
3D scaffolds of HBSA hydrogels were submerged into CaCl,
solution to obtain a stable 3D HBSAC (HBSA + Ca®") hydrogel
scaffolds by ion-transfer crosslinking.

A commonly used 3D bioprinting material, gelatin is a natural
protein derived from collagen hydrolysis. Gelatin is non-
cytotoxic, water-soluble, and biocompatible, and it promotes
cell adhesion with biodegradable properties and low
immunogenicity. Moreover, gelatin can replace collagen in 3D
bioprinting due to better physical properties. Shin and kang
(2018) prepared a series of gelatin-based bioinks for 3D
bioprinting and evaluated them in terms of their printability.
The results showed that this class of bioinks can produce a line
width of about 200 pm and can precisely locate multiple types of
cells in 3D structures. These findings suggested that gelatin-based
bioink is well-suited for 3D bioprinting.

Gelatin methacrylate (GelMA) has been synthesized by
addition of methacrylate groups to the amine t groups of
gelatins.  GelMA  undergoes  photoinitiated  radical
polymerization to form covalently crosslinked hydrogels.
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GelMA hydrogels are very similar to native ECM, including with
respect to cell attachment sites, proteolytic degradability, and
presence of matrix metalloproteinase-responsive peptide motifs,
which can be used to design tissue analogs (Aljohani et al., 2018).
Billiet et al. (2014) studied the 3D bioprinting parameters of
GelMA in detail. The results showed that printing pressure and
needle shape affected overall cell viability. By tuning these
parameters,  mechanically = stable  cell-laden  gelatin
methacrylamide scaffolds with high cell viability (>97%) could
be printed. Liu et al. (2017) reported a novel strategy to directly
bioprint cell-laden GelMA constructs with high structural fidelity
and enhanced bioactivity using bioinks of GelMA physical gels
(GPGs) achieved through a simple cooling process. The GPG
bioinks retained their structures and formed very soft constructs
at relatively low concentrations (down to 3%) of GelMA.
Gelatins with other modified groups have also been reported.
For example, Yan et al. (2018) synthesized a thiolated-gelatin
supplemented with peptides amphiphiles to prepare 3D
bioprinting bioinks. The bioink could be printed at 4°C and
stabilized to last more than 1 month in culture at 37°C.

Decellularized Extracellular Matrix
Decellularized extracellular matrix (dECM) is produced by
removing all cellular components from the tissue or organ
while preserving the composition and integrity of the native
ECM. There are three main decellularization methods:
physical, chemical, and enzymatic approaches as well as
combinations of them. The chemical methods of
decellularization can largely be divided into three categories
where tissue samples can be treated with surfactant or acid or
base reagents, all of which can effectively remove cells and genetic
material (Gilpin and Yang, 2017). Physical method such as freeze-
thaw and osmotic pressure can result in cell lysis without
significantly disrupting the ultrastructure of the tissue (Kim
et al., 2019). Enzymatic decellularization is used to degrade
cell and remove cellular debris and remnants from the ECM.
Nucleases and proteases are the most widely used enzymes for
enzymatic decellularization (Kim et al., 2019). The methods have
different material requirements, advantages, and disadvantages
(Abaci and Guvendiren, 2020).

Although ECM-mimicking biomaterials have demonstrated
good biocompatibility and printability, it is still extremely
difficult to accurately reproduce the composition and structure
of the native ECM in the complex system of the human body.
dECMs contain a variety of growth and differentiation agents that
modulate cell function, and they have the potential to meet all
clinical performance requirements. Currently, dECMs derived
from many different organs, including the skin, bone, heart, liver,
and blood vessel, have been used for 3D bioprinting. Pati et al.
(2014) prepared three specific dECM bioinks from adipose,
cartilage, and cardiac tissue and developed a method for the
bioprinting of cell-laden constructs with dECM bioinks. The
results demonstrated that this method is capable of providing
an optimized microenvironment conducive to the growth of 3D
structured tissues and helping recreate intrinsic cellular
morphology and function. Won et al. (2019) developed a
dECM bioink derived from porcine dermis tissue, and mixed

ECM-Based Bioinks and 3D Bioprinting

with human dermal fibroblasts (HDFs) for 3D bioprinting.
Survival and proliferation of HDFs in the 3D construct were
investigated. The cells showed over 90% viability and
proliferation, and gene expression related to skin morphology
and development had been enhanced. These results showed the
positive effects of the bioink on skin morphology and
development.

