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Many studies have indicated miRNAs lead to the occurrence and development of diseases
through a variety of underlying mechanisms. Meanwhile, computational models can save
time, minimize cost, and discover potential associations on a large scale. However, most
existing computational models based on a matrix or tensor decomposition cannot recover
positive samples well. Moreover, the high noise of biological similarity networks and how to
preserve these similarity relationships in low-dimensional space are also challenges. To this
end, we propose a novel computational framework, called WeightTDAIGN, to identify
potential multiple types of miRNA–disease associations. WeightTDAIGN can recover
positive samples well and improve prediction performance by weighting positive
samples. WeightTDAIGN integrates more auxiliary information related to miRNAs and
diseases into the tensor decomposition framework, focuses on learning low-rank tensor
space, and constrains projection matrices by using the L2,1 norm to reduce the impact of
redundant information on the model. In addition, WeightTDAIGN can preserve the local
structure information in the biological similarity network by introducing graph Laplacian
regularization. Our experimental results show that the sparser datasets, the more
satisfactory performance of WeightTDAIGN can be obtained. Also, the results of case
studies further illustrate that WeightTDAIGN can accurately predict the associations of
miRNA–disease-type.

Keywords: multiple types of miRNA–disease associations, weighted tensor decomposition, graph Laplacian
regularization, L2, 1 norm, multi-view biological similarity network

1 INTRODUCTION

MicroRNAs (miRNAs) are small non-coding RNA molecules with a length of about 22–24
nucleotides, which can regulate gene expression and protein synthesis at the post-transcriptional
level (Ambros, 2004; Bartel, 2004; Bushati and Cohen, 2007). To be more specific, miRNAs can affect
protein synthesis by promoting or inhibiting gene expression, thereby causing the occurrence and
development of diseases. In addition, a great number of studies have shown that the mutation or
abnormal expression of miRNAs often leads to the occurrence of many complex human diseases. For
example, hsa-mir-195 and hsa-mir-497 have been shown to play a key inhibitory role in breast cancer
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malignancies, which can even become potential diagnostic targets
(Li et al., 2011). It is exciting that mir-375 can regulate the
secretion of insulin (Poy et al., 2009). Thus, identifying the
potential miRNA–disease associations will help us understand
the molecular mechanisms of miRNA-related diseases and
provide a new way to treat diseases. Moreover, the discovery
of disease-related miRNAs will contribute to the study of disease
pathological mechanisms from a deeper perspective and the
identification of potential disease biomarkers (Chen et al.,
2019a). At present, traditional experimental methods used to
identify potential miRNA–disease associations mainly include
reverse transcription-polymerase chain reaction (Freeman et al.,
1999), Northern blotting (Várallyay et al., 2008), and microarray
profiling (Baskerville and Bartel, 2005). However, such traditional
experimental methods, requiring a lot of time and money
investment, are often inefficient and prone to failure easily.
Therefore, there is an urgent need for more and more
computational methods that can provide supporting pieces of
evidence and more efficient predictions to accelerate the
diagnosis and treatment of human diseases.

According to previous studies (Zeng et al., 2016), existing
calculation methods can be divided into two categories: similarity
measure-based methods and machine learning-based methods.
Among them, similarity-based methods to predict the potential
associations of miRNA–disease are based on the assumption that
miRNAs with similar functions are more likely to be related to
similar diseases. Chen et al. (2018) discovered potential
miRNA–disease associations by integrating the predicted
association probability obtained from matrix decomposition
and similarity information related to miRNAs and diseases
into heterogeneous networks. Cui et al. (2019) designed a
method based on a bipartite local model with nearest profile-
based association inferring, which can predict the association
through its nearest neighbor even without any association. Yin
et al. (2020) proposed a method based on network consistency
projection and label propagation, which obtains network
projection scores by using network consistency projection and
label propagation is utilized for association prediction. Li et al.
(2021a) used a similarity network fusion algorithm to integrate
the similarity of multiple miRNAs and diseases, and graph
Laplacian regularization was constrained to matrix
factorization to predict miRNA–disease associations. Zhou
et al. (2021) utilized multiple kernel learning to construct
similarity networks between miRNA and disease, and a
regression model was used to learn feature representation
based on these networks. Then, these feature representations
are input into a deep autoencoder to predict miRNA–disease
associations. Machine learning-based methods have been
proposed to better extract features, which can more accurately
predict the associations between miRNAs and diseases. Chen
et al. (2019b) integrated ensemble learning and dimensionality
reduction based on principal component analysis for inferring
potential miRNA–disease associations. Li et al. (2021b) used a
graph convolutional autoencoder to calculate association scores
based on the two sub-networks of miRNAs and diseases in a
heterogeneous network and adopted an average ensemble
method to obtain the final prediction score. Li et al. (2021c)

proposed a novel graph autoencoder method named GAEMDA
to predict the potential miRNA–disease associations in an end-
to-end manner. Tang et al. (2021) utilized a graph convolutional
network and attention mechanism to extract and enhance the
latent representations of miRNA and disease in multiple views for
reconstructing the miRNA–disease association matrix. Yan et al.
(2022) developed a new end-to-end deep learning method named
PDMDA, which utilizes a fully connected network and graph
neural network to extract the feature representations of miRNAs
and diseases for deep-level miRNA–disease association
prediction.

Based on the previous research works, these methods only focus
on miRNA–disease binary association prediction, without
considering the specific type of miRNA. However, more and
more experimental evidence shows that the mechanism of
miRNAs causing diseases is very complex, rather than a simple
binary association prediction (Fabbri et al., 2007; Vogt et al., 2011;
He et al., 2017). On the one hand, miRNAs are related to diseases,
but diseases are only caused by the specific type of miRNA. For
example, the mir-29 family (29a, b, c) reverses the abnormal
methylation of lung cancer by targeting DNA methyltransferases
3A and 3B (Fabbri et al., 2007). On the other hand, themechanismof
the same miRNA causing the same disease is distinguished in
different types. For instance, the occurrence of CpG methylation
leads to epigenetic inactivation of mir-34a in breast cancer,
meanwhile, circGFRA1 may be a potential target in triple-
negative breast cancer by regulating mir-34a (Vogt et al., 2011;
He et al., 2017). Therefore, while predicting the potential associations
between miRNAs and diseases, we also need to determine which
types of miRNAs are related to the diseases.

In the past few years, some researchers have focused on the
problem of identifying multiple types of miRNA–disease
associations. Chen et al. (2015) are the first to study the problem
of multiple types of miRNA–disease associations, which provides a
new idea for researchers to understand the pathogenesis of diseases
in more detail at the molecular level. In their study, they developed a
restricted Boltzmann machine model for multiple types of
miRNA–disease association prediction (RBMMMDA). Zhang
et al. (2018) proposed a semi-supervised model called a network-
based label propagation algorithm to predict multiple types of
miRNA–disease association (NLPMMDA), and multiple-view of
miRNA and disease information was integrated into a
heterogeneous network. However, these models either did not
consider the auxiliary information related to miRNAs and
diseases or ignored the inherent connection of the multiple-type
association matrices. Fortunately, tensor, as a multi-dimensional
array, can well represent multiple-type miRNA–disease associations
as a triplet. Biological similarity information as decomposition
constraints can also be incorporated into the framework of tensor
decomposition to explore some unobserved triples by decomposing
a tensor. Huang et al. (2021) integrated miRNA functional similarity
and disease semantic similarity as auxiliary information into tensor
decomposition and proposed a tensor decomposition with relational
constraint (TDRC) model. However, TDRC does not recover
positive samples well, and its prediction performance has not
been effectively improved. Next, although TDRC takes miRNA-
miRNA functional similarity and disease-disease semantic similarity
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information as decomposition constraints, the computing
framework cannot easily expand the information related to
miRNAs and disease to effectively solve the problem of tensor
sparseness and further improve the performance of the model.
Moreover, TDRC cannot effectively avoid learning irrelevant
information in the training stage. Finally, TDRC does not well
preserve the similarity relationships of internal nodes between
diseases and between miRNAs.

