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Current surgical options for patients requiring esophageal replacement suffer

from several limitations and do not assure a satisfactory quality of life. Tissue

engineering techniques for the creation of customized “self-developing”

esophageal substitutes, which are obtained by seeding autologous cells on

artificial or natural scaffolds, allow simplifying surgical procedures and achieving

good clinical outcomes. In this context, an appealing approach is based on the

exploitation of decellularized tissues as biological matrices to be colonized by

the appropriate cell types to regenerate the desired organs. With specific regard

to the esophagus, the presence of a thick connective texture in the
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decellularized scaffold hampers an adequate penetration and spatial

distribution of cells. In the present work, the Quantum Molecular

Resonance
®
(QMR) technology was used to create a regular microchannel

structure inside the connective tissue of full-thickness decellularized tubular

porcine esophagi to facilitate a diffuse and uniform spreading of seeded

mesenchymal stromal cells within the scaffold. Esophageal samples were

thoroughly characterized before and after decellularization and

microperforation in terms of residual DNA content, matrix composition,

structure and biomechanical features. The scaffold was seeded with

mesenchymal stromal cells under dynamic conditions, to assess the ability

to be repopulated before its implantation in a large animal model. At the end of

the procedure, they resemble the original esophagus, preserving the

characteristic multilayer composition and maintaining biomechanical

properties adequate for surgery. After the sacrifice we had histological and

immunohistochemical evidence of the full-thickness regeneration of the

esophageal wall, resembling the native organ. These results suggest the

QMR microperforated decellularized esophageal scaffold as a promising

device for esophagus regeneration in patients needing esophageal substitution.

KEYWORDS

tissue engineering, esophagus, quantum molecular resonance, mesenchymal stromal
cells, scaffold

Introduction

The vast majority of patients needing an esophageal

replacement undergo gastric or intestinal transpositions with a

frequently poor residual quality of life, both in adult (Ellis, 1999;

Gawad et al., 1999; Kato et al., 2007; Mariette et al., 2007; Khan

et al., 2008; Almhanna, 2012; Wang et al., 2020; Xu et al., 2021)

and in pediatric age (Ring et al., 1982; Spitz, 1984; Stone et al.,

1986; Othersen et al., 1988; Cywes et al., 1993; Ure et al., 1995;

Ludman and Spitz, 2003; Bagolan et al., 2004; Uygun, 2015;

Arnold and Numanoglu, 2017; Awad and Jaffray, 2017; Chirica

et al., 2017).

In recent years, the use of biomaterials helped to hypothesize

tailored esophageal substitutes as “self-developing” organs that

simplify surgical procedures, improve patients’ quality of life and

follow the host’s growth, which is crucial in the pediatric age.

Natural decellularized scaffold’s residual extracellular matrix

(ECM) is produced by the resident cells of an organ for structural

and functional purposes, and its biochemical and mechanical

features vary according to the specific organ and site (Jiang et al.,

2021).

Mesenchymal stromal cells (MSCs) seeded scaffolds showed

reduced inflammation and increased reconstructive process

(Gronthos and Simmons, 1996; Marzaro et al., 2002; Conconi

et al., 2005) since only few MSCs engrafted into the scaffold

differentiate toward the same histology of proper cells (Rendra

et al., 2020), while MSCs main activity lies in the release of

bioactive molecules and vesicles mediating anti-inflammatory

action, promoting re-epithelialization, angiogenesis and muscle

tissue formation that lead to tissue regeneration. All these

peculiarities are better expressed by a 3D cell culture (Li et al.,

2018).

As evidenced in our previous experimental trials (Marzaro

et al., 2006), the 3D natural matrix tight texture ensures tissue

resistance and surgical handling but enables only a two-

dimensional (2D) cell seeding on the upper surface. This is a

limit for MSCs penetration into the deepest layers of the matrix,

and represents an issue to be solved to guarantee an effective

microenvironment with high numbers, good survival and

effective action of the seeded cells.

To address this problem, we applied an original

microperforation technique on the decellularized esophageal

scaffolds by a robot-guided needle connected to a Quantum

Molecular Resonance® (QMR) generator. This equipment

produces a particular electric current with quanta of energy,

which does not increase the tissue temperature to more than

50°C. Therefore, the energy at the tip of the needle breaks the

ECM molecular bonds without burns or damages (Pozzato and

Vignato, 2003; JUSTIA, 2022; Patents Telea Biotech, 2022). The

robot realizes a regular thick microchannel system inside the

scaffold, avoiding changes in its macroscopic structure and

allowing a uniform spatial distribution of the cells after seeding.

