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Tumor metastasis is one of the main causes of cancer incidence and death worldwide. In
the process of tumor metastasis, the isolation and analysis of circulating tumor cells (CTCs)
plays a crucial role in the early diagnosis and prognosis of cancer patients. Due to the rarity
and inherent heterogeneity of CTCs, there is an urgent need for reliable CTCs separation
and detection methods in order to obtain valuable information on tumor metastasis and
progression from CTCs. Microfluidic technology is increasingly used in various studies of
CTCs separation, identification and characterization because of its unique advantages,
such as low cost, simple operation, less reagent consumption, miniaturization of the
system, rapid detection and accurate control. This paper reviews the research progress of
microfluidic technology in CTCs separation and detection in recent years, as well as the
potential clinical application of CTCs, looks forward to the application prospect of
microfluidic technology in the treatment of tumor metastasis, and briefly discusses the
development prospect of microfluidic biosensor.
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1 INTRODUCTION

Despite decades of deepening understanding of cancer, cancer is still one of the leading causes of death
worldwide. It is estimated that the number of cancer cases may increase by 60% in the next two decades.
Among them, the growth rate of low—and middle-income countries may be as high as 81% (Wild et al.,
2020). The burden of cancer is increasing in all countries, and the cancer burden in low—and
middle—income countries is expected to double in the next decade. Without further action, millions
of people will die prematurely from cancer in the next decade. Cancer metastasis refers to cells spreading
from the primary focus to the distal organs. It is one of the main causes of cancer death (Suhail et al.,
2019). Circulating tumor cells (CTCs) are defined as cancer cells that depart from solid tumor lesions and
enter the blood, originally discovered by Ashworth (Shen et al., 2017). CTCs are not the only tumor
derivative in the circulation, but they contain many metastatic precursors, which is very important for
disease progression (Castro-Giner and Aceto, 2020). Clinical circulating tumor cells mainly refer to
diverse tumor cells in peripheral blood. Understanding CTCs is helpful to explore the mechanism of
primary tumors and metastatic lesions. Early diagnosis of circulating tumor cells (CTCs) can effectively
identify patients who need further systemic treatment after initial tumor resection. CTCs detectionmainly
detects the content of various tumor cells in peripheral blood through capture to detect the changing
tendency of CTCs type and quantity and subsequently monitor the dynamic evaluation of tumor
treatment effect in real-time. The circulating tumor cells in peripheral blood can be used to help judge the
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cancer complications of patients. However, the content of CTCs in
human blood is infrequent. The contents of red blood cells, white
blood cells, and platelets can reach 5 × 109/ml, 4 × 106/ml, and 3 ×
108/ml, while CTCs are usually only 0–10/ml (Yu M. et al., 2013).
Moreover, tumor cells can constantly transform their characteristics
through epithelial mesenchymal transformation and interstitial
epithelial-transformation in metastasis. Due to its scarcity,
heterogeneity and the interference of complex matrix in blood,
the precise detection of CTCs has become an enormous issue.

Currently developed CTCs detection methods, including
immunofluorescence (Ramirez et al., 2019; Lin and Chang,
2021), fluorescence in situ hybridization (Cheng et al., 2019),
reverse transcription-polymerase chain reaction (RT-PCR) (Yang
et al., 2017; Tong and Wang, 2019), real-time fluorescence
quantitative PCR (Guo et al., 2015), flow cytometry (Galanzha
and Zharov, 2013; Ruiz-Rodríguez et al., 2021),
immunofluorescence in situ hybridization and
immunohistochemical staining (Yu et al., 2020; Guo et al.,
2019; Wu et al., 2020a), are challenging to meet the
requirements of direct detection in detection limit and
sensitivity. Therefore, some sample pretreatment methods are
usually used to separate and enrich CTCs before detecting CTCs
in peripheral blood. In the process of sample pretreatment to
realize the separation and enrichment of CTCs, as these methods
are discontinuous, it is inevitable to cause the loss of cells in
adsorption, elution, and transfer. Additionally, the scarcity of
CTCs can easily lead to false-negative results. Moreover, most
CTCs detection technologies are time-consuming, require skilled
operators and high-tech instruments. Moreover, the detection of
CTCs is still challenging due to their low concentration and
heterogeneity in blood samples. Therefore, there is an urgent need
to develop novel technologies to make the separation and
detection of CTCs more convenient, accurate, and noninvasive.

In recent years, microfluidic technology has attracted
considerable interest in CTCs detection. Microfluidic
technology is characterized by a micro-manufacturing
structure, which usually manipulates the fluid with high flux
and sensitivity on the micron scale (Cao et al., 2021). With the
remarkable progress of micro-machining methods, the
microfluid platform has significant advantages such as low
cost, good micro-structure, reduced sample consumption,
rapid fluid processing, good detection sensitivity, and so on,
and is applied to the primary and applied research of
oncology (Lin et al., 2020; Pei et al., 2020a). Microfluidic
technology makes it possible for rapid and reliable sample
separation and high selectivity and sensitivity detection of
CTCs. This paper looks forward to the microfluidic CTCs
detection system, which is significant for biomedicine and its
application in early cancer diagnosis.

2 MICROFLUIDIC TECHNOLOGIES FOR
CTCS SEPARATION

Microfluidic technology is a new technology used in the primary
and applied research of cancer metastasis for decades. A
microchannel with a small size is used to accurately control a

small volume of liquid or process multiple samples in an
integrated bioreactor simultaneously. Compared with
traditional methods, it has the advantages of automatic
operation, reasonable sensitivity, and throughput, which makes
it possible to construct structures on the cell scale. In the past
decade, microfluidic platforms based on functional microchannel
have been developed to separate CTCs. As a miniaturized
analysis, it realizes the one-step process of sample collection,
loading, separation, and analysis to significantly reduce the
processing time and improve the opportunity to capture
CTCs. A microfluidic platform can hinder the interaction
between cell and antibody by accurately controlling the
direction and speed of fluid flow, which directly impacts the
capture efficiency. In addition, it is a simple tool to integrate other
technologies/materials (such as ceramics, metals, and polymers)
to improve the analysis efficiency of CTCs.

With the growth of solid tumors and specific changes in the
surrounding microenvironment, some tumor cells will obtain
abnormal activity ability, that is, epithelial-mesenchymal
transformation (EMT). These cells shed from the primary
tumor and find a new foothold in the body. These tumor cells
will be brought to various body parts through the blood system or
lymphatic system, and the tumor cells shed through the blood
circulation are CTCs. When they reach an appropriate target,
they will become malignant reproductive machines. This is the
hematogenous metastasis of the tumor from the primary site to
the secondary tumor. Therefore, after obtaining the patient’s
blood, we first need to separate and enrich the CTCs, analyze
the characteristics of these CTCs, and then give the appropriate
treatment strategy. However, the content of CTCs in the human
circulatory system is shallow (Zou and Cui, 2018). There are only
1~10 CTCs per ml of the whole blood in patients with tumor
metastasis. Therefore, to realize the detection of CTCs, sorting,
and enrichment are crucial steps. CTCs’ separation and
enrichment will directly affect subsequently detection effect.
Therefore, CTCs sorting and enrichment with high purity,
high sensitivity (without losing CTCs), fast and high cell
activity is the focus and difficulty of CTCs clinical application.