To address the aforementioned problems, in this article, we
propose a computational framework named Weighted Tensor
Decomposition with Auxiliary Information, Graph Laplacian
regularization, and L2,1 Norm (WeightTDAIGN), which
integrates weight, graph Laplacian regularization, L2,1 norm, and
more auxiliary information into tensor decomposition to better
predict multiple types of miRNA–disease associations. First,
WeightTDAIGN can recover positive samples well and improve
prediction performance by weighting positive samples. Second,
WeightTDAIGN can incorporate more miRNA-related and
disease-related auxiliary information through changing the
interactive update strategy of factor matrices and biological
similarity matrices. Furthermore, features that contain more
information can be learned by constraining projection matrices
using the L2,1 norm, which can effectively avoid learning the
noise information in the biological similarity network. Next, to
make better use of the known biological similarity networks, we
introduce graph Laplacian regularization to capture the data
geometric structure between biological similarity networks.
Finally, we optimize the framework using an alternate iteration
strategy and adopt the alternating direction method of multipliers
(ADMM) algorithm to infer multiple types of miRNA–disease
associations. The WeightTDAIGN model we proposed is
compared with six benchmark models on four datasets with
different sparsities. The experimental results show that the
WeightTDAIGN model is superior to these models including the
latest model TDRC, especially when datasets are sparse.
Additionally, the results of case studies demonstrate that
WeightTDAIGN can accurately predict the associations of
miRNA–disease-type and discover the potential associations of
unconfirmed miRNA–disease that are of biological significance,
which further validates the effectiveness of the proposed model.

2 MATERIALS

2.1 Human miRNA–Disease-Type
Association Datasets
More miRNA-related disease databases or tools are emerging,
which provide convenience for identifying the potential
associations between miRNAs and diseases from the
perspective of computational methods (Chen et al., 2019a). In
this article, we used the HMDD v3.2 and HMDD v2.0 versions of
the Human miRNA Disease Database (HMDD) as benchmark
datasets for constructing tensors (Wang et al., 2010). HMDD v3.2
and HMDD v2.0 can be downloaded from https://www.cuilab.cn/
hmdd. Meanwhile, disease descriptors can be provided from
Medical Subject Headings (MeSH). Also, miRNA sequence can
be obtained frommiRBase (Kozomara and Griffiths-Jones, 2014).

HMDD v2.0 is classified into four types based on the evidence
from circulation, epigenetics, genetics, and target. Moreover, the
recently released HMDD v3.2 provides six generalized types of
associations (circulation, epigenetics, genetics, target, tissue, and
others). However, the category of miRNA is not clear for the
“other” category, so we did not download the data of that
category. In addition, we mapped the human miRNA–disease-
type associations with experimentally verified into 0 and 1. In
detail, if a disease is associated with a miRNA of a certain type,
then the value is set as 1, otherwise 0. In order to explore the
generalization ability of WeightTDAIGN under different sparsity
data, we divided HMDD v3.2 and HMDD v2.0 into four datasets
according to the proportion of data sparsity.

Based on previous research (Chen et al., 2016; Pasquier and
Gardès, 2016; Liang et al., 2019), we expanded some auxiliary
information, such as miRNA sequence similarity and Gaussian
interaction profile kernel similarity for miRNAs and diseases, to
further improve the prediction performance. For miRNAs, we
only retained these miRNAs that can get the sequence from
miRBase. For diseases, we deleted the diseases which are not
found and whose category is not C for the tree structure in MeSH.
The detailed descriptions of the four datasets are shown in
Table 1.

After aforementioned preprocessing and removing
duplications, we finally obtained the following datasets:

• MDA v2.0–2 is obtained fromHMDD v2.0 released in 2013.
We removed these miRNAs or diseases that involve less
than two associations in total across all types.

• MDA v2.0–3 also deleted miRNAs or diseases that include less
than three associations in total across all types for HMDD v2.0.

• MDA v2.0–4 is also obtained from HMDD v2.0. We only
got miRNAs and diseases that exist in total across all types.

• MDA v3.2–5 is released from HMDD v3.2, which contains
five-type (circulation, epigenetics, genetics, target, and
tissue) association matrices and only includes miRNAs
and diseases that exist in total across all types.

2.2 Tensor Construction
Given a set of miRNA–disease associations MD �
{(m1, d1), (m1, d2), . . . , (m|m|, d|n|)} and a set of association
types T � {t1, t2, . . . , t|t|}, we can construct a binary third-
order tensor X ∈ {0, 1}|m|×|n|×|t| in the form of fiber, where |m|,
|n|, and |t| represent the size of the set of miRNAs, diseases, and
types, respectively. Obviously, one of the tensor entries xijt is set to
1 if a type of miRNA is related to the disease. Otherwise, the
entries are set to 0.When the dimension representing the type of a

TABLE 1 | Statistics of all datasets used in this study.

Dataset #miRNA #Disease #Type #Association #Density (%)

MDA v2.0-2 211 59 4 1,410 2.83
MDA v2.0-3 69 25 4 586 8.49
MDA v2.0-4 40 20 4 347 10.84
MDA v3.2-5 125 65 5 4,785 11.78

#Disease, disease number; #miRNA, miRNA number; #asssociation, association
number; #type, type number; #density, sparsity rate.
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tensor is fixed, each slice of a tensor refers to a type of
miRNA–disease association. Our goal is to infer potential
multiple types of miRNA–disease associations through tensor
completion. The third-order tensor is sparse with many unknown
entries, which may influence the prediction performance of the
model. To overcome this problem, multi-view of miRNA and
disease similarity as auxiliary information is considered.