Aim of the work is the proof of concept of a tissue

engineering esophageal substitution. We prepared a full-

thickness pig-derived tubular esophageal scaffold to substitute

a corresponding tract of the thoracic esophagus in a large animal

based experimental model. After the implantation the surviving

animals had a 6 month long follow-up period, they had a

gastrostomy for the first postoperative days together with an

endoluminal stent, were free to go on autonomous oral feeding as
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soon as possible and underwent regular endoscopic and

radiologic controls. After the sacrifice we had demonstration

of the full-thickness regeneration of the esophageal wall in the

tract where it was substituted by the scaffold. The length of the

regenerated tract corresponded to the implanted scaffold, the

esophageal lumen was patent and the animals were able to go on

autonomous oral alimentation.

The proposed approach is a further step on the way to

overcome by tissue engineering techniques the actual

problems related to the thoracic transposition of an intestinal

segment or the stomach for esophageal substitution.

Materials and methods

Site and regulation

The scaffold preparation was carried out at Telea Biotech

facilities (Vicenza, Italy), the cell preparation at the Hemato-

Oncology laboratory of the Bambino Gesù Children’s Hospital

(OPBG, Rome, Italy), and the animal trial at Cen.Ri.S. (Centro

Ricerche Sperimentali Università Cattolica, Rome, Italy).

Experiments were performed in compliance with the

directive 2010/63/EU on the protection of animals used for

scientific purposes and in compliance with the Italian animal

welfare and veterinary health rules and regulations. This project

was approved by the ethical committee of the Catholic University

of Rome Italy and the Italian Ministry of Health, aut. n° 786/

2016-PR (answer to prot. 1F295.17, 03-05-2016) and n° 853/

2019-PR (answer to prot. 1F295.82).

Sample procurement

Esophageal samples were taken in sterile conditions from

10 adult heart-beating 40 kg donor pigs (sus scrofa domesticus).

These animals were undergoing experimental surgical trials in

general anesthesia other than ours and were already destined to

be sacrificed. Harvesting the esophagus still in heart-beating

conditions gave us the opportunity to avoid post-mortem

necrotic and infectious phenomena of the tissues and

guarantee all the ECM properties for the subsequent procedures.

Animals assumed water and glucose solution until 8 h before

the operation, and then were fasting. Ceftiofur (Excenel)

3 mg/kg/day was administered intramuscularly (1 ml/16 kg for

each injection) starting 24 h before the operation. Anesthesia was

induced through a venous catheter in the auricular vein with

diazepam 0.5 mg/kg and ketamine 1–5 mg/kg or alternatively

propofol 1–8 mg/kg, and continued with 2%–3% isoflurane and

continuous propofol infusion (2 mg/kg). Muscle relaxation was

obtained by Tracrium (Atracurium) infusion 1 mg/kg. Animals

were intubated with 4/5.5 mm cuffed tracheotubes and were kept

in mechanical ventilation, monitoring blood pressure and blood

parameters, using 5% glucose, crystalloids and colloids if

necessary.

At the end of the principal surgical procedure the esophagus

was reached and removed through a right thoracotomy in left

lateral decubitus, the adventitia was removed, the cervical and

cardial portions removed avoiding their different muscle

structure, and the proximal end identified with a prolene 3/

0 suture.

The animals were sacrificed at the end of the procedures by

intravenous injection of tanax 3 ml/10 kg.

The whole thoracic esophagus was used as a tube preserved in

all its layers other than the adventitia. Samples were rinsed twice

in sodium chloride sterile solution (Sigma), to wash both the

surface and the inner lumen. Then they were dried with sterile

gauze, inserted in plastic vials and stored at −80°C.

Esophagus decellularization

After transportation in dry ice, samples were thawed at room

temperature for 3 h. The tubular scaffolds were then rinsed in

ultrapure water and stored in a solution composed of ultrapure

water and 2% penicillin-streptomycin (10,000 units penicillin

and 10 mg streptomycin per mL in 0.9% NaCl—Sigma-Aldrich)

(AF) for 48 h at 4°C in static conditions. Therefore samples were

placed five times for 4 h at room temperature in a 4% sodium

deoxycholate solution (BioXtra ≥98.0%, Sigma-Aldrich). Then

they underwent a five times treatment with 2,000 Kunitz Unit

(KU) of DNase-I (Warthington) in 1 M NaCl solution, each time

incubated for 3 h at 37°C. Thereafter, they were rinsed again in

ultrapure water and, in order to remove the decellularization

reagents, were washed with increasing percentages of denatured

ethanol (ACS Reagent, ≥99.8%, without additive, Honeywell)

and rehydrated in ultrapure water. Scaffolds were finally stored in

ultrapure water and 2% AF at 4°C.