Although many researchers have demonstrated 3D
bioprinting of dECM from different organs with promising
results, dECM-based tissue or organ bioprinting has not been
well established. The main problem is the weak mechanical
properties of physically crosslinked dECM. One of the
methods to solve the above problem is using a framework
printed with high mechanical strength biomaterials (e.g., PCL,
silicone rubber) to maintain the structure of the dECM. Pati
et al. (2014) printed a PCL framework. Then, the cell-laden
dECM precursor solution was deposited on the framework to
fabricate cartilage tissue structures. To reconstruct functional
small-diameter blood vessel substitutes, Xu et al. (2018) used
silicone ink to bioprint a support scaffold with a double-layer
circular structure. Human aortic vascular smooth muscle
cells, human umbilical vein endothelial cells (HUVECs),
and human dermal fibroblasts-neonatal were separately
used to form the media, intima, and adventitia of blood
vessels through perfusion into the corresponding location
of the supporting scaffold. In addition, the dECM bioink
was printed into a Pluronic F-127 support frame to build a
thick structural model with multi-level vascular channels.
After the removal of Pluronic F-127 as a sacrificial
material, thick tissue constructs with multilevel hollow
channels were obtained.

Another effective strategy to improve the mechanical strength
of dECM-based bioinks is to combine the dECM with other
synthetic polymers or active molecules (Kim H. et al., 2021). Yu
et al. (2019) developed a photo-crosslinkable tissue-specific
dECM bioink using a digital light processing-based 3D
printing method. The ink consisted of photo-crosslinkable
GelMA, dECM, and photoinitiator lithium phenyl-2,4,6
trimethylbenzoylphosphinate. =~ Combining  tissue-matched
dECM bioinks with human-induced pluripotent stem cell
derived cells enables the design of physiologically relevant
functional human tissues for applications in biology,
regenerative medicine, and diagnostics.

Shin et al. (2021) reported a hydrogel bioink containing
porcine cardiac acellular extracellular matrix (cdECM),
Laponite-XLG nanoclay, and poly (ethylene glycol)-diacrylate
(PEG-DA) components. Among them, Laponite-XLG nanoclay
had shape fidelity and high resolution of the constructs, which
was achieved by increasing the shear storage modulus and
viscosity of the cdECM-based hydrogels. PEG-DA further
enhanced  the modulus of the  hydrogel by
photopolymerization after printing. The results showed that
the encapsulated human cardiac fibroblasts survived both
extrusion and photopolymerization to show >97% viability
after 7days, demonstrating the cytocompatibility of the
c¢dECM composite bioinks. This was also a way to improve
the mechanical strength of the dECM.
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Bioprinting using dECM is an attractive option that opens up
new avenues for tissue reconstruction. However, there is a lack of
reproducibility and standardization in the decellularization
process; lack of control over printability of dECM-based
bioinks and the mechanical stability of the printed dECM
structures; and difficulty of large-scale production due to
tissue specificity of dECM from different tissue (Han et al,
2019). Therefore, widespread use of dECM-based bioprinting
is currently limited. Further research is required to make dECM a
viable product for 3D bioprinting.

Extracellular Matrix-Based Multicomponent

Biomaterials

Human tissue has a complex structure, which creates challenges
with respect to the properties of the bioprinted materials. A single
biomaterial in bioinks cannot usually meet all mechanical and
functional requirements, which are essential to produce
biomimetic tissue-like constructs (Ashammakhi et al., 2019).
One of the most important strategies to solve these problems
is to use multimaterial bioinks. ECM-based blends/composite
bioinks with high performance have been generated by blending
other materials with unique properties and by the inclusion of
fillers and additives with distinct properties.

Natural biological materials (such as chitosan, alginate, and
agarose) have the advantages of biological activity, degradation,
and non-toxic degradation products. They have high similarity
and excellent biocompatibility with the ECM. Therefore, hybrid
inks containing ECM-based materials and natural biomaterials
are widely used in 3D bioprinting. Kopf et al. (2016) combined
agarose and type I collagen in order to prepare a 3D-printed
hydrogel mixture. The results showed that the mixture containing
0.5% agarose and 0.2% collagen type I displayed sufficient cell
spreading and printing accuracy. Kreimendahl et al. (2017)
presented tailored bioinks that could be printed in 3D and
exhibit cell-induced vascularization capability. The bioinks
contained agarose, type I collagen, human umbilical vein
endothelial cells, and human dermal fibroblasts. The results
showed that extensive capillary network formation was
observed in hydrogel blends. The storage moduli of the bioink
were significantly increased compared to those of the
corresponding single components.

Alginate is a natural, seaweed-derived, and ion-sensitive
anionic polysaccharide (Neufurth et al, 2014). Alginate can
transiently form a hard gel with CaCl, via sodium-calcium
ion exchange reaction at ambient temperature (Demirtas et al.,
2017). Therefore, alginate can provide a cytoprotective effect
against processing pressure stress. Kalkandelen et al. (2019)
investigated gelatine/sodium alginate hydrogels reinforced with
B-Tricalcium Phosphate to form 3D bone tissue. In vitro
bioassays with a human osteosarcoma cell line, SAOS-2, were
performed to determine the biocompatibility of the constructs. It
was found that cell viability rates for all constructs were increased.
A 3D-printed hydrogel with self-healing ability was prepared by
Roh et al. (2021). The hydogel was composed of oxidized
hyaluronate (OHA), glycol chitosan (GC), and adipic acid
dihydrazide. The addition of alginate (ALG) to this self-
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healing hydrogel was useful for the dual crosslinking system,
which enhanced the structural stability of the gels without the loss
of their self-healing capability. In addition, hyaluronate-alginate
hybrid (HAH) polymers were used to replace the ALG mentioned
above, and it was found that the storage shear modulus of the
OHA/GC/ADH/HAH hydrogels was significantly improved in
addition to maintaining the self-healing ability. In vitro
chondrogenic differentiation of ATDC5 cells encapsulated in
3D-printed constructs was dependent on the molecular weight
and concentration of the HAH in gels (Kim et al., 2022).