2.3 Disease Semantic Similarity
Based on the research of Wang et al. (2010), disease semantic
similarity can be computed by MeSH descriptors, which can be
obtained from https://www.ncbi.nlm.nih.gov/. Herein, the
relationships of different diseases can be represented by directed
acyclic graphs (DAGs). We adopted DAG (di) = (T (di), E (di)) to
describe the relationships of all diseases, in which T (di) and E (di)
denote the node set and edge set, respectively. For a node di, it
represents a disease. Also, a set of edges E (di) represents the
relationships between different diseases. Then, we can calculate the
semantic contribution of disease dt to di as follows:

D1 di,dt( )� 1, ifdt � di

max ΔpD1 di,dt′( )|dt′ ∈ children of dt{ }, ifdt ≠ di,
{ (1)

where Δ represents the semantic contribution decay factor, and
we set Δ = 0.5 according to previous study (Wang et al., 2010).
The semantic contribution value of diseases di and dt can be
described as the distance between them. Thus, the semantic value
of disease di can be defined as follows:

SV1 di( ) � ∑
dt∈T di( )

D1 di, dt( ). (2)

Based on Eqs 1, 2, we can obtain the disease semantic
similarity DSS1(di, dj) between diseases di and dj as follows:

DSS1 di, dj( ) � ∑dk∈T di( )∩T(dj) D1 d
i
, dk( ) +D1 dj, dk( )( )

SV1 di( ) + SV1 dj( ) . (3)

Moreover, it is worth noting that diseases may be more common
in more DAGs and more specific in fewer DAGs. Therefore, the
disease semantic contribution value of the same layer should be
different in DAGs. Then, based on a previous study (Pasquier and
Gardès, 2016), we applied another method to calculate the semantic
contribution of disease dt to di as shown below:

D2 di, dt( ) � −log the number of DAGs including dt

the number of disease
( ). (4)

Calculation ideas based on Eqs 3, 4, we can obtain the
semantic value SV2(di) of disease di and the disease semantic
similarity DSS2(di, dj) between disease di and dj as follows:

SV2 di( ) � ∑
dt∈T di( )

D2 di, dt( ), (5)

DSS2 di, dj( ) � ∑dk∈T di( )∩T(dj) D2 di, dk( ) +D2 dj, dk( )( )
SV2 di( ) + SV2 dj( ) . (6)

In order to acquire a more reasonable semantic similarity of
diseases, we can calculate the final disease semantic similarity

DSS(di, dj) between disease di and dj according to the following
equation:

DSS di, dj( ) � DSS1 di, dj( ) +DSS2 di, dj( )
2

. (7)

2.4 MiRNA Functional Similarity
Based on the assumption that miRNAs with similar functions are
more likely to induce similar diseases, the miRNA functional
similarity score can be calculated by Wang et al. (2010).
According to miRNA functional similarity information, we
can build an M × M matrix MFS. M refers to the number of
miRNAs. MFS(mi, mj) denotes each element in the matrix MFS,
which also represents the miRNA functional similarity score
between miRNAs mi and mj.

MFS mi,mj( ) � ∑
d∈D mi( )

DSS d, dp
j( )+ ∑

d∈D mj( )
DSS d, dp

i( )
|D mi( )| + |D mj( )| , (8)

where D (mi) denotes the set of diseases that are associated with
mi in at least one association type and |D (mi)| is the number of
elements in the set D (mi) and dpi � argmax

di∈D(mi)
DSS(d, di).

2.5 MiRNA Sequence Similarity
According to the description of Liang et al. (2019), we utilized the
“pairwiseAlignment” function in the R package “Biostrings” to
calculate the sequence similarity scores of miRNAs. Finally, we
achieved the miRNA sequence similarity matrixMSS bymin-max
normalization as follows:

MSS mi,mj( ) � Score mi, mj( ) − Scoremin

Scoremax − Scoremin
, (9)

where Scoremin and Scoremax represent the maximum andminimum
values in the similarity scorematrix Score, respectively. The Score can
be calculated by using the “pairwiseAlignment” function.

2.6 Gaussian Interaction Profile Kernel
Similarity for miRNAs and Diseases
Based on previous research (Van Laarhoven et al., 2011), we
assumed that miRNAs with similar functions have similar
interaction and non-interaction patterns with diseases and
leveraged the Gaussian kernel to extract nonlinear information
related to miRNAs and diseases from known miRNA–disease
associations as the Gaussian interaction profile kernel similarity.
Correspondingly, a binary vector IP(mi) refers to whether miRNA
mi is associated with each disease in the known miRNA–disease
association datasets. Then, the Gaussian interaction profile kernel
similarity between miRNA mi and mj can be calculated as follows:

MGPS mi,mj( ) � exp −γm‖IP mi( ) − IP mj( )‖2( ), (10)
where the parameter γm controls the bandwidth of kernel. It can
be expressed as a normalization of the average number of
associations between miRNAs and diseases. The formulation
for the calculation of γm is shown below:
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γm � γm′
1
nm∑nm

i�1‖IP mi( )‖2, (11)

where nm represents the number of all miRNAs. Herein, we set
γm′ � 1 according to the previous work (Chen et al., 2016).
Similarly, the Gaussian interaction profile kernel similarity
between diseases di and dj can be calculated as follows:

DGPS di, dj( ) � exp −γd‖IP di( ) − IP(dj)‖2( ), (12)

γd �
γd′

1
nd∑nd

i�1‖IP di( )‖2, (13)

where a binary vector IP(di) refers to whether disease di is associated
with each miRNA in the known miRNA–disease associations
datasets. nd denotes the number of all diseases, and γd′ is also set to 1.

3 METHODS

3.1 CP Decomposition
CANDECOMP/PARAFAC (CP) decomposition is one of the
most common tensor decomposition forms (Kolda and Bader,
2009). Given the miRNA-disease-type tensor X ∈ R|m|×|n|×|t|, the
CP decomposition model can be represented as follows:

X ≈ ∑S
s�1

ms◦ds◦ts ≡ [[M,D, T]] (14)

where the symbol ◦ represents the vector outer product, S is a
positive integer and ms ∈ R|m|×1, ds ∈ R|n|×1 and ts ∈ R|t|×1. M =
[m1 m2 / mS], D = [d1 d2 / dS], and T = [t1 t2 / tS] are the
factor matrices with respect to different dimensions.

Then, the optimization problem of CP decomposition can be
easily considered as follows:

min
M,D,T

‖X − [[M,D, T]]‖2F, (15)

where ‖·‖F is the tensor Frobenius norm. In our work,M ∈ R|m|×r,
D ∈ R|n|×r, and T ∈ R|t|×r represent the miRNA, disease, and type
mode, respectively. Herein, r refers to the rank of the
approximated tensor [[M, D, T]]. Furthermore, the rank of the
tensor is usually set to a smaller constant to obtain a low-rank
approximation. The optimization problem Eq. 15 can be solved
by the alternating least squares (ALS) method.

3.2 Weight Tensor
Based on the research of Huang et al. (2021), the prediction of
associated types in the problem of binary association prediction of
miRNA–diseases is the focus of our research. However, we observe
that the existing methods based on tensor decomposition cannot
effectively recover positive samples, which makes it impossible to
predict multiple types of miRNA–disease associations more
accurately. Therefore, we propose a strategy of weighting positive
samples to make them better recovered. Suppose the original tensor
is X , the reconstructed tensor is ~X . Given the weight tensorW, we
can obtain the objective function as follows:

min
~X

‖ 



W

√
⊛ X − ~X( )‖2F + f W( ), (16)

whereW ⊛ Z denotes the element-wise product of tensorW and
Z. f(W) determines that positive samples are weighted at the
element level.

Obviously, the loss value is highly correlated with the result of
positive sample reconstruction. To determine which positive
samples are weighted by the change of the loss value, we set
f(W) as follows:

f W( ) � −∑|m|

i�1
∑|n|
j�1

∑|t|
t�1

1 − k( )2W ijt, (17)

where k is the artificially set threshold, which controls the range of
weights given to positive samples. The range of k is between 0 and
1 in this article.

We rewrite Eq. 16 element-wise and find that W(n)ij can be
easily solved by the following formulation:

W n( )ij � 1, if loss≤ 1 − k( )2
w, otherwise.