Tubular scaffolds underwent a dynamic decellularization

method by means of a dedicated bioreactor that allowed the

decellularization fluids to circulate in sterile conditions by

perfusion both on the luminal mucosal aspect and on the

external muscular side of the scaffold.

QMR perforative treatment

The decellularized scaffold underwent a microscopic

perforative treatment (patented by Telea Biotech, subsidiary of

Telea Electronic Engineering) through a 150 μm-diameter needle

mounted on a 3-axis Cartesian robot handpiece (Yamaha model

RCX240) and connected to the QMR based device developed for

this application (Pozzato and Vignato, 2003; JUSTIA, 2022;

Patents Telea Biotech, 2022).

Samples of tubular full-thickness esophageal decellularized

scaffolds derived from the entire cylindrical esophagus were
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mounted on a cylindrical agarose (Alfa Aesar) based support that

preserved the native shape, conductive for electrical current and

rotating on its longitudinal axis. This system was equipped with a

tray for the liquids required for the irrigation during the

procedure. We used three different supports of increasing

dimensions to hold esophagi with different diameters. The

perforation was performed by the robot following a specific

algorithm that guided the needle in the longitudinal direction,

from the upper pole to the lower one, and from the outer

muscular surface to the inner mucosal layer, until the entire

circumference was completed. The needle action was enough to

drill the connective tissue for all its thickness and the free spaces

between the channels were deemed similar to their diameter.

MilliQ solution (Merck Millipore) was used to keep the

connective tissue humid, in class-II biological safety cabinet

under aseptic conditions. No final sterilization method was

applied since all the steps of the procedure took place in

complete sterility.

DNA extraction and quantification

Double stranded DNA was quantified both in decellularized

and control tissue samples using DNeasy Blood and Tissue kit

(Qiagen) following manufacturer’s instructions. A maximum of

25 mg of tissue were cut into small pieces and digested overnight

at 56°C with Proteinase K in buffer ATL. Samples were

transferred into spin columns after addition of ethanol and

buffer AL, and centrifuged for 1 min at 8,000 rpm. After two

washing steps with Buffer AW1 (8,000 rpm for 1 min) and AW2

(14,000 rpm for 3 min), DNA was eluted by incubation for 1 min

with Buffer AE and centrifugation at 8,000 rpm for 1 min. We

quantified the DNA by using a BioPhotometer Plus (Eppendorf)

at 260 and 280 nm to estimate its purity and yield.

Statistical analysis was performed by one sample t-test with

GraphPad Prism Software. Statistical significance is reported as

*** when p ≤ 0.001.

Histological and immunohistochemical
analyses on native and decellularized
esophageal scaffolds

Samples of native esophagi and decellularized scaffolds were

fixed in formalin and embedded in paraffin. Transversal

esophageal 2.5 µm sections were analyzed with hematoxylin

and eosin (H&E) and Masson trichrome dyes using an optical

microscope BX53 (Olympus Tokyo, Japan). Sections were

deparaffinized, subjected to antigen retrieval and blocked in

5% bovine serum albumin (BSA) for 1 h at room temperature.

Tissue sections were then incubated with smooth muscle actin,

cytokeratin, collagen-I (Sigma-Aldrich), collagen-IV (Biorbyt),

laminin (Sigma-Aldrich), fibronectin (Abcam) and elastin

(Sigma-Aldrich) primary antibodies in 1% BSA overnight at

4°C. Sections were washed and incubated with fluorophore-

conjugated secondary antibodies (Thermo Fisher) for 1 h at

room temperature. Following nuclei staining with Hoechst,

tissue sections were mounted with Mowiol®4-88. Images were

acquired with Axiovert 40 CFL (Zeiss) microscope and LasX

software. Other samples were fixed with PFA 4% for 30 min,

dehydrated in sucrose 30% overnight and cut with cryostat

microtome, then 20 μm sections were obtained (Leica

1860 cryostat) and stained with Hoechst in blue for nuclei

and green phalloidin (f-actin) for cytoskeletal mark.

Biomechanical tests

For the biomechanical tests, the following samples were

considered: native porcine esophagus (NPE), decellularized

porcine esophagus (DPE), and perforated decellularized

esophagus (QMR).

All tissues were excised along the longitudinal direction,

parallel to the principal axis of the conduit, and adjacent pair

of strips were taken in longitudinal and circumferential

directions. The dimensions of strips were 25 mm length and

5 mm width.

Samples thickness was measured using a Mitutoyo digital

caliper (model ID-C112XB, Aurora, Illinois, United States ): each

specimen was sandwiched between two glass slides, subtracting

their thickness.