Apart from the aforementioned materials, other natural
biomaterials such as silk fibroin (Sun et al., 2018), cellulose
(Fermani et al.,, 2021), and gellan gum (Robinson et al., 2020)
could also be mixed with ECM-based materials to prepare
bioinks.

Synthetic biomaterials are less restrictive in 3D printing
because their structure and properties can be adjusted
according to needs. Thermoplastic polymers, such as PLA,
PCL, and PU, are the most commonly used materials in 3D
bioprinting. Synthetic biomaterials are printed via fused
deposition modeling or regular extrusion. In bioprinting,
scaffolds printed from synthetic materials often act as a mold
surrounding the bioink to prevent it from spilling or as a rigid
individual layer to separate the two bioink layers (Shim et al.,
2016; Cunniffe et al., 2017).

PCL is a nontoxic polymer with remarkable stability, and it is
also fairly inexpensive. 3D-printed PCL scaffolds have a
comparable compactness to bone that result in bone
regeneration and cell ingrowth capabilities (Guvendiren et al.,
2016). Therefore, for cartilage injury that is difficult to self-repair,
Cao et al. (2021) proposed a biphasic scaffold consisting of PCL/
GelMA to support cartilage regeneration using a co-culture of
bone marrow mesenchymal stem cells and costal chondrocytes.
The PCL/GelMA scaffold showed excellent cartilage regeneration
ability and made Young’s modulus comparable to that of native
cartilage. However, in aqueous 3D printing, the tendency of
GelMA to physical gelation makes it necessary to keep it at a
low concentration in use, thus reducing 3D printing resolution
(Zhao et al., 2016). Elomaa et al. (2020) developed GelMA/PCL-
MA hybrid resins and used them to print cell-free tissue scaffolds
that mimic the structure of physiological small intestinal villi. The
results showed that the presence of PCL-MA in the hybrid resin
improves the 3D printing fidelity compared to neat GelMA resins,
and GelMA provided the hybrid materials with enhanced
swelling and proliferation of seeded cells. Wiggenhauser et al.
(2019) added the dECM of porcine nasal cartilage to 3D-printed
PCL scaffolds. The scaffolds were seeded with human primary
nasoseptal chondrocytes. The results showed that cells attached
and proliferated on the scaffolds, and evidence of cartilage tissue
formation on the PCL/dECM scaffolds was found. This provides
a method for cartilage regeneration in facial reconstruction
surgery.

Polyurethane (PU) is a 3D-printable biodegradable elastomer
with thermosetting properties and excellent biocompatibility and
mechanical properties. Chen et al. (2021) employed
decellularized cartilage extracellular matrix and waterborne
polyurethane (WPU) to construct WPU-ECM scaffolds by 3D
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printing. It was found that WPU-ECM scaffolds with a
hierarchical macroporous structure could recreate a favorable
microenvironment  for  cell  adhesion,  proliferation,
differentiation, and ECM production. In vivo studies further
demonstrated that the WPU-ECM scaffold successfully
regenerated hyaline cartilage in a rabbit model. In addition,
Yun et al. (2021) prepared 3D-printed PLA scaffolds and
investigated the role of PLA scaffolds with and without HA in
a rabbit calvarial model. The results showed that the new bone
area of the rabbits transplanted with PLA/HA scaffolds were
significantly higher than that of the control group. The printed
PLA scaffold was biocompatible and integrated well with the bone
defect margin.

Many studies have also been conducted using other synthetic
biomaterials (such as ABS, PEEK, and PEG) in combination with
ECM-based materials so that the resulting composites possess the
desired physical and chemical properties that can contribute
significantly to 3D bioprinting (Li et al., 2018; Piluso et al., 2021).