{ (18)

Herein, w refers to a weight value and w ≥ 1,
loss � (X(n)ij − ~X (n)ij)2. X(n) and W(n) are the mode-n
matricization of tensor X and W, respectively.

3.3 WeightTDAIGN
3.3.1 Model Auxiliary Information
To leverage the existing prior knowledge of miRNA-miRNA and
disease-disease similarity networks, we utilize matrix factorization to
learn important latent information about the similarity matrix.
Inspired by previous research (Chen and Li, 2017, 2018), the
multi-view information for miRNAs and diseases should share the
same latent structures. Consequently, we change the interactive
update strategy of factor matrices and similarity matrices, which
can fuse more biological similarity information into the calculation
framework. The whole workflow of the proposed WeightTDAIGN
model is presented in Figure 1. Given multiple views of miRNAs (or
diseases) similarity matrices S � {Sm1, Sm2, . . . , Sm�n}, the objective
function can be defined as follows:

F Ai, A
p( ) � ∑�n

i�1
‖Smi − AiA

T
i ‖2F + ‖AiQi − Ap‖2F( ), (19)

where �n is the number of miRNA similarity views; Smi represents
the miRNA similarity matrix for ith view; Ai ∈ R|m|×r′ is the
miRNA latent factor for ith view, and r′ is the low-dimensional
embedding representation (r′ ≪|m|); Ap ∈ R|m|×r is the common
latent structure shared by all views related to miRNAs; and
Qi ∈ Rr′×r is the projection matrix.

3.3.2 Model Constraint Information
Recent studies have shown that data distributed in high-
dimensional space often contain important local information,
and preserving this local structure information of data can
improve the performance of the model when high-dimensional
data is embedded into low-dimensional subspace (Meng et al.,
2018; Shang et al., 2020). Given a miRNA (or disease) similarity
matrix Sm, A is defined as the low-dimensional embedding matrix
of the high-dimensional data Sm. To preserve the local structure
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information of high-dimensional data, the objective function to
be solved is as follows:

argmin
A

∑|m|

i�1
∑|m|

j�1
‖ai − aj‖22Smij � Tr ATLA( ), (20)

where ai refers to the ith row vector of the low-dimensional embedding
matrix A. It can be seen from Eq. 20 that if the similarity Smij between
miRNAs i and j is high, the distance between the embedding
information ai and aj should be very close. Lm = Dm − Sm and Dm

is the degree matrix and Dmii � ∑|m|
j�1Smij.

When the information of the multiple views of miRNA (or
disease) similarity network is projected to a common latent
matrix, the irrelevant feature information is usually included.
To discard irrelevant features and make the model select features
with more information (Nie et al., 2010), the L2,1 norm is
constrained on the projection matrix Q.

‖Q‖2,1 � ∑r′
i�1






∑r
j�1

q2ij

√√
� ∑r′

i�1
‖qi‖2, (21)

where qi denotes the ith row of the projection matrix Q.

3.3.3 WeightTDAIGN: Optimization Formulation
To consider the biological similarity network in the tensor
decomposition and preserve the local structural information of this
network, we combine Eqs 19 and 20 with the weighted tensor
decomposition Eq. 16. Moreover, to alleviate the introduction of
noise information and prevent overfitting, we use the L2,1 norm to
constrain the projectionmatrices and add the L2 regularization term for
factormatrices. Finally, the objective function canbeobtained as follows:

min
M,D,T,W,A,B,Q,P

‖ 



W

√
⊛ X − [[M,D, T]]( )‖2F

+∑�n

i�1αi ‖Smi − AiA
T
i ‖2F + ‖AiQi −M‖2F + ‖Qi‖2,1 + Tr AT

i LmiAi( )( )
+∑ �m

j�1βj ‖Sdj − BjB
T
j ‖2F + ‖BjPj −D‖2F + ‖Pj‖2,1 + Tr BT

j LdjBj( )( )
+λ ‖M‖2F + ‖D‖2F + ‖T‖2F( ) − 1 − k( )2W,

(22)

where αi and βj control the impact of auxiliary information. A �
{A1, A2, . . . , A�n} and B � {B1, B2, . . . , B �m} are the potential
representation matrices of miRNAs and diseases similarity; Q �
{Q1, Q2, . . . , Q�n} and P � {P1, P2, . . . , P �m} are both projection
matrices.

FIGURE 1 | The workflow of our proposed WeightTDAIGNmodel for predicting potential multiple types of miRNA–disease associations. (A)Multi-viewmiRNA and
disease similarity networks are incorporated into tensor decomposition. It is worth noting that Gipk represents the Gaussian interaction profile kernel. (B)We take slice
W(1) as an example to show how to assign weight to positive samples. (C) If the similarity Smij betweenmiRNAs (or diseases) is high, the embedding information of nodes
ai and aj will be very similar (that is, the nodes have the same color) for miRNAs (or diseases) in the low-dimensional embedding space.
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3.3.4 WeightTDAIGN: Optimization Algorithm
Because the previous objective function in Eq. 22 is non-convex
and the variables of the objective function are interdependent, we
simplify the optimization problem by using the variable splitting
technique. Finally, the optimization problem of Eq. 22 without
updating the weight tensor W can be reformulated as follows:

min
M,D,T,A,C,F ,B,E,Q,P,G

Φ � ‖ 



W

√
⊛ X − [[M,D, T]]( )‖2F

+∑�n

i�1αi ‖Smi − CiA
T
i ‖2F + ‖AiQi −M‖2F + ‖Qi‖2,1 + Tr FT

i LmiFi( )( )
+∑ �m

j�1βj ‖Sdj − EjB
T
j ‖2F + ‖BjPj −D‖2F + ‖Pj‖2,1 + Tr GT

j LdjGj( )( )
+λ ‖M‖2F + ‖D‖2F + ‖T‖2F( )
s.t C � A, E � B,F � A,G � B,

(23)

where C � {C1, C2, . . . , C�n}, F � {F1, F2, . . . , F�n},
E � {E1,E2, . . . ,E �m}, andG � {G1,G2, . . . ,G �m} are auxiliary variables.

By integrating the equality constraints into the objective
function, we can construct the augmented Lagrangian function
of Eq. 23 as follows:

L � Φ +∑�n

i�1 YT
i Ci − Ai( ) + μ

2
‖Ci − Ai‖2F( )

+∑�n

i�1 HT
i Fi − Ai( ) + γ

2
‖Fi − Ai‖2F( )

+∑ �m

j�1 ZT
j Ej − Bj( ) + η

2
‖Ej − Bj‖2F( )

+∑ �m

j�1 JTj Gj − Bj( ) + ε

2
‖Gj − Bj‖2F( ),

(24)

where Y � {Y1, Y2, . . . , Y�n}, H � {H1, H2, . . . , H�n},
Z � {Z1, Z2, . . . , Z �m}, and J � {J1, J2, . . . , J �m} are the
Lagrange multipliers. μ, γ, η, and ε are the penalty parameters.

Next, we develop an alternately updating rule and adopt the
ADMM algorithm to optimize the objective function of Eq. 24.