A custom-made apparatus (IRS, Padova, Italy) was used for

the uniaxial tensile loading tests. The system is equipped with

four linear actuators and four loading cells (50 N). Uniaxial tests

were performed using two actuators and 2 cells at room

temperature; samples were continuously wetted with 0.9%

NaCl solution to prevent dehydration. Samples were

preloaded up to 0.1 N, then elongated up to 300% (elongation

rate = 0.2 mm/s) to measure the Ultimate Tensile Strength (UTS)

and the Failure Strain (FS). Two elastic modules were calculated

as the slope of the stress-strain curve in the linear regions: E1
within 0%–10% deformation, and E2 in the range between 60 and

100%. Engineering stress σ (MPa) was defined as the tensile force

(Newton) divided by the original cross-sectional area of the

sample; strain ε (%) was defined as the ratio between the grip

displacement and the initial length, which has been set at 5 mm.

UTS, FS, E1, and E2 parameters were obtained using an in-

house developed Matlab® script (Mathworks, Natick, MA,

United States), results were expressed as mean ± standard

deviation (SD). N = 16 specimens for each kind of tissue have

been tested, 8 in the longitudinal and 8 in the circumferential

direction.

Group comparison were conducted with one-way ANOVA

and significance was set at p < 0.05. Graphpad Prism version for

MacOS (GraphPad Software, San Diego, California,

United States) was used for the statistical analysis.
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Cell cultures, BM-MSCS phenotyping and
Adipogenic/Osteogenic differentiation

Bone marrow aspirates were taken from pigs’ tibia and the

samples were diluted 1:1 in PBS to be further stratified on Ficoll

reagent for the isolation of the mononuclear cells. After

centrifugation, cells were washed twice in PBS, counted and

plated at a density of about 2 × 105/cm2 in ventilated flasks with

αMEM medium supplemented with 16% of FBS and 1%

antibiotic/antimycotic (penicillin/streptomycin) and L-glutamine.

After 48 h, the medium was changed: thereafter, it was replaced

2 times a week until MSCs colony growing was observed. When a

confluence of 70%–80% was reached, the MSCs were harvested

and plated at a concentration of about 4 × 104/cm2. Part of the

harvested cells was used for biological and functional

characterization to confirm their nature, as described later on.

FIGURE 1
Autologous pig BM-MSC cultures (replicates: 10, corresponding to the receiving animals of the experiment). These cells displayed the
characteristic spindle shaped morphology (A) and marker expression (CD29 and CD44) and lack of hematopoietic markers (CD14 and CD45) (B). To
confirm their multipotency, the osteogenic (C) and adipogenic differentiation (D) was assessed. Graphical representation (E) of MSC isolation,
expansion and seeding on tubular scaffold. This panel was drawn using pictures from Servier Medical Art (https://smart.servier.com).
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As described in our previous work (Marzaro et al., 2020),

MSCs were characterized by flow cytometry (Figure 1) and then

plated in 24-well plates supplemented with the appropriate

culture media to induce their osteogenic and adipogenic

differentiation. Cells were maintained in these conditions for

21 days, providing two weekly medium changes. At the end

of the protocol, MSCs were stained using alizarin red and oil

red to highlight calcium deposition and lipid droplets,

respectively.

BM-MSCs dynamic seeding on tubular
acellular scaffold

The tubular decellularized scaffold was re-equilibrated in

culture medium and immobilized on cylindrical support suitable

for liquid passage. The scaffold was then located in a sterile

chamber, connected to a vacuum pump, and seeded with MSCs

previously resuspended in culture medium at the concentration

of 10 × 106/ml. In order to perfuse the whole scaffold during the

seeding procedure, a dedicated bioreactor was conceived to

realize a privileged flow of the culture medium and cells

through the microchannels from the outer surface to the

luminal aspect. After 2 h, enough medium was added to cover

the scaffold and the culture was extended for 30 days, performing

4 re-seeding and providing two weekly medium changes. 10 μm

thick slices were obtained through the Leica 1860 cryostat. Nuclei

staining with DAPI nuclear marker (conc 1: 1000, Life

Technologies) were performed.

Surgery

Animals were prepared for surgery and anesthetized as

previously described for the sample procurement, and

anesthesia was maintained through isoflurane 1.3%–3%

administration by inhalation. Intraoperative analgesia was

obtained by fentanyl 2–20 μg/kg/h (IV), antibiotic coverage

was guaranteed by cefazolin 25 mg/kg (IV) and omeprazole

0.7–1 mg/kg (IV) was administered at the same time.