Some nanomaterials have also been doped into ECM-based
biomaterials to tune the performance of 3D bioprinted structures.
Hydroxyapatite has been widely used in bone 3D printing as the
main component of natural bone tissue. Huang et al. (2021)
reported the development of gelatin/hydroxyapatite (HAP)
hybrid materials by microextrusion 3D bioprinting and
enzymatic crosslinking as the scaffold for human umbilical
cord blood-derived mesenchymal stem cells (hUCB-MSCs).
The scaffold supports the adhesion, growth, and proliferation
of hUCB-MSCs and induces their chondrogenic differentiation
in vitro. This conclusion was confirmed by the study of Cakmak
et al. (2020). They used PCL, gelatin, bacterial cellulose (BC), and
different hydroxyapatite concentrations to fabricate a novel PCL/
GEL/BC/HA composite scaffold using 3D printing technology.
3D scaffolds with an ideal pore size (~300 um) for use in bone
tissue engineering were generated. Jae-Woo Kim et al. (2021)
prepared biomimetic composite scaffolds via 3D printing of
gelatin/hyaluronic acid/hydroxyapatite. The microstructures of
the scaffolds showed an ECM-mimetic structure with a wrinkled
internal surface and a porous hierarchical architecture. The
composite scaffolds could be used as new bone scaffolds in
bone regeneration.

Carbon-based nanomaterials have been frequently
incorporated into bioinks due to their excellent electrical and
mechanical properties (Blyweert et al., 2021). In addition to their
ability to promote cartilage differentiation, they have numerous
applications in nerve and muscle tissue engineering (Lu et al,
2021). Uz et al. (2019) fabricated gelatin and graphene-based
nerve  regeneration  conduits/scaffolds  possessing 3D
microstructures and mechanical properties using 3D printing.
The results suggested that electrical stimuli applied within the 3D
gelatin matrix enables enhanced differentiation and paracrine
activity, leading to promising nerve regeneration strategies. Li
et al. (2020) reported the use of carbon nanotubes to construct
biomimetic blood vessels. The hybrid bioink prepared with
gelatin, sodium alginate, and carbon nanotubes was
manufactured into cylindrical scaffolds through 3D printing.
Mouse epidermal fibroblasts were inoculated into the hollow
tubular scaffolds to fabricate engineered blood vessels. The results
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demonstrated that the proper doping of carbon nanotubes could
effectively improve the mechanical properties of the composite
scaffolds. A small amount of doped carbon nanotubes had little
effect on cytotoxicity.

Silica is also an important additive in 3D bioprinting to tune
the properties of biomaterials. Banche-Niclot et al. (2021)
combined PEG-coated silica into type I collagen to obtain
bioinks for 3D-printed bone scaffolds. Nelson et al. (2021) use
silica-gelatin hybrid ink to produced 3D grid-like scaffolds using
a coupling agent, (3-glycidyloxypropyl)trimethoxysilane, to form
covalent bonds between the silicate and gelatin co-networks,
which improved the mechanical properties of the scaffold. In
addition, tricalcium phosphate (Kalkandelen et al., 2019), metal
nanoparticles (Zhu et al, 2017), bioceramic materials
(Diloksumpan et al., 2020), and others have been added to
biomaterials to improve the mechanical, chemical, and
electrical properties of inks.

Synthetic Peptide Biomaterials

The various combinations of amino acids allow the design and
synthesis of a large number of peptides with different biological
functions. These peptides with hydrophilic or hydrophobic
amino acid sequences can self-assemble to form functional
materials, which are widely used in biomedical fields including
antibacterial, wound healing, drug delivery, and bioimaging (Das
and Gavel, 2020). Particularly, short peptides consisting of 2-7
amino acids as hydrogels have been used to mimic ECM for 3D
bioprinting. Loo et al. (2015) reported a lysine-containing
hexapeptide bioink that self-assembled to form stable
nanofibrous 3D hydrogels. The biocompatible hexapeptide-
based hydrogel scaffold supported the growth and
proliferation of human stem cells and ensured cell viability
during printing process. Arab et al. (2018) used two
tetrapeptide synthetic biomaterials to self-assemble into
nanofibrous hydrogels to mimic the natural collagen. The
results showed that the hydrogels maintained cell viability and
promoted the growth and alignment of mouse myoblasts.
However, due to poor mechanical properties and slow gelation
process, peptide-based hydrogels still face great challenges in 3D
bioprinting (Chivers and Smith, 2019).

In order to improve the weak mechanical strength and poor
printability of short peptides, Jian et al. (2019) designed and
synthesized two 9-fluorenylmethoxycarbonyl dipeptides with
oppositely charged terminal residues to achieve situ gelation
by electrostatic interactions between the two dipeptides. The
elastic modulus of the hydrogel was tunable from 4 to 62 kPa
to simulate the natural environment of various cell types.
Ghalayini et al. (2019) prepared self-assembled peptide
nanoparticles and incorporated them into peptide hydrogels
for 3D printing. The results showed that the peptide
nanoparticles were able to withstand the stresses involved in
the printing process.

To improve the cell damage caused by high shear forces during
the printing of peptide bioinks, Rauf et al. (2021) developed an in
situ 3D bioprinting technique that utilizes physiological buffers
and works at body temperature. By printing two tetrameric
peptide bioinks containing human skin fibroblasts, an
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Switzerland.