Updating the factor matrices M, D, and T.
According to the idea of alternate iterative update, when the

other variables are fixed, the terms in the objective function
involving M, D, and T can be updated separately as follows:

min
M

‖ 




W 1( )

√
⊛ X 1( ) −M D ⊙ T( )T( )‖2F

+∑�n
i�1

αi‖AiQi −M‖2F + λ‖M‖2F,
min
D

‖ 




W 2( )

√
⊛ X 2( ) −D M ⊙ T( )T( )‖2F

+∑�m
j�1

βj‖BjPj −D‖2F + λ‖D‖2F,

min
T

‖ 




W 3( )

√
⊛ X 3( ) − T M ⊙ D( )T( )‖2F + λ‖T‖2F,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(25)

where X(1), X (2), andX (3) are the mode-1, mode-2, and mode-
3 matricization of tensor X , respectively. ⊙ denotes the
Khatri-Rao product. Similarly, W(1), W(2), and W(3) are
the mode-1, mode-2, and mode-3 matricization of tensor
W, respectively.

Since the element-wise product of the tensor is involved in
Eq. 25, we solve objective functions in Eq. 25 from the vector
level. By letting the derivative of objective functions to zero,
we can obtain the updating rules of M, D, and T as shown
below:

Mi,: �
W 1( ) ⊛ X 1( ) D ⊙ T( ) +∑�n

i�1αiAiQi( )
i,:

D ⊙ T( )TDiag W 1( )i,:( ) D ⊙ T( ) +∑�n

i�1αiI + λI
,

Di,: �
W 2( ) ⊛ X 2( ) M ⊙ T( ) +∑ �m

j�1βjBjPj( )
i,:

M ⊙ T( )TDiag W 2( )i,:( ) M ⊙ T( ) +∑ �m

j�1βjI + λI
,

Ti,: � W 3( ) ⊛ X 3( ) M ⊙ D( )( )i,:
M ⊙ D( )TDiag W 3( )i,:( ) M ⊙ D( ) + λI

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(26)

where Diag(W(1)i,: ), Diag(W(2)i,: ), and Diag(W(3)i,: ) refer to
the diagonal matrices for the ith row vector of W(1), W(2), and
W(3), respectively.

Updating the latent matrices Ai, Ci, Fi, Bj, Ej, and Gj.

Similarly, we can solve other variables using the same solution
strategy:

Ai � 2αiS
T
miCi + 2αiMQT

i + μCi + Yi +Hi + γFi

2αiC
T
i Ci + 2αiQiQ

T
i + μI + γI

,

Ci � 2αiSmiAi + μAi − Yi

2αiA
T
i Ai + μI

,

Fi � 2αiLmi + γI( )−1 γAi −Hi( ),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(27)

Bj �
2βjS

T
djEj + 2βjDPT

j + ηEj + Zj + Jj + εGj

2βjE
T
j Ej + 2βjPjP

T
j + ηI + εI

,

Ej �
2βjSdjBj + ηBj − Zj

2βjB
T
j Bj + ηI

,

Gj � 2βjLdj + εI( )−1 εBj − Jj( ),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(28)

Updating the projection matrices Qi and Pj.
According to previous research (Nie et al., 2010), the updating

rules for projection matrices Qi and Pj constrained by the L2,1
norm are as follows:

Qi � MTAi

AT
i Ai + 1

2
Λi

,

Pj � DTBj

BT
j Bj + 1

2
∑

j

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(29)

where Λi(s, s) � 1
‖Qi(s,: )‖ and ∑j(s, s) � 1

‖Pj(s,: )‖ are the diagonal
matrix, andQi (s,:) and Pj (s,:) refer to the sth row vector of matrix
Qi and Pj, respectively.

Updating the Lagrange multipliers Yi, Hi, Zj, and Jj.
The updating formulations of Lagrange multipliers using

gradient ascent can be defined as follows:

Yi � Yi + μ Ci − Ui( ),
Hi � Hi + γ Fi − Ui( ),
Zj � Zj + η Ej − Vj( ),
Jj � Jj + ε Gj − Vj( ),

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (30)
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Updating the weight tensor W.
In this article, we call the training process that reaches the

stopping condition as an episode. When the aforementioned
parameters are updated in an episode, the model starts to update
the weight tensor W. The weight tensor W can be obtained
through solving the following objective function:

min
W

‖ 



W

√
⊛ X − [[M,D,T]]( )‖2F − 1 − k( )2W. (31)

Clearly, whenM, D, and T are fixed, the optimalW(n)ij can be
easily calculated by

W n( )ij � 1, if lij ≤ 1 − k( )2
w, otherwise,

{ (32)

where the loss function lij is ‖X (1) −M(D ⊙ T)T‖2F for factor
matrix M; the loss function lij is ‖X (2) −D(M ⊙ T)T‖2F for factor
matrix D; and the loss function lij is ‖X(3) − T(D ⊙ M)T‖2F for
factor matrix T.

Optimization algorithm.
According to the aforementioned alternately updating rules and

ADMM algorithm, the final solution process for solving the
optimization problem (Eq. 22) is summarized in Algorithm 1.

Algorithm 1. Algorithm for Solving Problem (Eq. 22).

3.4 Complexity Analysis
We now analyze the time complexity of Algorithm 1 step by step
as follows. In reality, we find that |t| is relatively small.

• Updating the factor matrix T: One must compute M ⊙ D
first whose time complexity is O(|m‖n|r). Then, the time
complexity of updating W(3) ⊛ X(3)(M ⊙ D) is
O(|m‖n‖t|r). Besides, the time complexity isO(r(|m‖n|)2 +
|m‖n|r2) as we compute (M ⊙ D)TDiag(W(3)i,: )(M ⊙ D).
Thus, the total time complexity of updating T is
O(r(|m‖n|)2 + |m‖n|r2 + |m‖n‖t|r).

• Updating the factor matrices M and D: Similar to the
previous steps, the time complexities of updating M and D

are O(r(|n‖t|)2 + |n‖t|r2 + |m‖n‖t|r) and
O(r(|m‖t|)2 + |m‖t|r2 + |m‖n‖t|r), respectively.

• Updating the latent matrices Ai and Bj: According to the
calculation of matrix multiplication complexity, the time
complexities of updating Ai and Bj are O(|m|2r′ +
|m|(r′)2 + |m|rr′ + r(r′)2) and
O(|n|2r′ + |n|(r′)2 + |n|rr′ + r(r′)2), respectively.

• Updating the latent matrices Ci, Fi, Ej, and Gj: Similar to
the complexities of computing Ai and Bj, the time
complexities of computing Ci and Ej are O(|m|2r′ +
|m|(r′)2) and O(|n|2r′ + |n|(r′)2), respectively. In
addition, computing Fi and Gj need O(|m|2r′) and
O(|n|2r′) time, respectively.

• Updating the projection matrices Qi and Pj: One needs to
compute the projection matrices Qi and Pj, whose time
complexities are O(|m|(r′)2 + |m|rr′ + r(r′)2) and
O(|n|(r′)2 + |n|rr′ + r(r′)2), respectively.

• Updating the weight tensor W: For mode-n matricization
W(n), its time complexity is O(|m‖n‖t|).

Finally, as the number of iterations is constant and the time
complexity of updating the Lagrange multipliers is O(|m|r′) or
O(|n|r′), the total time complexity for each iteration of
Algorithm 1 is O(r(|m‖n|)2 + r(|n‖t|)2 + r(|m‖t|)2 + |m‖n‖t|r),
where r ≪ min (|m|, |n|) and r′ ≪ min (|m|, |n|).