The enrichment of CTCs can be divided into the positive
enrichment method of capturing CTCs and the negative
enrichment method of removing leukocytes. The positive
enrichment method mainly includes affinity and physical
enrichment methods. The affinity enrichment method mainly
utilizes a specific antibody to combine with tumor cell surface
antigen to enrich CTCs specifically. The physical enrichment
method mainly screens out CTCs according to their physical
characteristics, such as size, density, mechanical and dielectric
properties. Due to the slight size difference between leukocytes
and CTCs, leukocytes are often the chief interference factor in
sorting CTCs in blood. Therefore, leukocytes can be selectively
isolated to achieve the purpose of CTCs enrichment, that is, the
negative enrichment method.

2.1 Positive Enrichment
2.1.1 Enrichment Based on Biological Affinity
The affinity enrichment method mainly separates target cells
through the antigen expression on the cell surface, tissue-

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2022 | Volume 10 | Article 9072322

Li et al. Microfluidics and Circulating Tumor Cells

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


specific membrane antigens or peptides, and aptamers to
capture CTCs.

2.1.1.1 EpCAM Specific Recognition
CTCs can be divided into epithelial CTCs, mesenchymal CTCs,
and mixed phenotype CTCs (Pan et al., 2019), in which epithelial
markers are expressed on normal epithelial cells and epithelial
tumors but not on interstitial leukocytes. Therefore, they are often
distinguished between cancer cells and normal blood cells.
Epithelial cell adhesion molecule (EpCAM) is a
transmembrane glycoprotein expressed in most solid cancers,
so it is one of the most widely used surface markers for CTCs
enrichment (Eslami-S et al., 2020; Ahmed et al., 2017; Thege et al.,
2014). The EpCAM antibodies can be immobilized on the surface
of microchannels, micropores, or other nanostructures to achieve
positive capture of CTCs. In 2007, the Toner group reported the
first Immunocapture platform CTCs chip, which consists of a
series of EpCAM coated micropores and can separate CTCs from
whole blood with high sensitivity and high activity. It can be used
to capture CTCs from peripheral blood of patients with lung,
breast, prostate, pancreatic, and colon cancer metastases
(Nagrath et al., 2007). Since then, the microfluidic platform
based on EpCAM has developed rapidly. Subsequently, the

above group developed a herringbone chip (HB chip), whose
unique structure maximizes the collision between cancer cells and
the EpCAM coating surface in the microchannel (Stott et al.,
2010). Further, Nagrath et al. designed graphene oxide
nanosheets on the EpCAM antibody coating for positive CTCs
selection (Figure 1A). The improved CTCs chip obtained an
average of 73% CTCs capture efficiency from whole blood
samples of lung, breast, and pancreatic cancer patients (Yoon
et al., 2013). However, a technical challenge of the microfluidic
platform is that blood cells pass through the platform in a
straight-line streamline with a low Reynolds number, resulting
in limited interaction between CTCs and antibodies coated on the
surface of the microchannel, thus reducing the capture efficiency.
Although the microcolumn array in the CTCs chip developed by
Nagrath et al. effectively destroys the laminar flow to improve the
interaction between CTCs and antibodies, it is still challenging to
capture and target CTCs at different heights along the
microcolumn. Therefore, geometric enhancement attracted
people’s attention to increase the contact probability between
cells and antibody functionalized surfaces. For example, the Soper
group proposed a curved microchannel structure coated with
EpCAM antibodies to improve the isolation performance of
CTCs (Jackson et al., 2014). In addition, an integrated

FIGURE 1 | Schematic illustration of the EpCAM specific recognition chips. (A) The GO chip (Yoon et al., 2013); (B) The deterministic lateral displacement (DLD)
chip (Liu et al., 2013); (C) The NanoVelcro CTC chip (Lu et al., 2013); (D) The microchip designed for immunomagnetic detection of cancer cell (Hoshino et al., 2011); (E)
The magnetic nanospheres (MNs) based microfluidic device (Tang et al., 2016); (F) The wavy-HB microfluidic device (Shi et al., 2017)
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microfluidic platform composed of a triangular microcolumn
array allows CTCs to be captured with continuous throughput,
efficiency, and purity (Liu et al., 2013) (Figure 1B). Combining
the deterministic lateral displacement (DLD) chamber and the
anti-EpCAM based capture method, more than 90% capture rate
and 90% purity of live CTCs were observed in the added blood
samples.

Due to the high surface area volume ratio, compatible capture
and release ability, nanomaterials provide a high collision
probability for antibodies and CTCs (Park et al., 2017; Wu C.
et al., 2019; Shi et al., 2022; Yi et al., 2022; Liu et al., 2022; Liu J.
et al., 2021), which can help improve the sensitivity and specificity
of capture, and have attracted extensive attention in the
separation of CTCs (Wongkaew et al., 2018; Wu and Qu,
2015; Zhu G. et al., 2021; Naskar et al., 2020; Chandankere
et al., 2020). So far, carbon nanotubes (CNTs) (Cho H. et al.,
2018; Zhang P. et al., 2019; Poudineh et al., 2017), graphene oxide
(GO) (Chen et al., 2012; Yoon et al., 2013; Yu X. et al., 2013; Yoon
et al., 2016), gold nanoparticles (AuNP) (Park et al., 2017),
nanocolumns (Lin et al., 2014; Shi et al., 2022) and TiO2

nanofibers (Zhang et al., 2012) have been widely used in
affinity group capture methods (Zhao et al., 2016; Cai et al.,
2017; Wongkaew et al., 2018). NanoVelcro CTCs chip is a
representative nanostructure microfluidic platform. It uses
siliceous nanowire substrate (SINS), so that the interaction
between SINS and cells can be similar to Velcro (Wang et al.,
2011; Jan et al., 2018). The results demonstrate that compared
with a planar siliceous substrate, the capture efficiency of anti-
EpCAM coated SINS is significantly improved. Fan group has
developed a microfluidic platform with gold nanoparticles
assembled with multivalent DNA aptamers to efficiently
separate CTCs from blood (Sheng et al., 2012). In addition,
the Zhao group also developed an antibody functionalized
electrospun TiO2 nanofiber (TiNF) matrix for CTCs capture
(Zhang et al., 2012). Lu et al. introduced a nanovelcro CTCs chip
containing silicon nanowires and a pattern substrate to
enumerate CTCs in prostate cancer (Lu et al., 2013)
(Figure 1C). They proved its clinical utility in continuous
CTCs enumeration of prostate cancer patients and the
effectiveness of continuous CTCs enumeration in monitoring
cancer progression.