For the scaffold implantation 10 minipigs were used because

of their slower growth curve (compared to traditional large size

pigs (Kang et al., 2012; Hyunwoong, 2021)), which more closely

follow the growth of newborns. They were divided into 2 groups

of 5 animals each, the second with different and improved

techniques in gastrostomy and endoluminal stent securing. All

animals were placed in left lateral decubitus and underwent a

right thoracotomy, the posterior mediastinum was reached

through an extrapleural way, as used in an esophageal atresia

operation on a neonate, and the thoracic esophagus was exposed.

A 4 cm long tract of the esophagus was removed and the gap was

substituted with the full-thickness tubular scaffold of the same

length previously decellularized, microperforated by QMR

treatment and seeded with autologous MSCs cultures. Two

different 6.0 running sutures for the mucosal and the

muscular layers were used, on both upper and lower sides.

The muscular layers of the native esophagus and scaffold were

approximated exactly in an end-to-end fashion to create a close

contact between the bleeding section of the native esophagus and

the same layer of the scaffold. The mucosal and submucosal

layers were easier to anastomose because of their natural

elasticity on both the native and the scaffold sides. No

pedicled omental flap was used to increase the scaffold

vascularization, no thoracic drainage was used and a stent was

positioned to keep the esophageal lumen open. A gastrostomy

was added for the alimentation during the first follow up time,

while the stent was secured on the upper portion through a

cervicotomy on the right lateral pharyngeal side and on the lower

one at the gastrostomy site.

Follow-Up

Housed animals underwent a 6-month follow-up based on

clinical controls evaluating behavior and weight gain, food

intake, dysphagia, regurgitation or vomiting, monthly upper

endoscopy and contrast study of the esophagus by injecting

the contrast through the operative channel of the endoscope.

Both the examinations were performed under general anesthesia

with the same procedure of surgery. Animals were fed through

the gastrostomy during the first postoperative week, then were let

gradually free on oral feeding starting with liquids. At the end of

the follow-up they were sacrificed to go on autopsy by

intravenous injection of Tanax (MI, Italy) 3 ml/10 kg. The

esophagus was removed through the previous thoracotomy

and the substituted tract identified and collected for

histological examination together with the anastomotic sites.

Results

Macroscopic and Microscopic Aspect

Compared to the fresh material (Figure 2A), decellularized

non-perforated esophagi (Figure 2D) appeared pale and

translucent. This step of the procedure was characterized by a

slight liquid retention with associated relative increase in

thickness, general dimensions and original structure were

preserved but histological examination showed the

maintenance of the pink eosinophilic staining typical of

collagen in the native samples (Figure 2B) also in the

decellularized scaffolds (Figure 2E). Compared to the native

esophagus (Figure 2C), the double-layered muscular wall was

evident with the original muscle fibers disposition, as well as the

mucosa and submucosa layers with strong expression of smooth

muscle actin (SMA) (Figure 2F).
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After perforation, esophageal scaffolds appeared less pale and

their thickness slightly decreased because of the compression

caused by the needle action on the connective tissue: their

macroscopic aspect still remained quite similar to the native

esophagus (Figure 2G) since the original layers of the esophageal

wall were clearly distinguishable, from the outer muscular layer

to the inner mucosal one (Figures 2H,I). The perforation

procedure produced about 1,000 micro channels/cm2 in a

regular distribution throughout the scaffold (Figure 3A). The

diameter of the channels ranged from 50 to 100 μm with regular

interspatial distances of the same magnitude (Figures 3B,C).

At the end of the whole procedure, we obtained a 4 cm long

engineered esophagus ready for homologous MSCs seeding

followed by implantation in the mini-pig model.

Decellularization

We compared the residual DNA amount difference between

native, decellularized and perforated tissues. Scaffolds were

considered efficiently decellularized when the DNA content

was <50 ng/mg dry ECM, as suggested in literature (Crapo

et al., 2011). In all decellularized and perforated scaffolds the

DNA content was well below the threshold and significantly

lower with respect to fresh esophagi, demonstrating an

efficient decellularization in all samples. In particular, fresh

esophagi had a median DNA content of 407.23 ng/mg dry

ECM, while decellularized samples showed a median value of

15.83 ng/mg dry ECM (3.89% with respect to the native

esophagus) (Figure 4).