4 RESULTS

4.1 Implementation Details and Evaluation
Metrics
In this article, our goal is to more accurately predict positive
samples while discovering the potential multiple types of
miRNA–disease associations. To evaluate the performance of
models more comprehensively from this idea, two different
cases are considered under 5-fold cross-validation.

• CVtype: we randomly split all miRNA–disease pairs which
include not less than one type of association into five equal-
sized subsets. It is worth noting that we must ensure the five
equal-sized subsets do not contain each other. In each fold,
one subset is served as a testing set in turn, and the rest of the
subsets as a training set. According to the predicted score,
the prediction results of all association types are ranked for
eachmiRNA–disease pair in the testing set. Then, we use the
type with the highest score as the final prediction result for
the test sample and calculate the Top-1 precision, Top-1
recall, and Top-1 F1.

• CVtriplet: we divide the training set and testing set in the
same way as CVtype. In each turn, we mainly evaluate
whether known miRNA–disease-type triplets are well
predicted. To better evaluate the ability of models to
predict positive samples, the area under the precision-
recall (AUPR) curve, the area under the receiver
operating characteristic (AUC) curve, and mean square
error (MSE) are calculated to evaluate the prediction
performance of all models.
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Obviously, the problem of predicting the multiple-type
associations between miRNAs and diseases is what we are
more concerned about. Therefore, we regard CVtype as our
primary experimental setting. Moreover, we use Python 3.8.5
and the tensor learning tool “tensorly” to implement comparative
experiments between our proposed WeightTDAIGN and all
benchmark models.

4.2 Parameters Analysis
Before the training stage, we apply grid search and 5-fold cross-
validation to find the optimal hyperparameters on different
sparsity datasets. We take the MDA v2.0–4 dataset as an
example to show the process of cross-validation. First, we fix
the value of λ at 0.001 and search for the optimal values of other
parameters. Then, we find the optimal value of α and β from {2–4,
2–3, 2–2, 2–1, 20, 21} and set α = 2–2 and β = 2–2 in our experiment
(see Figure 2A). Training tensor rank r within {2, 4, 6, 8, 10, 12}
and setting r = 8 (see Figure 2B). Varying matrix rank r′ in the set
{2, 8, 14, 20, 26, 32} and setting r′ = 20 in Figure 3A. Moreover,
we find that setting different episodes also has a certain impact on
the performance of the model. Therefore, we search the optimal
episode from {2, 4, 6, 8, 10} and set episode as 4 (see Figure 3B).
Obviously, when the value in the weight tensor W is larger, the
hypothesis space is found by the model tends to increase the value
of elements for the reconstructed tensor ~X , which leads to too
many false positives samples in the predicted value. Thus, to
overcome the aforementioned problem, we utilize Top-1
precision as a metric to find the optimal weight and set the
same weight for different slices. We can see that when the weight
is set to 1.5, the model can achieve the best performance in
Figure 4A. Finally, training kwithin {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9} and setting k = 0.3 (see Figure 4B). It is worth noting that
other experimental data in this article should also use the previous
steps for hyperparameters selection. Moreover, the detailed
parameter adjustment results of other data are available in the
Supplementary Parameters Analysis.

4.3 Comparison Experiments
To compare the performance of our model more
comprehensively, we introduce one representative prediction
model RBMMMDA and three tensor decomposition models,
CP decomposition (CP), tensor factorization using auxiliary
information (TFAI) (Narita et al., 2012), and tensor
decomposition with relational constraints (TDRC) as baselines.
RBMMMDA is the first model to study the problem of multiple
types of miRNA–disease associations. CP model is a standard
tensor decomposition method without taking into account
biological similarity information. TFAI only considers the
inter-data connection relations in biological similarity matrices
by introducing graph Laplacian regularization. TDRC only
focuses on integrating biological similarity information into
the CP decomposition via the strategy of alternately updating
factor matrices and projection matrices. At the same time, in
order to show that weighting positive samples, the introduction of
L2,1 norm, and graph Laplacian regularization can effectively
improve the prediction performance of the model, we propose the
TDAIGN model without weight and the TDAI model without
L2,1 norm and graph Laplacian regularization, respectively. For
convenience, we call RBMMMDA, CP, TFAI, TDRC, TDAI, and
TDAIGN models as benchmark models. To better demonstrate
the optimal performance of benchmark models, we carry out 5-
fold cross-validation for TDRC and TDAIGNmodels to select the
optimal hyperparameters α and β. For fairness, we uniformly set
the same rank as WeightTDAIGN for benchmark models on
different sparsity datasets. Moreover, we use the same
convergence criteria for CP, TFAI, TDRC, TDAI, and
TDAIGN. Finally, the detailed parameter settings for all
benchmark models can be found in Supplementary
Comparison Methods for Parameter Analysis.

Due to the imbalance of positive and negative samples on the
datasets, we randomly select the same number of unobserved
elements and treat them as negative samples. In addition, we
compare and analyze the results of different models under 5-fold

FIGURE 2 | The influence of different hyperparameters on WeightTDAIGN based on the MDA v2.0–4 dataset. (A) The impact of hyperparameters α and β

WeightTDAIGN and (B) the impact of hyperparameter r on WeightTDAIGN. Note that to facilitate visualization panel (A), we use 2n to represent 2 × 10n when n < 0.
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cross-validation on MDA v2.0–2, MDA v2.0–3, MDA v2.0–4,
and MDA v3.2–5 datasets. As shown in Table 2, we find that the
WeightTDAIGNmodel achieves the highest AUC, AUPR, and F1
values compared with benchmark models on all datasets.
Moreover, in terms of MSE used to measure the difference
between the true value and the predicted value in positive
samples, WeightTDAIGN is also significantly smaller than
benchmark models on all datasets. The analysis of the
previous results indicates that compared with the six
benchmark models, WeightTDAIGN can recover positive
samples well and improve prediction performance by
weighting positive samples.

To comprehensively evaluate the performance of all models in
predicting multiple types of miRNA–disease associations, we
conduct experiments on different sparsity datasets under
CVtype. From Table 3 we can see that the prediction

performance of WeightTDAIGN is better than that of the six
benchmark models. To be more specific, WeightTDAIGN is
significantly better than the latest TDRC model on MDA
v2.0–2, MDA v2.0–3, and MDA v2.0–4 datasets. In particular,
WeightTDAIGN obtains certain performance gains over TDRC
by 8.40% in terms of Top-1 precision, 8.40% in terms of Top-1
recall, and 8.44% in terms of Top-1 F1 on sparsest MDA v2.0–2
dataset. Moreover, even for the relatively dense MDA v3.2–5
dataset, WeightTDAIGN still shows good prediction
performance. These indicate that WeightTDAIGN has certain
competitiveness, especially when the datasets are relatively sparse,
in the task of predicting multiple types of miRNA–disease
associations. In addition, we observe that the prediction
performance of TDAIGN is better than TDAI on all datasets,
which indicates that the introduction of graph Laplacian
regularization and L2,1 norm can effectively preserve the local

FIGURE 3 | The influence of different hyperparameters onWeightTDAIGN based on theMDA v2.0–4 dataset. (A) The impact of hyperparameters r′WeightTDAIGN
and (B) the impact of hyperparameter episode on WeightTDAIGN.