Immunomagnetic enrichment is also a widely used CTCs
separation method in a microfluidic platform, which enriches
CTCs from blood cells using magnetic particles labeled with anti-
EpCAM. With the introduction of a microchip based on
Polydimethylsiloxane (PDMS), the Hoshino group proposed
an immunomagnetic-based microchip to capture CTCs under
a magnetic field (Figure 1D), which combines the dual
advantages of magnetophoresis enrichment and microfluidic
technology (Hoshino et al., 2011). Continuous operation and
improved throughput make PDMS-based immunomagnetic
microchannel promising to capture cells. Zhang group has
developed a microfluidic device based on magnetic
nanospheres (MNS) to capture tumor cells (Figure 1E). The
device integrates the functions of the magnetic microfluidic chip
and immunomagnetic nanospheres (IMN), forming a new and
stable IMN mode (Tang et al., 2016). Liu group has developed a

microfluidic device with a wavy HB structure (Figure 1F). Under
the external magnetic field, the magnetic particles of anti-EpCAM
coating are fixed on the wavy HB surface to capture tumor cells
(Shi et al., 2017). Poutine et al. used magnetic grading cytometry
to analyze CTCs according to the surface expression phenotype of
CTCs. Whole blood samples were processed using microfluidic
chips, and then CTCs subsets were captured by controlling
magnetic field strength and fluid flow rate based on the
number of magnetic nanoparticles labeled on a single cell. The
higher EpCAM expressing cells are captured in the higher linear
velocity region, while the lower EpCAM expressing cells with
fewer magnetic nanoparticles are captured in the lower linear
velocity region (Poudineh et al., 2017). By using magnetic
nanoparticles to separate and release recovered CTCs, the loss
of live CTCs can be reduced without adding biotin. At the same
time, this technology can reduce the damage to CTCs in the
isolation process and maintain the high throughput of capture
performance (Qian et al., 2015).

2.1.1.2 Tissue Specific Membrane Antigen Recognition
In addition to the EpCAM specific recognition, other approaches
based on tissue-specific membrane antigens, such as prostate-
specific membrane antigen (PSMA) of prostate cancer and
epidermal growth factor receptor 2 (HER2) of breast cancer,
have been designed to uniquely separate tissue-specific tumor
cells from blood (Santana et al., 2012). In 2010, the Kirby group
developed a geometrically enhanced differential immune capture
chip (GEDI), used to separate prostate CTCs using PSMA. Its
purity is higher than EpCAM coated CTCs chip and opens up a
stage for capturing CTCs using tissue-specific antibodies other
than EpCAM (Gleghorn et al., 2010). Subsequently, the group
combined EpCAM and mucin 1 (MUC1) in a GEDI (Figure 2A),
which was shown to be more effective than a single marker
(Thege et al., 2014). Different antibodies or antibody mixtures
used to capture CTCs can obtain populations that a single capture
ligand may miss, so this method is becoming increasing popular.
It is reported that another geometrically enhanced differential
immune capture (GEDI) microfluidic platform designed by Kirby
et al. can promote the collision frequency between CTCs and
antibody functionalized microcolumn and reduce nonspecific
leukocyte adhesion to enhance the enrichment of CTCs (Kirby
et al., 2012) (Figure 2B). In this platform, prostate-specific
membrane antigen (PSMA) introduces cross barriers to effect
size-dependent cell trajectories to increase capture opportunities.
The results showed that the capture efficiency of the GEDI
microfluidic platform coated with anti PSMA was 97 ± 3%.

2.1.1.3 Aptamer Recognition
Compared to antibodies, the aptamer is a small oligonucleotide
(such as DNA, RNA and polypeptide), which is easy to bind to
molecular and cellular components (Song et al., 2019). They can
also be used to specifically recognize target molecules on the cell
surface and further integrate into CTCs capture (Bai et al., 2014;
Wu L. et al., 2019; Wu et al., 2020b,). Systematically evolved
through the exponential enrichment (SELEX) process, the ligands
are easy to synthesize and separate. They have high sensitivity and
specificity, which is the key feature of aptamers for separating
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CTCs (Zamay et al., 2019). For example, Lee Group has
developed a new microfluidic platform that integrates field-
effect transistors (FETs) and chambers for automatic detection
and counting of CTCs (Figure 2C). Only target cells bound to a
specific aptamer on the FET sensor array can be enumerated
(Chen Y. H. et al., 2019). In addition, aptamer functionalized
nanostructures were introduced to increase the topographic
interaction between targeted CTCs and the surface of specific
antibody coating to restore the separation of CTCs. It has
satisfactory capture efficiency (Cai et al., 2017; Yu et al., 2019;
Fraser et al., 2019).

Although the positive separation method of biological affinity
can separate CTCs with a high efficiency and purity, due to the
heterogeneous expression of specific surface markers, the ability
to target CTCs is limited, and the potentially important CTCs
subsets are lost. In addition, affinity-based strategies require
sufficient time to prepare samples and sufficient interaction
between cells and antibodies, resulting in reduced cell viability
and throughput.

2.1.2 Enrichment Based on Physical Screening
According to the differences between CTCs and other blood cells
in physical properties such as cell size, density, charge, and
deformation ability, CTCs can be screened without
biomarkers. Compared with the biological affinity method, the
experimental operation of the physical screening method is often

simpler without chemical modification and biomarkers;
therefore, it has little effect on cell activity. Physical screening
methods include active separation methods using external
physical fields, such as dielectrophoresis (Augustsson et al.,
2012; Alshareef et al., 2013; Aghaamoo et al., 2019), surface
acoustic wave (Antfolk et al., 2015; Magnusson et al., 2017),
optical tweezers technology (Hu et al., 2019), and passive
separation methods with or without external force intervention
using inertial effect (Tanaka et al., 2012; Sollier et al., 2014;
Warkiani et al., 2014) and viscoelastic effect (Tian et al., 2018;
Lim H. et al., 2019) in microscale hydrodynamics.

2.1.2.1 Active Separation Methods
The active separation mainly separates CTCs by imposing an
external field source manipulating cells. The interaction
between dielectric particles and the electric field
(Dielectrophoresis, DEP) can be used for cell separation,
sorting, and capture (Kwizera et al., 2021). Due to the
difference in dielectric properties, such as polarization
constant between different kinds of cells, cells can be
distinguished by applying an appropriate electric field.
Jahangiri et al. (2020) completed the separation of CTCs
and blood cells from different kinds of breast cancer by
applying a low-frequency alternating current (AC) electric
field on the chip (Figure 3A). Gascoyne et al. (2009)
separated and screened CTCs in blood under the condition

FIGURE 2 | Schematic illustration of membrane antigen and aptamer recognition based chips. (A) A GEDI device combined EpCAM and MUC1 detection (Thege
et al., 2014); (B) A GEDI microfluidic device for whole blood detection (Kirby et al., 2012); (C) A FET chip for CTC trapping by bonding CTCs to specific aptamer (Chen
et al., 2019).
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of an external AC electric field (Figure 3B), realized the
enrichment of CTCs, and obtained more than 90% cell
capture rate with a fast processing time and much higher
separation efficiency than biological affinity method.
Montoya et al. developed a label-free dielectrophoresis
microfluidic platform to promote the enrichment of
circulating hybrid cells (CHCs) in a high-throughput and
rapid manner by consuming healthy peripheral blood
mononuclear cells (PBMC). 75% of the clinical samples
were enriched, which proved that this method is a
promising non-invasive method for analyzing tumor cells of
patients (Montoya Mira et al., 2021).