FIGURE 2
(A)Native esophagus. (B)Histology shows the preservedmucosa, submucosa andmuscle layer (HE 1.25x) (n = 1). (C) Immunostaining with anti-
Smooth Muscle Actin (SMA) depicting the cytoskeleton shows the normal representation of the muscle component both in the muscularis mucosae
and in the muscle layer (anti-SMA 1.25x) (n = 1). (D) Esophageal scaffold macroscopic appearance after decellularization. (E) The wall architecture is
preserved, but poor in vital cells (HE 4×) (n = 1). (F) Immunohistochemistry highlights that smooth muscle cells are significantly reduced in
number and fascicles thickness (anti-SMA 1.25×) (n= 1). (G) Esophageal scaffoldmacroscopic appearance after decellularization and perforationwith
QMR technology. (H) On histological examination the channels from the external muscular surface to the internal mucosal layer are evident. The
picture shows the channels not everywhere due to the cutting surface section passing often in the intact ECM between the channels without
including all the perforations present on the same line (HE 4×) (n = 1). (I) The scaffold shows only isolated and irregularly arranged muscle bundles,
which are present in the muscularis mucosae as cytoskeleton residuals, but are almost totally absent in the muscle layer (anti-SMA 4×) (n = 1).
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Comparison of extracellular matrix of
native, decellularized and QMR-TREATED
esophageal scaffolds by
immunofluorescence analyses

The presence of nuclei was investigated by Hoechst

staining, and the presence of five essential ECM

proteins was detected: Laminin, Fibronectin, Elastin,

Collagen I and IV. These proteins are involved in

preserving the structural characteristics of the esophageal

scaffold and its capacity to properly interact with the cells

(Figure 5).

The immunofluorescence staining confirmed the complete

removal of nuclear remnants from both decellularized and QMR

treated scaffolds. Cells nuclei (blue staining) were only visible in

native samples, to confirm the results from the DNA analysis.

The expression of each of the five investigated proteins looked

steady in native, decellularized and perforated samples.

Immunofluorescence analysis gave evidence that the ECM

composition was not altered due to the different steps of

scaffold preparation since the fundamental proteins are still

properly present.

Biomechanical Results

Representative stress-strain curves measured during tensile

tests from the investigated tissues along both longitudinal and

circumferential directions are depicted in Figure 6A. It is likely to

observe that QMR samples show a distinct behavior depending

on the considered direction: along the longitudinal direction,

they do achieve stress values much higher than along the

circumferential direction.

Figure 6B compares the thickness of native (NPE),

decellularized (DPE) and QMR-treated samples (QMR): the

decellularization procedure causes a significant increase in

thickness (from 2.544 ± 0.33 mm to 3.018 ± 0.49 mm), which

significantly decreases after perforation (1.49 ± 0.21 mm).

The Young’s modulus E1 (Figure 6C) progressively increases

for both longitudinal and circumferential directions going from

NPE to DPE and QMR. It is worthy to notice that circumferential

samples always exhibit lower values with respect to their

longitudinal counterparts. In detail, E1 for longitudinal NPE is

0.016 ± 0.014 MPa against 0.009 ± 0.003 MPa circumferential;

longitudinal DPE is 0.07 ± 0.06 MPa against 0.058 ± 0.06 MPa

FIGURE 3
Decellularized pig esophageal scaffold after perforation: the visible surface is the esophageal muscle layer where the needle entering points for
perforation are present, the mucosal layer is underlying. (A) Microscopic scaffold appearance after QMR: a regular microperforation pattern is
appreciable (magnification: 10×, scale bar 1 mm) (n = 10). (B) SEM image of the decellularized scaffold after QMR treatment with regular
microperforation pattern: interspaces between channels have the same dimension of channels diameter (magnification: 100×, scale bar
100 μm) (n = 10). (C) SEM image of a single microchannel: the ECM inside the channel is intact since no burning phenomena take palace to cause
coagulation or vitrification (magnification: 500x, scale bar 50 μm) (n = 10).

FIGURE 4
Comparison of DNA content between native samples (left
column, n = 8) and scaffolds that underwent the decellularization
and perforation procedures (right column, n = 9). ***p ≤ 0.001.
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circumferential; longitudinal QMR is 0.014 ± 0.09 MPa against

0.11 ± 0.08 MPa circumferential.

The E2 modulus (Figure 6D) shows a similar trend but with

higher values than modulus E1. E2 for longitudinal NPE is

0.044 ± 0.015 MPa against 0.033 ± 0.02 MPa circumferential;

longitudinal DPE is 0.144 ± 0.12 MPa against 0.114 ± 0.07 MPa

circumferential; longitudinal QMR is 0.39 ± 0.21 MPa against

0.23 ± 0.07 MPa circumferential. Generally, samples in the

longitudinal direction are stiffer than in the circumferential

direction.

Figure 6E compares the FS values of the investigated

samples. Three of them withstand the imposed 300%

deformation, which is much higher than the physiological

one: they are circumferential DPE, longitudinal and

circumferential NPE. This evidence confirms that the

lower is the stiffness of the samples, the higher is the

failure strain. Perforation results in decreased FS values:

281.4 ± 12.51.