FIGURE 4 | The influence of different hyperparameters on WeightTDAIGN based on the MDA v2.0–4 dataset. (A) The impact of hyperparameters weight
WeightTDAIGN and (B) the impact of hyperparameter k on WeightTDAIGN.
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structural information of biological similarity networks and
reduce the noise information contained in these networks.
Furthermore, we find that the better prediction performance
of WeightTDAIGN can be achieved compared with TDAIGN
on all datasets. This shows that weighting positive samples can
effectively improve the prediction performance of the model. Last
but not least, compared with RBMMMDA, CP, and TFAI models,
TDAIGN achieves better prediction performance on all datasets.
This indicates that more similar information related to miRNAs
and diseases is integrated into the model, which can effectively
improve the prediction performance of the model and solve the
problem of tensor sparseness.

4.4 Case Studies
To further evaluate the ability of WeightTDAIGN to predict
the potential multiple-type associations between miRNAs and
diseases, we build the model by using all four known types of
miRNA–disease associations on the HMDD v2.0 dataset and
then predict those unknown miRNA–disease-type triplets.
Further, we verify the prediction results on the HMDD v3.2
dataset and recent literature. Moreover, in order to
comprehensively demonstrate the generalization
performance of WeihghtTDAIGN on different sparsity
datasets, we conduct case studies on MDA v2.0–2, MDA

v2.0–3, and MDA v2.0–4 datasets, respectively. The higher
the predictive scores for unobserved miRNA–disease-type
triplets, the higher the probability of correct prediction, so
we only verify the results using the top predictive scores. The
results are shown in Table 4. We can see that all of the top
50 disease-related miRNAs are successfully confirmed by
HMDD v3.2 for MDA v2.0–4 dataset. Meanwhile,
Supplementary Table S2 shows that 99 of the top 100 are
verified by HMDD v3.2 for MDA v2.0–2 dataset.
Supplementary Table S3 demonstrates the top 100
predicted results and ninety-seven predictions can be
confirmed according to recent literature for MDA v2.0–3
dataset. We also find that miRNAs (or diseases) with very
high similarities are predicted to be associated with the same
disease (or miRNA), and these miRNAs belong to the same
type. For example, in terms of MDA v2.0–4 dataset, hsa-mir-
124-1, hsa-mir-124-2, and hsa-mir-124-3 suppress multiple
steps of breast cancer metastasis by targeting a cohort of pro-
metastatic genes in vitro (Lv et al., 2011). Further, Figure 5
presents the similarity network of miRNAs associated with
breast neoplasms in the top 50 association predictions. Clearly,
there is a high functional similarity between miRNAs of the
same type that are highly associated with breast neoplasms.
This further shows that the necessity of incorporating more
biological similarity networks and using graph Laplacian

TABLE 2 | The performance of all models evaluated by 5-fold cross-validation
under CVtriplet.

AUC AUPR F1 MSE

MDA v2.0-2 RBMMMDAa 0.855252 0.845632 0.791036 0.819910
— CP 0.912348 0.924856 0.834056 0.538964
— TFAI 0.911866 0.924786 0.835192 0.540715
— TDRC 0.900086 0.915792 0.822848 0.559964
— TDAI 0.908280 0.920506 0.828144 0.549998
— TDAIGN 0.910948 0.923750 0.829668 0.539089
— WeightTDAIGN 0.933064 0.941610 0.861922 0.484437

MDA v2.0-3 RBMMMDAa 0.787792 0.777968 0.744724 0.734902
— CP 0.944596 0.955340 0.875980 0.298760
— TFAI 0.936446 0.947686 0.861838 0.357501
— TDRC 0.931564 0.942962 0.852522 0.362024
— TDAI 0.944558 0.955166 0.875612 0.308545
— TDAIGN 0.948034 0.957388 0.876888 0.307712
— WeightTDAIGN 0.971160 0.974772 0.915732 0.258653

MDA v2.0-4 RBMMMDAa 0.790984 0.781692 0.746280 0.674311
— CP 0.930410 0.943304 0.852792 0.322797
— TFAI 0.933182 0.944776 0.853160 0.323449
— TDRC 0.928236 0.940798 0.852378 0.338039
— TDAI 0.933482 0.944868 0.856652 0.323383
— TDAIGN 0.933978 0.945050 0.856182 0.323505
— WeightTDAIGN 0.955112 0.960600 0.886136 0.283076

MDA v3.2-5 RBMMMDAa 0.857432 0.852302 0.787936 0.568752
— CP 0.862516 0.867546 0.789574 0.514538
— TFAI 0.862770 0.867616 0.790276 0.514886
— TDRC 0.861966 0.866272 0.790432 0.512712
— TDAI 0.862536 0.867434 0.789696 0.514705
— TDAIGN 0.862640 0.867566 0.789866 0.514937
— WeightTDAIGN 0.868180 0.869516 0.796142 0.472897

aSince the open-source web server can no longer be used, the reported results here are
our re-implementation of the original algorithms.

TABLE 3 | The performance of all models evaluated by 5-fold cross-validation
under CVtype.

Top-1 precision Top-1 recall Top-1 F1

MDA v2.0-2 RBMMMDAa 0.368033 0.318645 0.323771
— CP 0.584426 0.505831 0.528142
— TFAI 0.587705 0.508327 0.526776
— TDRC 0.585246 0.506537 0.529235
— TDAI 0.575410 0.498121 0.524454
— TDAIGN 0.609016 0.527208 0.550273
— WeightTDAIGN 0.634426 0.549107 0.573907

MDA v2.0-3 RBMMMDAa 0.390437 0.309279 0.318581
— CP 0.568611 0.452077 0.492431
— TFAI 0.583551 0.463528 0.492374
— TDRC 0.585770 0.466194 0.495993
— TDAI 0.572821 0.454553 0.492710
— TDAIGN 0.585747 0.465819 0.500618
— WeightTDAIGN 0.607207 0.482831 0.512076

MDA v2.0-4 RBMMMDAa 0.359857 0.269427 0.277623
— CP 0.544385 0.409100 0.433500
— TFAI 0.555865 0.416682 0.443161
— TDRC 0.577683 0.434773 0.467879
— TDAI 0.569554 0.425020 0.454890
— TDAIGN 0.577398 0.431664 0.462733
— WeightTDAIGN 0.620535 0.465670 0.496494

MDA v3.2-5 RBMMMDAa 0.542408 0.325892 0.347250
— CP 0.581700 0.349530 0.377299
— TFAI 0.585528 0.351849 0.381735
— TDRC 0.597008 0.358833 0.388722
— TDAI 0.580311 0.348687 0.375127
— TDAIGN 0.588309 0.353523 0.383068
— WeightTDAIGN 0.606737 0.364620 0.398307

aSince the open-source web server can no longer be used, the reported results here are
our re-implementation of the original algorithms.
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regularization can well capture the internal node similarity
relations between miRNAs and between diseases.