Manipulating cells, droplets, and particles by sound waves in
microfluidic chips is a rapidly developing field that is widely used
in cell and particle sorting, blood separation, droplet
transportation, and rare or cancer cell enrichment (Yiannacou
and Sariola, 2021). Wu et al. (2018) realized the sorting of CTCs
in peripheral blood by using surface acoustic waves (Figure 3C),
adding sound field and surface acoustic wave sensor according to
the arrangement of cells with different sizes, densities, and shapes
in the standing wave field. The recovery rate of more than 86%
CTCs can be obtained at the flux of 7.5 ml/h. Karthick et al.
reported a combined sorting method based on acoustic
impedance contrast and cell size for separating CTCs from
peripheral blood mononuclear cells (PBMC) using acoustic
electrophoresis in a microchannel (Figure 3D). By controlling
the acoustic impedance contrast of the liquid in the channel, the

CTCs whose acoustic impedance is higher or lower than PBMC
are isolated. Hela andMDA-MB-231 cells were isolated unlabeled
from PBMC (collected from 2.0 ml of blood) within 1 h, and
>86% recovery and >50 times enrichment was obtained (Karthick
et al., 2018). Sun et al. realized the efficient detection of CTCs in
human blood by creating a separate capture area and flow area in
the microfluidic device (zone chip) (Figure 3E) and using the
patterned dielectrophoresis force to guide the cells from the flow
area to the capture area (Sun et al., 2019). Antfolk et al.
Introduced a simple cell separation instrument based on
acoustic electrophoresis for continuous flow, unbiased and
label-free separation of cancer cells and leukocytes based on
acoustic electrophoresis. The cells were acoustically pre-aligned
using ultrasound before separation, while the cells were
maintained in the initial suspension medium. Even if the
transverse displacement of particles in the sound field is less
than 50 μm, the platform can still separate cells and particles with
high precision. The system can separate the particles directly in
the suspension medium without matching the acoustic
characteristics of the sample with the system of multiple
laminar flows (Antfolk et al., 2015). Undvall et al. presented a
new two-step acoustic electrophoresis (A2)method for separating
unfixed live cancer cells from whole blood lysed by red blood cells
(RBC) (Figure 3F). The method uses the initial acoustic flow pre-
separation step to separate the cells according to the acoustic
mobility of the cells (Undvall Anand et al., 2021). Magnusson
et al. used a clinical scale acoustic microfluidic platform to enrich

FIGURE 3 | Active enrichment methods based on physical screening (A) The CTCs detection chip based on AC electric field (Jahangiri et al., 2020); (B) The DEP
flow fractionation (depFFF) configuration in CTCs detection (Gascoyne et al., 2009); (C) The acoustic CTC separation device (Wu et al., 2018); (D) Size insensitive
isolation of CTCs from PBMCs (Karthick et al., 2018); (E) The microfluidic device on a glass slide with anti-EpCAMmodification on the micropost in the device (Sun et al.,
2019); (F) The two-step acoustophoresis (Undvall Anand et al., 2021).
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paraformaldehyde-fixed or living cancer cells. The platform can
be adjusted to meet the requirements of high cancer cell recovery
or higher purity and can process 5 ml of blood in about 2 h. It
opens up a broader field for the post-separation analysis and
characterization of CTCs in patient samples in the future
(Magnusson et al., 2017).

Using tumor cell targeting molecules to bind homologous
red blood cells (RBC) to tumor cells shows a significant
difference in optical constants (size and average refractive
index) between red blood cell-bound CTCs and other blood
cells. Then, the modified CTCs can be accurately separated
under laser irradiation in the optical jet system. Experiments
showed that CTCs effectively modified with red blood cells
were finally separated from blood with high purity (more than
92%) and high recovery (more than 90%). Throughout the
process, CTCs were shown to maintain membrane and
functional integrity. This method provides a convenient tool
for early diagnosis and treatment monitoring of cancer, which
performs well in the non-invasive and accurate separation of
CTCs (Hu et al., 2019).

2.1.2.2 Passive Separation Methods
Despite the external field source method having high efficiency in
cell separation, it is difficult to integrate it into the chip, so Lin
et al. (Lin et al., 2010) designed a straightforward CTCs
separation chip according to the principle of pore screen
filtration (Figure 4A). By adjusting the size of the filter hole,
the separation of CTCs can be completed according to the
difference in cell size, and the recovery rate is more than 90%.
Zheng et al. reported a new three-dimensional microfiltration
device (Figure 4B), which can enrich living circulating tumor
cells from the blood. The device consists of two layers of palling
film, and the holes and gaps are accurately defined by lithography
technology. The position of the hole moves between the top and
bottom membranes. The bottom membrane supports the
captured cells, minimizes the stress concentration on the cell
membrane, and maintains cell viability during filtration (Zheng
et al., 2011). After that, various functional microfluidic platforms
have been optimized to enhance the isolation of CTCs. Ren et al.
(2018) designed a high-throughput CTCs capture chip according
to cell size and deformability (Figure 4C). The chip has multiple

FIGURE 4 | Passive enrichment methods based on physical screening (A) A functional microdevice consists of parylene membrane filter (Lin et al., 2010); (B)
Filtration process and forces on a trapped cell of the three-dimensional microfiltration device (Zheng et al., 2011); (C) Sequential Size-Based Microfluidic Chip (Ren et al.,
2018); (D) The OncoBean Chip (Murlidhar et al., 2014); (E) A schematic illustration of the chip combining microscale hydrodynamics and pore sieve principle (Lu et al.,
2020); (F) Schematic representation of the Cluster-Chip operation (Sarioglu et al., 2015).
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channels, and the channels are connected by multiple rows of
miniature shrink tubes, in which there is a capture cavity designed
according to the size of CTCs. When the blood flows through the
intersection of the main channel and the miniature systolic tube,
the capillary action generated by the surface tension will drive the
fluid through the systolic tube. At this time, CTCs will be trapped
in the capture chamber, and other components in the blood can
pass smoothly and then enter the adjacent channel. In order to
ensure a high capture rate of CTCs, the process can be repeated
between multiple channels, and the capture rate of CTCs could
exceed 95%. Chen et al. (2021) constructed a pore sieve chip
system based on the biomimetic splenic sinus microstructure.
The filter hole of the fissure structure has lower flow resistance
than the traditional circular structure. Through the optimization
of flow velocity and slit width, it can ensure the high cell activity of
CTCs while realizing efficient separation. However, because the
size of leukocytes and CTCs is the same, the screening accuracy of
this method is low, which may produce false-positive results. In
addition, setting a filter hole on the cell flow path is easy to
increase the negative pressure due to blockage, which affects the
separation efficiency. Qin et al. (2015) used the resettable cell trap
(RCT) mechanism to separate cells by using an adjustable pore
size that can be removed regularly to prevent blockage according
to the size and deformability of cells. Inspired by the antifouling
membrane, Kim et al. (2017) used an independent onboard
laboratory system equipped with fluid-assisted separation
technology (fast) to separate live CTCs from whole blood
without prior sample processing. Numerical simulation and
experiments show that under 1 kPa, this method provides
uniform, non-clogging, and ultrafast cell enrichment, and the
pressure drop is much lower than the traditional size-based
filtration.