FIGURE 5 | The applications of ECM-based bioinks. (A) (I) A clavicle bone scaffold bioprinted with BPs GelMA-based bioink. (Il) The scaffold stained for H&Eafter

28 days, the number of cells increased. Adapted with permission from (Ratheesh et al., 2020). (B) The aortic valve conduit bioprinted with bioink containing alginate/
gelatin hydrogel and aortic root sinus smooth muscle cells and aortic valve leaflet interstitial cells. Adapted with permission from (Duan et al., 2013). (C) Adult size ears
(8 cm) printed with bioink containing bovine gelatin/alginate/fibrinogen and human fibroblasts. Adapted with permission from (Pourchet et al., 2017). (D) A heart
printed with bioink containing dECM and iPSCs-derived cardoimyocytes and ECs. Adapted with permission from (Noor et al., 2019). (E) The curved cornea based on the
eyeball printed with dECM-based bioink. Adapted with permission from (Kim H. et al., 2021). (F) The multilevel vascular structures, and (G) multibranch vascular channels
printed with bioink containing dECM/Pluronic F127 and endothelial cells. Adapted with permission from © 2018 by the (Xu et al., 2018). Licensee MDPI, Basel,

increased rate of cell proliferation was found. This is due to the
better ECM-like environment provided by the tetrameric peptide
bioink.

APPLICATION OF EXTRACELLULAR
MATRIX-BASED BIOPRINTING MATERIALS
IN 3D BIOPRINTING

3D bioprinting has shown huge potential in the field of tissue and
organ regeneration (Sung et al., 2021). The ECM, as the natural
environment in which cells exist, provides cells with structural
support and biochemical signals and promotes a series of
important cellular processes, such as proliferation, migration,
proliferation, and differentiation (Lu et al, 2011). Therefore,
ECM-based biomaterials are ideal for tissue and organ
regeneration printing materials (Figure 5). In this section, we
describe some important applications of bioinks containing

different ECM-based materials in the fabrication of tissue
structures.

Bone

Bone tissue is an essential part of the human body and plays a role
in mechanical support and protection, mineral homeostasis, and
hematopoiesis (Romanazzo et al., 2021). Over the past few years,
many efforts have been made to use 3D printing technology to
regenerate damaged bone tissue. Traditional 3D printing
technologies first prepare the scaffold; then, the cells are
infused and inoculated prior to implantation. However, this
method cannot ensure uniform distribution of cells on the
scaffold, making it difficult to obtain ideal new tissue
(Ghorbani et al., 2021). 3D bioprinting technology can print
cells and scaffolds at the same time; different cells can be stacked
in specific locations; and the biological behavior and performance
of cells can be modulated by active agents (Bendtsen et al., 2017).
Ratheesh et al. (2020) developed a bone particle (BP)-GelMA-
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based bioink as a personalized therapeutic strategy for bone
regeneration. The 15% BP content enabled reproducible
bioprinting at 10% and 12.5% w/v GelMA concentrations and
maintained cell viability in BPs throughout the bioprinting
process. These cells were also able to migrate from BP,
colonize the GeIMA hydrogel, and maintain their osteogenic
differentiation capacity. As a major component of the ECM,
HA plays a key role in maintaining cartilage homeostasis by
regulating cellular functions, including promoting the
chondrogenic phenotype and the production and retention of
matrix components (Knudson, 2003). Antich et al. (2020)
developed a novel HA-based bioink for 3D bioprinting of
cartilage tissue. To produce cartilage structures with optimal
mechanical properties, HA-based bioinks were co-printed with
PLA. HA-based bioinks were found to improve cell function by
increasing the expression of chondrogenic gene markers and
specific matrix deposition and thus tissue formation. In
addition, GelMA has been used for 3D-printing of cartilage
tissue. For example, an interpenetrating network hydrogel
composed of alginate and GelMA reinforced with a PCL
fibrous network has a balance that matches or approximates
that of native articular cartilage along with possessing dynamic
mechanical properties. Co-cultures of bone marrow-derived
stromal cells and chondrocytes were added to this hydrogel to
form cartilage tissue structures (Schipani et al., 2020).