To further validate the biological significance of the potential
miRNA–disease associations discovered by the WeightTDAIGN
model, we perform enrichment analysis for gene sets composed of
miRNA target genes. The target genes of each miRNA are
obtained from miRTarBase (Huang et al., 2020), and
Metascape (Zhou et al., 2019) is used to explore whether the
obtained target gene sets are related to important pathways or
receptor regulating diseases. From Figure 6A, we can see that
among the target genes related to hsa-mir-218-1, some target

genes are associated with signaling pathways such as MAPK1/
MAPK3 signaling, MAPK family signaling cascades and PIP3
activates AKT signaling. Also, many studies have reported that
the expression of MAPK is closely related to tumor invasion and
metastasis in breast neoplasms, and the activation of AKT
signaling will promote tumor initiation and progression (Jiang
et al., 2020; He et al., 2021). Similarly, some target genes of hsa-
mir-218-2 are associated with toll-like receptor in Figure 6B,
while toll-like receptor has an important association with the
occurrence and development of breast neoplasms (Shi et al.,
2020). In conclusion, hsa-mir-218-1 and hsa-mir-218-2 may

TABLE 4 | Top 50 disease-related miRNAs predicted by WeightTDAIGN based on MDA v2.0–4.

miRNA Disease Type Score PMID miRNA Disease Type Score PMID

hsa-mir-34a Colorectal neoplasms Target 1.424456 24370784 hsa-mir-
200b

Prostatic neoplasms Target 1.028036 21224847

hsa-mir-17 Carcinoma and hepatocellular Target 1.325876 23418359 hsa-mir-
124-1

Breast neoplasms Target 1.003782 22085528

hsa-mir-145 Breast neoplasms Target 1.307542 19360360 hsa-mir-19a Carcinoma and
hepatocellular

Target 0.985647 28724429

hsa-mir-
125b-1

Carcinoma and hepatocellular Target 1.289963 22293115 hsa-mir-17 Melanoma Circulation 0.983089 20529253

hsa-mir-
125b-1

Breast neoplasms Target 1.267228 19738052 hsa-mir-
19b-1

Carcinoma and
hepatocellular

Target 0.975428 17188425

hsa-mir-15a Leukemia, lymphocytic,
chronic, and B cell

Target 1.258953 19498445 hsa-mir-
200c

Carcinoma and
hepatocellular

Epigenetics 0.974930 23222811

hsa-mir-
125b-2

Breast neoplasms Target 1.230360 19738052 hsa-mir-
16-1

Multiple myeloma Target 0.967225 23104180

hsa-mir-34a Breast neoplasms Target 1.227899 21814748 hsa-mir-18a Breast neoplasms Genetics 0.957834 16754881
hsa-mir-
16-1

Leukemia, lymphocytic,
chronic, and B cell

Target 1.199684 19498445 hsa-mir-29c Breast neoplasms Target 0.956380 22330642

hsa-mir-
125b-2

Carcinoma and hepatocellular Target 1.166586 22293115 hsa-mir-
200c

Breast neoplasms Target 0.948673 23209748

hsa-mir-
200b

Carcinoma and hepatocellular Epigenetics 1.162828 22370893 hsa-mir-
29b-1

Breast neoplasms Target 0.939779 22864815

hsa-mir-221 Breast neoplasms Target 1.152046 21868360 hsa-mir-15a Multiple myeloma Target 0.937730 23104180
hsa-mir-
19b-1

Breast neoplasms Genetics 1.130424 16754881 hsa-mir-
16-1

Breast neoplasms Target 0.933405 19250063

hsa-mir-
200a

Carcinoma and hepatocellular Epigenetics 1.127118 21837748 hsa-mir-
200a

Prostatic neoplasms Target 0.929946 21224847

hsa-mir-
200a

Breast neoplasms Target 1.118853 21926171 hsa-mir-18a Carcinoma and
hepatocellular

Genetics 0.925369 15944709

hsa-mir-
124-2

Carcinoma and hepatocellular Target 1.110440 21672940 hsa-mir-17 Colorectal neoplasms Epigenetics 0.924489 22308110

hsa-mir-
124-3

Carcinoma and hepatocellular Target 1.110440 21672940 hsa-mir-
16-1

Prostatic neoplasms Genetics 0.922385 17940623

hsa-mir-19a Breast neoplasms Genetics 1.079414 16754881 hsa-mir-
16-1

Carcinoma and
hepatocellular

Target 0.916582 23226427

hsa-mir-
124-2

Breast neoplasms Target 1.078512 22085528 hsa-mir-
218-1

Breast neoplasms Genetics 0.913360 16754881

hsa-mir-
124-3

Breast neoplasms Target 1.078512 22085528 hsa-mir-
124-1

Carcinoma and
hepatocellular

Target 0.912254 21672940

hsa-mir-
200c

Stomach neoplasms Target 1.057460 25986864 hsa-mir-
16-2

Carcinoma and
hepatocellular

Target 0.910880 23226427

hsa-mir-
200c

Prostatic neoplasms Target 1.054738 21224847 hsa-mir-15a Prostatic neoplasms Genetics 0.906294 17940623

hsa-mir-17 Breast neoplasms Genetics 1.049201 16754881 hsa-mir-
133a-2

Colorectal neoplasms Epigenetics 0.906253 22766685

hsa-mir-126 Carcinoma and non-small cell
lung

Circulation 1.046761 22009180 hsa-mir-34a Prostatic neoplasms Target 0.892918 21240262

hsa-mir-31 Breast neoplasms Epigenetics 1.045268 22289355 hsa-mir-
200b

Breast neoplasms Target 0.889298 20514023
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be closely related to the occurrence and development of breast
neoplasms.

5 DISCUSSION

While predicting the associations between miRNAs and diseases,
we can also determine the specific type of miRNA, which is very
helpful for a more detailed understanding of the pathogenesis of
the disease at the molecular level. In this article, we propose the
WeightTDAIGN model based on CP decomposition by
introducing weight, graph Laplacian regularization, and L2,1
norm, which also incorporates more auxiliary information into
the framework of tensor decomposition. Experimental results
demonstrate that WeightTDAIGN can recover positive samples

well compared with six benchmark models under CVtriplet.
Meanwhile, WeightTDAIGN can also achieve satisfactory
prediction performance on different sparsity datasets under
CVtype. All of the above show that WeightTDAIGN our
proposed can effectively improve the performance and
robustness of predicting the associations of multiple types of
miRNA–disease. In addition, the comparative experiment of
TDAI and TDAIGN indicates that the introduction of graph
Laplacian regularization and L2,1 norm contributes to preserving
the local structure information of similarity networks and
reducing the influence of noise in these networks on the
model. Also, the comparative experiment of TDAIGN and
WeightTDAIGN confirms that weighting positive samples can
recover positive samples well and improve the prediction
performance of the model. Moreover, the results of the case

FIGURE 5 | The association network of the top 50 predictions for miRNAs with type as the target in breast neoplasms. (A) Predicted association between miRNAs
and breast neoplasms. (B) Functional similarity network between miRNAs associated with breast neoplasms. Darker colors indicate higher similarity between miRNAs.
The similarity values range from 0.5 to 1.

FIGURE 6 | The enrichment analysis of miRNA target gene sets. (A) The statistical significance of target gene sets associated with hsa-mir-218-1. (B) The statistical
significance of target gene sets associated with hsa-mir-218-2.
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studies further demonstrate that WeightTDAIGN can accurately
predict the associations of multiple types of miRNA–disease and
discover the potential associations of unconfirmed
miRNA–disease that are of biological significance in
enrichment analysis. In conclusion, WeightTDAIGN can serve
as a powerful tool to infer the multiple-type associations between
miRNAs and diseases rather than simply predicting disease-
related miRNAs.
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