There are usually many physical barrier microstructures in the
chip screened for CTCs according to the cell size, and the
processing of these precise structures is often difficult. With
the development of fluid mechanics theory on a micro-scale,
based on the study of particle motion law in microfluid, the
separation and enrichment of CTCs can be realized just by
regulating the fluid without any microstructure. A microfluidic
separation device with the asymmetric bifurcation of laminar flow
around obstacles is used to separate particles. Particles determine
their path based on their size. All particles of a given size follow an
equivalent migration path to obtain high resolution (Huang et al.,
2004). Murlidhar et al. reported an ultra-high throughput
oncogene chip (Figure 4D) that can isolate live CTCs even at
a high screening rate. The platform uses radial flow to produce
different shear on the chip so that CTCs can be effectively
captured under a high flow rate (Murlidhar et al., 2014). The
results showed that at a high flow rate of 10 ml/h, the recovery
rate of rare CTCs (cancer cell lines MCF7 and h1650) was 93%,
and the capture efficiency was more than 80%, which increased
the chance of CTCs recovery in subsequent downstream analysis.
Ahmed et al. (2017) described a new device, a size-controlled
immune capture chip, for efficient, sensitive, and spatial
resolution CTCs capture and detection. The size-controlled
immune capture chip can make CTCs interact selectively,
frequently, and widely with the surface of immunocoated

microcolumn optimized by fluid dynamics. CTCs with
different antigen expression levels can be effectively captured
and spatially resolved around the microcolumn. The capture
efficiency is greater than 92%, and the purity is 82%. Wu et al.
(2020c) designed a fluid multivalent nano interface and decorated
the microfluidic chip with aptamer functionalized leukocyte
membrane nanovesicles to efficiently separate CTCs. This fluid
biomimetic nano interface with an active supplement
combination provides significant affinity enhancement of four
orders of magnitude and shows seven times the capture efficiency
compared with the monovalent aptamer functional chip in blood.
At the same time, this soft nano interface inherits the biological
advantages of natural biofilm, minimizes the adsorption of
background blood cells, and maintains good CTCs activity
(97.6%). Kulasinghe et al. (2019) designed a square channel
chip with a straightforward structure based on the inertial
effect on the micro-scale. Due to the action of the dean and
the center point of the square pipe, the vortex will gather
preferentially near the center point of the large diameter pipe.
Therefore, CTCs will be enriched near the center of the channel
while other components are arranged on the outside. There is no
microstructure or capture cavity in the chip to increase the
negative pressure, so there can be a higher breakthrough in
the processing flux. In addition, without the influence of any
other external effects, the cells can better retain their physiological
activity and morphological characteristics. Lim S. B. et al. (2019)
also introduced tangential flow at the T-shaped channel to screen
the blood cells close to the tube wall according to the inertial effect
to realize the separation of CTCs. Zhang et al. (2018) and Tian
et al. (2018) used the viscoelastic effect to complete the separation
of CTCs. Using the fluid with low viscosity and no shear thinning
can achieve an effect similar to the inertial effect. Moreover, the
theoretical convergence model of this method is relatively simple,
which is convenient for more accurate numerical simulation
analysis. Zhu Z. et al. (2021) used a polymer film as material
and constructed spiral microfluidic chips of trapezoidal channels
through jigsaw puzzle technology. Using the combined action of
inertial force and Dean eddy current in trapezoidal channel, the
separation of CTCs can be realized at a high flux of 3 ml/min, and
the experimental recovery rate is 90%–94%. Themicrofluidic chip
system designed by Lu et al. (2020) combines microscale
hydrodynamics and the pore sieve principle (Figure 4E). First,
the preliminary separation of blood cells is completed through the
inertial effect, and then the capture of CTCs is realized by the
triangular microcolumn array. Ensuring a high capture rate of
94.8%, the flux can reach 40 ml/h. Liu Z. et al. (2021) combined
filtration with deterministic lateral displacement (DLD) and
designed a cascaded DLD microcolumn array chip to achieve
96% recovery of CTCs at a high throughput of 1 ml/min and
eliminate 99.99%white blood cells. Cancer cells metastasize in the
blood in single migrating circulating tumor cells (CTC) or
multicellular clusters (CTC clusters). Sarioglu et al. Designed a
chip with a triangular micro column structure to sort CTCs
clusters with high precision (Figure 4F). When the CTCs cluster
flows through the triangular microcolumn, it will be captured at
its apex due to the intercellular connection, and a single cell will
pass directly along the side waist surface of the microcolumn.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2022 | Volume 10 | Article 9072328

Li et al. Microfluidics and Circulating Tumor Cells

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


This method requires that the flow rate should not be too high;
otherwise, the large shear force will destroy the structure of the
CTCs cluster, resulting in capture failure. The chip was used to
separate the actual samples, determine the heterogeneity of CTCs
clusters, and find that they may contain tumor-associated
macrophages (TAMs), which is of great significance for the
study of the interaction between TAMs and CTCs (Sarioglu
et al., 2015).The label-free physical screening strategy is
characterized by the CTCs integrity and fast sample
processing. However, due to the heterogeneity of CTCs and
the overlapping of CTCs and background cells, the observed
recovery and purity of targeted CTCs are not satisfactory.

2.1.3 Enrichment by Combining Biological AffinityWith
Physical Screening
CTCs separation chips based on biological affinity and physical
screening methods have advantages. The former is more specific,
while the latter has higher separation efficiency. However, both of
them also have shortcomings. For example, the biological affinity
method depends on exogenous markers, which often affect the
cell activity of CTCs, while the physical screening method has low
separation accuracy and is easy to produce false-positive results.
Therefore, the researchers tried to combine the two methods (Pei

et al 2019; Lee, et al., 2017), effectively remove leukocytes using a
label-free method, and then separate CTCs with high efficiency
and purity using an affinity-based method. Song et al. (2019)
designed a deterministic lateral displacement (DLD) pattern
microfluidic chip modified with multivalent aptamer
functionalized nanospheres (AuNP-syl3c) based on the
principle of deterministic lateral displacement (Figure 5A).
When cells with different sizes and elasticity flow through the
angular triangular microcolumn array area, they choose different
paths due to the collision with the microcolumn. By adjusting the
size and spacing of microcolumn, CTCs can produce lateral
displacement when colliding with microcolumn, and other
blood cells flow out along the original path. In addition, the
microcolumn is modified with AuNP-syl3c, the multivalent
aptamer antigen-binding efficiency is increased by 100 times,
and the capture performance of CTCs is significantly improved.
Compared with the monovalent nucleic acid aptamer modified
chip, the capture efficiency of this method is increased by more
than 3 times. Chen K. et al. (2019) used the chip with lateral
microcolumn array structure, modified EpCAM antibody on the
microcolumn (Figure 5B), combined size based separation with
immunoaffinity based separation to improve the capture
efficiency of CTCs and reduce the nonspecific geometric
capture of normal cells. Using the same principle, Su et al.
(2019) developed a functional antibody microsphere integrated
microchip (Figure 5C) by integrating cell size and tumor cell
surface-specific antigen and introducing surface-functionalized
modified zinc oxide microsphere, which greatly improved the
effective capture area.