Bone tissue engineering approaches using mesenchymal
stem cells (MSCs) have attracted tremendous interest in
recent years, as MSCs can differentiate into osteoblasts in
vivo, and autologous MSCs can be isolated without severe
donor site morbidity. In addition, animal studies have shown
that MSTCs support bone healing in critical-sized bone
defects (Wakitani et al., 1994). Zhang X. et al (2021)
prepared bioinks containing silk fibroin and dECM (SE-
dECM bioinks) mixed with bone marrow MSCs (BMSCs)
for 3D bioprinting. The results showed the SF-dECM
constructs had  suitable mechanical strength and
degradation rate due to the interconnection of SF and
dECM through physical crosslinking and entanglement.
Moreover, the expression of cartilage chondrogenesis-
specific genes was higher than that of SF control construct.
This indicated that SF-dECM constructs can promote
chondrogenic differentiation of BMSCs and provide a good
cartilage repair environment. Wehrle al. (2019)
systematically compared the osteogenic differentiation
capacity of four different MSCs isolated from human
umbilical cord, adipose tissue, and bone marrow tissue
with different hydrogel combinations was also compared.
The findings showed that adipose tissue-derived
mesenchymal stem cells (AMSCs) displayed the highest
osteogenic differentiation potential. A composite hydrogel
mixture composed of fibrin, gelatin, hyaluronic acid, and
glycerol adjusted with hydroxyapatite showed excellent
biocompatibility for AMSC. However, naturally derived
biomaterials often result in insufficient mechanical
strength, low scaffold fidelity, and loss of osteogenic
induction due to the inherent swelling/contraction and
biological inertness of most naturally derived biomaterials

et
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hydrogels. The graphene oxide-containing bioink was shown
to have better bioprintability, scaffold fidelity, cell
proliferation, osteogenic  differentiation, and ECM
mineralization than the pure polymer hydrogel system
(Zhang J. et al., 2021).

To scale up 3D bioprinted tissues to clinical size, effective
prevascularization strategies are required to provide nutrients
required for normal metabolism and remove associated waste by-
products. Nulty et al. (2021) developed a bioprinting strategy to
engineer prevascular tissues in vitro to enhance the ability of
blood vessel formation and regeneration in large bone defects in
vivo. This fibrin-based bioink supported HUVEC sprouting and
microvascular network establishment. Three-dimensionally
printed PCL scaffolds for prevascularization and implantation
into femoral defects in rats showed increased levels of
vascularization in vivo. This approach could be used to
enhance the vascularization of a range of large tissue defects,
leading to novel bioprinting therapies.

Skin

The skin is a complex organ that provides protection, exhibits
regulatory functions, and is responsible for communication
between the external environment and the organisms within
(Perez-Valle et al, 2020). Generally, skin injuries heal
spontaneously (Reinke and Sorg, 2012). However, when the
skin is severely damaged, it is difficult for it to heal by itself or
it cannot heal according to ideal conditions. Artificial bionic skin
prepared by 3D bioprinting technology is a better coping strategy
(Kim et al., 2020; Jin et al., 2021). Ramakrishnan et al. (2022)
optimized the formulation and developed alginate, gelatin,
diethylaminoethylcellulose and fibrinogen, a bioink that used
the RegenHu 3D Discovery Bioprinter to establish excellent
printability, shape fidelity, and cell-laden tissue-equivalent
printing. Human primary fibroblasts and keratinocyte-loaded
bioprinted constructs exhibited good cell viability. Biomimetic
tissue histology was generated after 4 weeks of long-term culture.
Specific epidermal-dermal marker expression demonstrating
function was evident in immunohistochemical, biochemical
and gene expression analyses. Jin et al. (2021) fabricated
acellular dermal matrix (ADM) and GelMA bioinks, and
proposed a new 3D structure to mimic natural skin, which
included 20% GelMA with HaCaTs as an epidermal layer,
1.5% ADM with fibroblasts as the dermis, and 10% GelMA
mesh with human umbilical vein endothelial cells as the
vascular network and framework. The results showed that the
3D bioprinting skin model could not only promote cell viability
and proliferation, but also support epidermis reconstruction
in vitro. The dECM-based bioinks could be isolated from cell
sources associated with skin tissue or stem cells, and they were
used to generate 3D skin, through which artificial skin could be
efficiently prepared and used to treat wounds (Khoshnood and
Zamanian, 2020). Jang et al. (2021) used 3D printing to fabricate
structures similar to skin layers using skin-derived dECM,
keratinocytes, and fibroblasts. The therapeutic effects of the
resulting skin were analyzed using a chimney model that
mimics the human wound healing process. The 3D-printed

skin substitute was found to exhibit rapid epithelial
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regeneration and superior tissue regeneration. Promoting
vascularization also plays a key role in the treatment of skin
wounds, ulcers, and other diseases (Auger et al., 2013). Kim et al.
(2018) used skin-derived ECM bioink to print 3D prevascularized
skin patches, which could promote wound healing in vivo. In vivo
experimental results showed that endothelial progenitor cells
could accelerate wound healing, re-epithelialization,
neovascularization, and blood flow when 3D-printed skin
patches were combined with adipose-derived stem cells. Sweat
glands, as skin appendages, play a crucial role in regulating body
temperature in mammals. However, their regenerative potential
in response to injury is low. Huang et al. (2016) created a
functional in vitro cell-borne 3D ECM mimic based on a
composite hydrogel of gelatin and sodium alginate. The
bioprinted 3D ECM could effectively create a restrictive niche
for epidermal progenitor cells, ensure unilateral differentiation
into sweat gland cells, and promote the recovery of sweat gland
function. Liu et al. (2021) bioprinted MSCs by used bioink
alginate-gelatin (Alg-Gel) and investigated the influence of
stiffness on MSC differentiation toward sweat glands.
Mechanical properties found that higher compressive modulus
was associated with the higher Alg-Gel concentrations. MSCs
bioprinted by stiffer hydrogels were found to further upregulate
the protein and gene expression of sweat gland cell phenotype,
function and development of signaling pathways. The results
illustrated that the stiffness of Alg-Gel bioink is a potent regulator
of MSC differentiation.