UTS values agree with the trend registered for both E1 and E2

(Figure 6F). Circumferential samples develop UTS values (NPE =

0.213 ± 0.08 MPa, DPE = 0.325 ± 0.18 MPa, QMR = 0.502 ±

0.06 MPa), which are lower than the longitudinal counterparts

(NPE = 0.401 ± 0.17 MPa, DPE = 0.427 ± 0.23 MPa, QMR1.13 ±

0.56 MPa).

The biomechanical results confirmed the anisotropic

behavior of the investigated tissues (Sommer et al., 2013; Mir

et al., 2016), which exhibit distinct mechanical features along the

longitudinal and the circumferential directions. Anisotropy is

maintained for both small and large deformations: this is

confirmed by the trend of E1 and E2 moduli.

Estimation of the increase in cell seeding
available area

QMR microperforation allowed creating microchannels

within the esophageal scaffolds. As a consequence, if

compared to a non-perforated scaffold, the available surface

for MSCs seeding was increased due to the new spaces created

inside the connective tissue. This is directly related to the

number, diameter and depth of the channels. Actually, the

needles we used are cone-shaped only on the tip and

cylindrical on the rest. Then a possible estimation of the

perforation results was assumed to be mainly cylindrical and

cone-shaped on the tip.

Hypothesis: 1000 micro channels/cm2 → Density = 10 micro

channels/mm2 Analyzed 2D surface (S2D): 1 mm2 Micro channel

diameter (DCHANNEL): 0.1 mm Microchannel deepness

FIGURE 5
Representative images of Collagen-I (green) expression in native (A), decellularized (F) and QMR-treated esophagi (K); collagen-IV (red)
expression in native (B), decellularized (G) and QMR-treated esophagi (L); laminin (green) expression in native (C), decellularized (H) and QMR-
treated esophagi (M); fibronectin (red) expression in native (D), decellularized (I) and QMR-treated esophagi (N); elastin (green) expression in native
(E), decellularized (J) and QMR-treated esophagi (O). Blue: nuclei staining with Hoechst. Mu: mucosa; tm: tunica muscularis. Native esophagi
n = 1, decellularized esophagi n = 1, QMR-treated decellularized esophagi n = 2. Scale bar: 200 µm.
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(LCHANNEL): 1.5 mm (same as micro channeled scaffold

thickness)

Assessment:

1 mm cylindrical channels with 0.5 mm cone-shaped tip

Cylindrical body (LBODY = 1 mm)

Cone tip (LTIP = 0.5 mm)

FIGURE 6
(A) Representative stress-strain curves measured from the investigated tissues along both longitudinal and circumferential directions. (B)
Thickness values (mm) of longitudinal and circumferential NPE, DPE, and QMR samples. (C) E1 values (MPa) and (D) E2 values (MPa). (E) FS values (%)
and (F) UTS values (MPa). For each kind of tissue, n = 8 samples were considered along longitudinal direction, n = 8 samples along circumferential
direction. Significance difference was set as it follows: *p < 0.05; **p < 0.01; ****p < 0.0001.
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Surface computation:

Microchannel cylindrical lateral surface = SLBODY = LBODY

x π x DCHANNEL = 0.314 mm2

Microchannel cone tip lateral surface = SLTIP = LTIP x π x

DCHANNEL = 0.0785 mm2

Total microchannel lateral surface

SCHANNEL = SLBODY + SLTIP = 0,314 mm2 + 0,0785 mm2 =

0,3925 mm2. In 1 mm2 there are 10 microchannels →
SINCREASE = Density x SCHANNEL = 3,925 mm2

Total residual upper planar surface:

SRES = S2D - Density x microchannel base area = 1 – Density x

π x (DCHANNEL/2)
2 = 0,9215 mm2

Total 3D surface for seeding

S3D = SINCREASE + SRES = 3,925 mm2 + 0,9215 mm2 =

4,8465 mm2

Estimated proportional surface increase for cell seeding:

S3D / S2D x 100 = 484%

BM-MSCS seeding in dynamic condition

Tubular scaffolds were cultured for 30 days in dynamic

conditions because of the high 3D complexity (as graphically

resumed in Figure 1E) given by their architecture and the

presence of all the esophageal wall layers. They underwent

3 re-seeding procedures in order to maximize the contact

between the cells and the scaffolds, and were microscopically

analyzed at the end of the incubation period to evaluate their

vitality. We had a demonstration of the cell’s good behavior

since they successfully adhered to the surface of tubular

scaffolds and easily penetrated the microchannels, as shown

by SEM images where adherent cells are visible in their inner

parts (Figure 7A). Moreover, at the end of seeding, the

migration of MSCs outside the channels and between the

ECM fibers was observed (Figures 7B,C). We guess that this is

due to the prolonged culturing time and re-seedings which

maximized the cells potential to spread throughout the

connective tissue exploiting the open leakages on the

microchannel’s walls.