2.2 Negative Enrichment
Although high capture purity can be obtained by positive
selection of CTCs by affinity methods such as anti-EpCAM,
anti PSMA, and aptamer due to the specificity of tumor
markers, the main disadvantage of this technology is that it
may not be conducive to the integrity and vitality of CTCs
recovered in the separation process. Therefore, the negative
enrichment or selection of CTCs has been widely used. Due to
the small size difference between leukocytes and CTCs,
leukocytes are often the most interfering factor in sorting
CTCs in blood. Therefore, leukocytes can be selectively
isolated to achieve the purpose of CTCs enrichment, that is,
reverse enrichment (Jiang et al., 2021). Hematopoietic cells were
removed by negative selection targeting antigens (CD45) that do
not express CTCs (Sun et al., 2018; Tan et al., 2018). The
recovered high-purity CTCs were trapped on the platform
surface, while most other blood cells were washed away. The
reverse enrichment strategy can not only effectively realize the
separation of CTCs; moreover, CTCs whose EpCAM expression
is down-regulated due to EMT, even non-epithelial tumor cells,
can be enriched. At the same time, it can also avoid the effect of
direct labeling on the activity of CTCs cells.

Liu et al. used the commercial easysep system to deplete
leukocytes through magnetic nanoparticles and tetramer
antibody complexes targeting CD45 and then collected rare
CTCs from peripheral blood samples of cancer patients (Liu
et al., 2011). According to the results of low cell analysis, capture

FIGURE 5 | CTCs Enrichment by combining biological affinity with
physical screening (A) The Octopus chip for cell capture (Song et al., 2019);
(B) The LFAM device consisting of four serpentine main channels (Chen et al.,
2019); (C) The antibody functional microsphere integrated filter chip (Su
et al., 2019).
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efficiencies of 56% (47 of 84 samples) and 53% (17 of 32 samples)
were obtained from patients with cancer and melanoma,
respectively. In contrast, flexible microfluidic platforms (e.g.,
microfluidic magnetically activated cell sorters (MACS) and
CTCs-iChip) have been introduced for negative capture
(Giordano et al., 2012; Ramirez et al., 2019; Cheng et al.,
2019). In addition, the negative selection of the microfluidic
platform can isolate CTCs with no or less EpCAM expression,
while the recovered CTCs are complete and have relatively good
survivability. It is reported that geometrically activated surface
interaction chips can improve the capture efficiency of labeled
leukocytes by enhancing the interaction between leukocytes and
the chip surface (Hyun et al., 2013) (Figure 6A). In addition,

Sajay et al. Proposed an upstream immunomagnetic removal
technology to remove CD45+ labeled leukocytes and then use a
specially designed micro fabrication filter membrane to remove
chemical-free erythrocytes and separate targeted CTCs (Sajay
et al., 2014) (Figure 6B). The results showed that about 90% of
targeting MCF-7 and NCIH 1975 cells could restore blood
samples at the peak. Karabacak et al. (2014) designed an
integrated dual-chip separation system (Figure 6C). Firstly,
leukocytes and CTCs were quickly separated from the blood
through two physical screening methods of DLD and inertial
effect, and then magnetic beads modified with CD45 and CD66b
composite antibodies were used to bind leukocytes selectively,
and then the accurate screening of leukocytes and CTCs was

FIGURE 6 | Negative enrichment methods for CTCs (A) Pictorial presentation of negative enrichment of the GASI chip (Hyun et al., 2013); (B) Illustration of
immunomagnetic WBC depletion in which magnetic particles bound to WBC through Tetrameric antibody complex in whole human blood (Sajay et al., 2014); (C) The
CTC-iChip schematic (Karabacak et al., 2014); (D) The capture platform integrating a DLD structure with a MACS separator for inline operation (Wang et al., 2019); (E) A
schematic showing the tumor cell enrichment process in the 3D-printedmicrofluidic device (Chu et al., 2019); (F) A schematics illustrating the microfluidic approach
for untouched CTCs isolation from leukapheresis products (Mishra et al., 2020).
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realized under the induction of external magnetic field. Ensuring
a high capture rate of CTCs, this method can also achieve high
flux, and it only takes 2 h for 8 ml blood samples processing.
Wang et al. (2019) used a similar DLD-MACS method to analyze
the clinical samples of patients with liver cancer (Figure 6D). The
capture rate of CTCs under the flow rate of 60 μl/min is 85.1% ±
3.2%, and the experiment shows that this method still has a good
separation effect for tumor cells with low expression of EpCAM.
Chu et al. (2019) developed an integral 3D microfluidic device
(Figure 6E), which combines immune removal and post-
filtration to enrich CTCs directly from whole blood negatively.
Blood samples first flow through the immune capture area
modified with CD45 antibody, selectively screen out
leukocytes, and then pass through 3 μM pore size filter
membrane to remove the small volume of red blood cells and
platelets to realize the separation of CTCs. The CTCs separation
chip designed by Mishra et al. (2020) combines immunomagnetic
separation with inertial effect (Figure 6F) and uses
immunomagnetic beads modified with a variety of antibodies
to label leukocytes. Under the external strengthening of the
magnetic field and fluid regulation, it can realize the efficient
separation of CTCs and leukocytes. The enrichment of CTCs can
reach 105 times, and the flux is up to 168 ml/h. Overall, the
advantage of the negative enrichment strategy over positive
selection is that the rate of recovered CTCs is higher.
However, the separation purity is usually lower than that of
the positive method, requiring multiple separation processes
(Kang et al., 2019; Civelekoglu et al., 2022).

For the negative selection of CTCs (strategy based on
biological affinity), it usually has a recovery rate of more than
90%. However, the purity of recovered CTCs is less than 10%
because some background cells are not labeled by antibodies
against leukocytes surface markers and avoid subsequent
depletion.

3 ON-CHIP DETECTION OF CTCS

For the detection of CTCs, cell staining is usually carried out first
and then observed by a fluorescence microscope (Qian et al.,
2015). However, the sensitivity of this method needs to be
improved, and the reproducibility is poor, which requires
manual operation and manual counting. In recent years,
researchers have optimized and improved the imaging analysis
method of CTCs on-chip. Watanabe et al. (2014) developed a cell
capture platform using on-chip sorting (on-chip Biotechnology)
and used anti-CD45 coated magnetic beads to negatively enrich
remove leukocytes, and then fixed and labeled the samples. Then,
the enriched and labeled samples were sorted according to the
expression of cytokeratin, vimentin, and CD45. The captured
cells were immediately subjected to genome-wide amplification,
followed by a mutation analysis using deep targeted sequencing
and copy number analysis using quantitative polymerase chain
reaction (qPCR). Deng et al. (2014) developed an integrated
microfluidic system specially used to simplify the separation,
purification, and single-cell secretory omics analysis of whole
blood CTCs (Figure 7A). The first is to capture CTCs through