Heart

The heart has a limited ability to regenerate, and the adult heart is the
least regenerative organ in the body, which means it is difficult for it
to repair itself after damage (Bergmann et al., 2009; Serpooshan and
Mahmoudi, 2017). Organ tissue engineering based on 3D bioprinting
technology can develop functional tissues and organs, such as in vivo
grafts to alleviate the shortage of transplanted organs or in vitro
models for disease mechanism research (Mhashilkar and Atala,
2012). The heart is a vital organ and comprises multiple cells,
including fibroblasts, endothelial cells, cardiomyocytes, smooth
muscle cells, and pacemaker cells, all of which are structurally
organized in a mixture of ECM materials. Therefore, 3D
bioprinting of cardiac tissue often uses multicomponent bioinks.
Roche et al. (2021) 3D bioprinted cardiac patches using alginate/
gelatin (Alg/Gel) hydrogels and cardiac endothelial cells. The cardiac
patchs presented endothelial cell networks, durable structure, and
contractile function between 14 and 28 days in culture. The findings
have the potential to directly translate in vitro testing of bioprinted
cardiac patches into in vivo applications for cardiac regeneration.
Gaetani et al. (2015) used hyaluronic acid and gelatin 3D-printed
patches containing human cardiac-derived progenitor cells and
transplanted these patches into a mouse model of myocardial
infarction, showing good cell survival/transplantation and
increased markers of cardiac and vascular differentiation. The
cardiac function improved after cardiac patch. The cardiac-derived
dECM was functionally and structurally similar to native tissue, and
this bioink exhibited a high degree of differentiation and maturation
of cardiac tissue and a suitable tissue-mimicking microenvironment.
Therefore, Noor et al. (2019) used bioinks containing dECM
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hydrogels in combination with cardiomyocytes to print whole
hearts with major blood vessels, demonstrating the potential of
the approach for organ replacement after failure or for drug
screening in an appropriate anatomical structure. The low
mechanical stability of dECM prevents its use in bioprinting
applications by itself. Basara et al. (2021) mixed GelMA and
GelMA-MeHA hydrogels with decellularized human cardiac ECM
(dhECM) to create cardiac tissue-like structures. Compared with
GelMA-dhECM hydrogel, the mechanical properties of composite
GelMA-MeHA-dhECM hydrogel were improved by an order of
magnitude. These hydrogels were compatible with human-induced
pluripotent stem cell-derived cardiomyocytes and human cardiac
fibroblasts, with the observation of printed structures with striated
sarcomere a-actin and connexin 43 expression and tissue-like
beating. The order-of-magnitude difference between the elastic
moduli of these hydrogel composites provides applications for
in vitro modeling of myocardial infarction boundaries.

Liver

The liver is the key metabolic organ of the body, and it has good self-
regeneration ability. However, severe and chronic damage will affect
its ability to regenerate properly (Ashammalkhi et al., 2019). Zhong
et al. (2016) used a bioink containing type I collagen and chitosan to
fabricate a 3D hydrogel scaffold, which was loaded with L02 (cell line
HL-7702) cells and then transplanted into the liver of mice with liver
damage. The 3D hydrogel scaffolds did not affect cell viability after
weeks of inspection. HE staining showed clear liver tissue, and
immunohistochemistry for cKit and CK18 in the transplanted
tissue was positive. The scaffold could be used for reconstruction
of liver tissue. In another study, primary human hepatocytes and
hepatic stellate cells were 3D-printed with bioinks containing
methacrylated type I collagen and thiolated hyaluronic acid to
3D-print liver tissue structures. The bioink sufficiently allowed
implementation as a supporting hydrogel for hepatocytes, which
were able to remain viable and respond appropriately to drug
treatment for 2weeks. Liver dECM can enhance cell viability
(Mazzocchi et al., 2018). Mao Q. et al. (2020) developed a liver-
specific bioink by combining liver decellularized extracellular matrix
with GelMA to print liver microtissues after encapsulation of human-
induced hepatocytes (hiHep cells). The liver dECM was found to
improve not only the printability but also the hiHep cell viability of
bioinks. This would be a potential liver tissue engineering product
that could help restore liver function.

Blood Vessel

Traditional 3D printing methods have limited ability to construct
vascular features (Dolati et al,, 2014). New bioprinting techniques
show great potential in printing blood vessels. For example, Li et al.
(2022) connected a coaxial microfluidic system to a 3D printer and
used MeHA/alginate bioink to customize microvessels with
personalized shapes. There has also been considerable success
using sacrificial materials to reduce the diameter of vascular
channels. Kolesky et al. (2014) used Pluronic F127 to print small
vascular channels with a diameter of 45um encapsulated with
GelMA ink and irradiated with UV light to crosslink the GelMA
matrix. The entire structure was finally cooled to 4°C to liquefy the
Pluronic F127 for removal, leaving open, interconnected
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microchannels to provide the desired embedded vascular network. In
addition, gelatin (Lee et al., 2014), carbohydrate glass (Miller et al.,
2012), alginate (Contessi Negrini et al., 2019), and others are also used
as sacrificial materials to prepare blood vessels. These various studies
demonstrate that printing blood vessels using sacrificial techniques
not only modulates the pre-patterning of vascular features but also
provides a basis for the fabrication of large tissue structures (Aljohani
et al., 2018).

Neuronal Tissues

The natural regeneration potential of neurons is limited, and with the
rapid development of 3D bioprinting technology, bioprinting
neuronal tissue is a very important breakthrough. Bioprinting of
neuronal tissue works in two ways: one is to print new neuronal tissue
and the other is to enhance the innervation of an already engineered
tissue structure, which, after implantation at the target site, integrates
with the host nervous system to reveal its effect (Mandrycky et al.,
2016). Hirano et al. (2021) developed an induced pluripotent stem
cell (iPSC)/sensory neuron (SN)/loaded gelatin bioink. After printing
on a laminin-coated substrate using extrusion-based bioprinting, the
iPSC-SNs were seeded into the hollow microchannels created by
sacrificial gelatin ink printed in the gelatin methacryloyl supporting
bath, thereby demonstrating controllability over axon guidance in
curved lines up to several tens of centimeters in length on 2D
substrates and in straight microchannels in 3D matrices. This
approach integrated sensitive SN networks into engineered skin
equivalents, regenerative skin implants, and enhanced
somatosensory prostheses to regenerate sensitive functions by
connecting the host neuronal system in the injured area. In the
bioink containing HA/gelatin/heparan sulfate/novel chitosan
developed by Guan et al. (2013), the printed scaffold supported
the adhesion and long-term growth of naive neural stem and
progenitor cells, providing a new option for neural tissue
engineering applications. In addition, gelatin can also create a
favorable microenvironment for neuronal axon regeneration and
synaptogenesis for spinal cord injury repair (Liu et al., 2019).

Disease Models

Cell culture models have played an important role in enhancing our
understanding of disease development and progression. However, it
is well-recognized that those systems fail to accurately represent the
disease ecosystems or mimic in a precise manner the cellular
interactions that take place in the disease tissues (Sitarski et al,
2018; Bae et al., 2020; Gao et al., 2021). The use of 3D-bioprinted
tumors is increasing in areas such as tumor biology, migration,
invasion, and metastasis and high-throughput drug screening and
validation (Sanchez-Salazar et al, 2021). For example, Herrada-
Manchon et al. (2021) used an optimized collagen/alginate/gelatin
hydrogel and optimized printing parameters to bioprint renal cancer
cells. In this context, cells were viable, proliferated for long time
periods of time and form long and thin TNT-like structures that are
used as channels for the long-distance cell-to-cell transfer of
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mitochondria. This provides a novel alternative tool for studying
the functional relevance of TNT-like structures in tumorigenesis and
anticancer drug susceptibility in a highly controlled and reproducible
tumor microenvironment. In the research of liver cancer, Ma et al.
(2018) developed a photo-crosslinkable liver dECM and a light-based
rapid 3D bioprinting process. The hepatic dECM scaffolds printed in
this way stably mimicked the clinically relevant mechanical properties
of cirrhotic liver tissue. This in vitro dECM-based 3D biomimetic
liver platform could be used to study the behavior of various liver
cancer cells in specific fibrotic settings to help elucidate disease
mechanisms in biological research and applications in preclinical
drug screening. In addition, new printing methods are constantly
emerging. Maloney et al. (2020) developed an immersion bioprinting
method based on a hydrogel bioink composed of hyaluronic acid and
collagen. This method could be used for tumor model establishment,
drug development, and other applications.

CONCLUSION

Using 3D bioprinting and ECM-based bioinks to mimic the structure
of native tissues provides a new direction for tissue regeneration and
organ construction. Although much work has been done, many
obstacles preventing the development of this technology still remain.
There is no standard method to extract native ECM, with poor batch-
to-batch reproducibility. Moreover, improving the resolution of 3D
bioprinting to ensure cell viability and function in vitro and in vivo is
still a challenge. Hence, extensive research is still needed in both
bioink and printing technology, and especially in the combination of
interdisciplinary methods, to make 3D bioprinting a powerful tool in
the biomedical system and to transform the technology into clinical
practice for fostering a revolution in people’s health and lives.
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