antibody conjugate encoded by photodegradable single-stranded
DNA and microfluidic chip producing fretting protein. The
captured CTCs are then photochemically released from the
chip by brief ultraviolet irradiation and then negatively
consume red blood cells (RBC) and white blood cells (WBC).
The high-purity CTCs are then delivered to the single-cell
barcode chip (SCBC), which integrates the enhanced
polylysine (PLL) barcode mode and can capture a very small
number of target cells on the chip. A single CTC is isolated in a
microchamber and used to analyze a group of functional proteins
secreted by a single CTC. The microfluidic system can process
1 ml of whole blood samples in less than 2 h, and the separation
efficiency is more than 70%. The platform can also classify CTCs
into specific phenotypes through the characteristics of surface
markers and conduct single-cell secretory omics analysis on these
subsets. Watanabe et al. (2018) successfully stained the CTCs of
patients with metastatic non-small cell lung cancer isolated by a
chip with a fluorescent-labeled antibody targeting tumor cell
markers. The desktop on-chip cell sorter is equipped with
disposable microfluidic equipment to detect and isolate rare
tumor cells for subsequent molecular analysis. Wang et al.
(2020) used immune microspheres modified with CD45
antibody to label leukocytes. After a wedge chip completes the
preliminary sorting of blood cells, CTCs can be directly
distinguished under bright-field microscopic imaging, and
automatic counting can be realized through image processing
software. Lee et al. (Lee and Kwak, 2020), through multi-channel
fluorescence imaging, simultaneously characterizing the
expression of estrogen receptor (ER), progesterone receptor
(PR), and human epidermal growth factor receptor 2 (HER2)
on CTCs, completes the rapid diagnosis and typing of breast
cancer. Wang J. et al. (2021)) introduced a gas driving device into
the integrated CTCs separation, immunofluorescence staining,
and imaging system, which greatly reduced the time and reagent
consumption and was able to capture and recognize CTCs within
90 min. The smart chip developed by Pahattuge et al. (2021)
integrates CTCs sorting, cell counting, and immunofluorescence
imaging modules, which realizes the fully automatic operation of
the separation and detection of CTCs in blood and avoids human
interference (Figure 7B).

In addition, some common spectral detection methods,
represented by fluorescence spectroscopy, are also widely used
in the detection of on-chip CTCs. Shen et al. (2018) designed a
chip based on the gold film, sorted CTCs by immunomagnetic
separation, and then observed and detected CTCs by near-
infrared fluorescence method based on surface plasmon
resonance. Because the light absorption and spontaneous
fluorescence intensity of the biological sample matrix in the
near-infrared region are very small, and the fluorescence signal
intensity is greatly enhanced by the surface plasmon resonance
effect, the detection sensitivity of this method is nearly 10 times
higher than that of ordinary fluorescence analysis method. Cho
H. et al. (2018); Cho H. Y. et al. (2018) used gold nanoparticles
modified with antibodies and Raman signal molecules to label
CTCs (Figure 7C). The CTCs captured on the chip can be
characterized and detected in situ by surface-enhanced Raman
technology. This method has high sensitivity and can distinguish
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common CTCs and circulating tumor stem cells (CTSCs)
according to the difference in Raman signal peaks. Dhar et al.
(2018) wrapped the CTCs obtained after inertial vortex
separation in the droplets containing matrix metalloproteinase
(MMP) reaction system through droplet microfluidic technology.
Due to the high MMP reaction activity of the target CTCs, the
detection and counting of CTCs can be realized by the resonance
fluorescence transfer phenomenon generated by the enzymatic
reaction system. Wu et al. (2020d) labeled the target protein on
CTCs with magnetic nanoparticles loaded with antibody and
fluorescence coding at the same time, captured CTCs with a chip
under an external magnetic field (Figure 7D), and characterized
the contents of epidermal growth factor receptor (EGFR), HER2
and EP-CAM on a single CTC through fluorescence intensity.

In addition to optical analysis methods, researchers also
realized the direct digital reading or visual analysis of CTCs
chip detection results by using sensing elements. Chen Y. H. et al.

(2019) used Al-GaN/GaN with high electron mobility as the
material to make field-effect transistors (FETs), set the FETs
sensor array on the chip, and modify the specifically recognized
nucleic acid aptamer of EpCAM on its surface, to realize the
continuous capture and counting of CTCs. The high
transconductance gain of FETs makes the bioelectronic sensor
have high detection sensitivity. Experiments show that this
method can realize the rapid and automatic detection of CTCs
in a wide dynamic range and provide accurate cell count data.
Niitsu et al. (2018) first proposed a fully integrated CMOS circuit
based on a vector network analyzer and transmission line for
CTCs and exosome analysis and detection. A fully integrated
architecture is introduced to eliminate unwanted parasitic
components and achieve high sensitivity to analyze very low
concentrations of CTCs in blood. Kim et al. (2021) introduced a
one-time intelligent microfluidic platform called “DIS-μChip”, in
which microfluidic flow sensors are integrated. Due to

FIGURE 7 |On-chip detection of CTCs (A)Overall strategy for CTC isolation and single-cell secretome analysis (Deng et al., 2014); (B) A systemmodularity chip for
the analysis of rare targets (SMART-Chip) (Pahattuge et al., 2021); (C) A 3-step process for blood sample solutions with RANs labeled CCSCs and CTCs (Cho et al.,
2018); (D) A multifunctional nanosphere-mediated microfluidic platform for multiplex biomarker profiling of heterogeneous CTCs (Wu et al., 2020); (E) The working
principle of the aptamer-conjugated PtNPs with volumetric bar-chart chip readout for quantifiable visual detection of CTCs (Abate et al., 2019).
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integration, the flow between the flow sensor and the microfluidic
function is significantly reduced without a pipeline connection.
Isolated CTCs from the blood of patients with pancreatic cancer
using the DIS-μ chip can further be extracted the cancer-specific
gene information by the digital droplet PCR, proving that the
DIS-μ chip is effective. Chang et al. (2015) isolated and detected
CTCs from blood samples using a microchip system integrating
immunomagnetic, high-throughput fluidics, and size-based
filtration. Magnetic beads with antibody functionalization were
used to target CTCs in samples. Then, the mixture passes through
a micro-machined chip fluid chamber containing an 8 μM-
diameter aperture array. The fluid runs parallel to the
microchip and generates a magnetic field below it, pulling the
beads and cells bound to it to the surface of the chip to detect
CTCs larger than pore diameter and remove free beads and other
smaller particles bound to it. The system allows high volumetric
flow rate detection and allows the sample fluid to circulate
multiple times through the system in a short time. An average
of 89%MCF-7 of breast cancer cells was detected. Gao et al. (Gao
et al., 2018) combined CTCs chip screened by composite
immunomagnetic beads with droplet digital PCR chip to
improve the detection sensitivity through PCR amplification.
Abate et al. (2019) added Pt nanoparticles (Pt NPs) modified
with nucleic acid aptamer to the blood sample to be tested,
obtained the target CTCs bound with Pt NPs through
immunomagnetic separation, and introduced them into the
detection chip pre-loaded with H2O2 and dye. Because Pt can
catalyze the decomposition of H2O2, the generated oxygen gas
will lead to the rise of the dye liquid column, to the content of
CTCs in the blood can be judged according to the height of the
liquid column (Figure 7E). Jian et al. (2020) labeled CTCs with
magnetic metal-organic frameworks (MOF) nanoparticles
modified with glucose oxidase. After the TiO2 nanotube array
on the chip captured CTCs by magnetic force, Fe2+/Fe3+ in MOF
was reduced to FeO through the photocatalytic action of TiO2

and the electrochemical signal was obtained by differential pulse
voltammetry to realize the quantitative detection of CTCs.

4 CLINICAL APPLICATION PROSPECT AND
CHALLENGE OF CTCS MICROFLUIDIC
BIOSENSOR
CTCs have attracted extensive attention in tumor research as a
new tumor biomarker, and their clinical application is also being
widely studied. The emerging microfluidic technology has
become a general tool for basic and applied tumor metastasis
research because of its relatively low cost, simple operation, small
volume, and accurate fluid control. With the progress of
micromachining technology, the microfluidic platform is
thriving. The functional microfluidic platform will contribute
to an in-depth understanding of cancer biology andmultiple drug
screening. Based on the large amount of information provided by
CTCs, the use of CTCs includes early screening and cancer
diagnosis, treatment and drug resistance monitoring, drug
evaluation, disease progression, and prognosis. It is reported
that a detectable tumor lesion contains at least 109 tumor cells

(Steeg, 2006; Lawson et al., 2015). Although high-resolution
imaging techniques such as CT, PET and MRI (Wang Q.
et al., 2021) have been widely used in the clinical detection of
tumor lesions, their ability to detect early tumor formation is
limited. The detection of non-invasive CTCs has been explored
for early tumor screening and diagnosis (Ilie et al., 2014). It can
detect early events before the formation of primary tumors
(Pantel and Alix-Panabières, 2010; Alix-Panabières and Pantel,
2016; Zhang et al., 2016; Austin et al., 2018; Moon et al., 2018;
Poudineh et al., 2018), which provides a basis for early cancer
detection (Nagrath et al., 2007; Zahirović et al., 2022).In addition,
CTCs count is helpful to predict tumor progression and overall
survival (Gorin et al., 2017). The level of CTCs in many cancer
patients is highly correlated with tumor progression. CTCs Count
is helpful to identify tumor progression. For patients with breast
cancer who had a CTCs count below 5 CTCs/mL in blood, the
overall survival rate of patients with a CTCs count over 5 CTCs/
mL was lower (Krebs et al., 2010; Krebs et al., 2011). In addition,
the phenotype of CTCs is related to the tumor stage (Jordan et al.,
2016), which can be used as a good indicator to evaluate tumor
progression. CTCs can provide information about tumor
progression before and during treatment and provide
information about the molecular evolution of tumor cells
during treatment (Kidess-Sigal et al., 2016). For example, as
cancer patients develop resistance to treatment, CTCs show
more mesenchymal-like CTCs (Yu et al., 2013). CTCs analysis
was used to determine the maximum tolerated dose and guide the
optimal dose selection of anticancer drugs (An et al., 2021; Guo
et al., 2021). Through the simultaneous monitoring of EMT
biomarkers and apoptosis of CTCs, the results show that even
if they act on the same tumor type, there are significant
differences in the optimal drug dose, indicating that tumor
heterogeneity has an impact on the drug use of patients (Pei
et al., 2020b). CTCs counts can monitor treatment and help
clinicians make the best chemotherapy decisions. CTCs count
decreases with the continuation of effective treatment. CTCs
count may become an effective tool to monitor the early effect
of cancer treatment (Sheng et al., 2014). Tracking and detecting
the CTCs of patients in real-time during the treatment can predict
the treatment results faster and more accurately, which can be
used to evaluate the efficacy of clinical drugs (Bruna et al., 2016;
Stevens et al., 2016; Praharaj et al., 2018), and customize the
treatment scheme for individual patients (Weinstein et al., 2018;
Kozminsky et al., 2019).

At the same time, in the transformation and application of
clinical tumor diagnosis and treatment, the detection of tumor
biomarkers of CTCs still faces many challenges: first, the content
of tumor biomarkers in the blood is rare, and there is tumor
heterogeneity, which makes it very difficult to isolate and purify
them. To overcome this challenge, it is necessary to develop a
microfluidic platform that fully uses the physical and biological
characteristics of tumor biomarkers. Secondly, the high-precision
and fully automated systems based on microfluidic separation
and purification of tumor biomarkers are mostly in the scientific
research stage and have not been widely used in the clinic.
Moreover, the integration between circulating tumor
biomarkers and the microfluidic platform needs to be
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improved. In order to further promote the development of the
microfluidic system with high sensitivity and good repeatability, a
large number of clinical trials need to be carried out on a variety of
cancer patients. In addition, our understanding of tumor biology
is still in its infancy. With the in-depth study of the role of various
circulating tumor biomarkers in tumor formation and
development, more powerful and effective commercial
microfluidic systems will emerge as the times require.

5 CONCLUSION

In this paper, we reviewed the separation strategy, technical
principle, and research progress of microfluidic chip
separation of CTCs. The separation strategy can be divided
into positive enrichment and negative enrichment. The
technical principle is also mainly divided into biological
affinity and physical screening. At the same time, the main
technical methods and optimization strategies of CTCs on-
chip detection are introduced. The application prospect of
microfluidic chips in tumor diagnosis and treatment and the
development direction of microfluidic chips in tumor detection
are analyzed. With the rapid development of microfluidic chip
technology, its ability for microscale fluid manipulation,
microstructure processing, and integrated sensing and
detection has been greatly improved, which further promotes
the development of CTCs separation microfluidic chip
technology. Using a microfluidic chip as a platform to separate
and detect CTCs in peripheral blood can give full play to the
advantages of micro, high efficiency, easy automation, and
integration of the chip itself, and finally realize the rapid and
accurate analysis of CTCs in clinical blood. It has important
application space in many fields such as early tumor diagnosis,
recurrence, metastasis monitoring, and anti-tumor drug
evaluation (Ankeny et al., 2016; Pei et al., 2020; Sun et al.,
2021; Kelley et al., 2014; Farshchi and Hasanzadeh, 2021;
Dong et al., 2019).

Although microfluidic devices have successfully achieved the
capture performance of CTCs through various affinity-based or
label-free methods, no method has satisfactory separation results
of high efficiency through porosity, purity, recovery, and
throughput at the same time. At this stage, the CTCs chip still
has great room for improvement in screening accuracy and
screening efficiency. In response to this challenge, because it is

difficult to have both accuracy and efficiency, future chip design
should focus more on realizing a single goal. On the one hand, we
should focus on improving the cell purity and the cell activity of
CTCs screening for basic research. Firstly, separate the blood
roughly using the inertia effect and screen out the larger white
blood cells and CTCs. Then, screen CTCs accurately adopting
droplet sorting (Joensson and Andersson Svahn, 2012; Dong and
Fang, 2020) through immunomagnetic separation (Chen et al.,
2013). Droplet sorting technology can achieve the accuracy of
single-cell analysis, which has been reported for tumor cell
screening (Popova et al., 2019). On the other hand, in clinical
testing, the researchers focus to realize the high-throughput
analysis of clinical samples. The electrical analysis method can
be used to set the appropriate threshold according to the
difference in specific membrane capacitance and cytoplasmic
conductivity of different kinds of cells to realize the rapid
analysis of CTCs passing through the detection window
(Lannin et al., 2016; Chiu et al., 2017; Zhao et al., 2018; Zhang
Y. et al., 2019). In addition, microfluidic chip technology belongs
to an interdisciplinary field. The development of CTCs chips also
benefits from technological breakthroughs in fields such as
microelectromechanical systems (MEMS), materials science,
hydrodynamics, and biomedicine. In the future, the
microfluidic platform designed for multi-step CTCs separation
will be integrated with advanced functions to minimize the
shortcomings of the complex sample preparation process.
With the development of related technologies, the CTCs chip
is expected to become an important platform for basic tumor
research and early clinical diagnosis of cancer in the future.
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