Surgery

At surgery, the scaffold was pliable but resistant, and two

different termino-terminal (TT) anastomosis were performed

on the mucosal and muscular layers, on the upper and on the

lower pole, juxtaposing the bleeding esophageal edges of the

native esophagus to the ones of the seeded scaffold with

running absorbable 5.0 stitches. It was possible to take

advantage of the natural elasticity of mucosa and

submucosa on both the native esophagus and the scaffold,

while the muscular layers were thicker and stiffer. The

bleeding support of the native esophagus was clear because

at the end of the procedure the scaffold acquired a reddish

appearance (Supplementary Figure S1).

FIGURE 7
(A) SEM image of a single microchannel from the needle entering point after seeding (A1): it shows the regular adhesion of cells on the
microchannel walls (magnification: 500x, scale bar 50 μm). (B) Autologous pig MSCs culture (DAPI nuclei coloration): cells are seeded inside the
channel (B1, central black cavity on longitudinal section) but nuclei are also visible out of the major cavity through the ECM leakages close to the
channel (scale bar 50 μm). (C) Autologous pig MSCs culture (F actin, green coloration): cells appear adhered to the walls of the channels (C1 -
C2, two black cavities on transversal section) but they are also spreading out of them inside the ECM leakages between and close to the channels
(scale bar 100 μm).
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Follow-Up

Postoperative follow-up was particularly hard-working

because of the animals’ repetitive attempts to remove the

esophageal stent and the gastrostomy device. In the first

group of 5 minipigs, many issues related to gastrostomy and

stent securing were encountered and unfortunately resulted in

4 animals suffering from major abdominal and neck

complications that led them to death. In these cases it was not

possible to do the autopsies. In the second 5 animals’ group we

changed the gastrostomy and esophageal stent technique and

only one of the animals did not survive because of the same

problems. In this case the autopsy confirmed that the scaffold was

still anastomosed. A total of 5 animals (1 in the first group, 4 in

the second group) successfully completed the full 6-months

follow-up period. As evidenced by radiologic and endoscopic

controls (Supplementary Figure S2) the anastomosis did not

show leakages and the mucosa did not show interruption

corresponding to the substituted tract, the animals received

liquid food in the first postoperative week while nutritional

support was assured by gastrostomy, then were let free on

oral feeding. Because of the frequent removals, an average of

10 endoscopic esophageal dilatations with stent repositioning

(range 6–19) were done to preserve the patency of the esophageal

lumen. The longer the period with stable esophageal stent, the

lesser was the need for esophageal dilatation. In two cases a re-

operation has been necessary because of the removal of the

gastrostomy tube, in one of them also caused by a

subcutaneous abscess close to the gastrostomy site. The

median period between two dilatations was 69.5 days (range

28–105).

Histological results after implantation

The autoptic examination demonstrated intact scaffold

anastomoses with their full-thickness regeneration

reproducing all the corresponding layers of the native

esophagus it was anastomosed to. Actin-and desmin positive

cells were observed throughout the entire muscular layer

resembling a neo-muscle wall. Moreover, a complete mucosal

regeneration was evidenced and a new submucosal layer with

vascular infiltration was present, as in the original organ

(Figures 8A,B).

Discussion

Tissue engineered tubular organ replacement can be

obtained from artificial or natural scaffolds. Artificial

biomaterials are tunable towards the desired shape and

dimension, according to the organ to be realized; they are the

result of complex industrial synthetic processes, and their

adjustable stiffness make them an optimal choice for organ

integration or regeneration. On the other hand, they lack the

biochemical signals that naturally guide cells’ functions: thus,

they do not have the potential for natural cellular repopulation

and show a host response different from natural biomaterials

(Mir et al., 2016).

Natural biomaterials can be obtained from biological organs

after the removal of nuclear and cellular components by a

sequence of relatively cheap treatments. Notably, the

procedure we used assured optimal results in terms of both

residual DNA content and preservation of the original tissue

structure (Sommer et al., 2013). The residual ECM is

biodegradable and disappears in a few weeks (Sadtler et al.,

2019), is biologically compatible and does not produce toxic,

injurious, carcinogenic, or immunological response in living

tissue even if xenogeneic (BaguneidSeifalian et al., 2006;

MaeleneWong et al., 2016). Moreover, it stimulates vascular

ingrowth (Fallas et al., 2018), cell adhesion (one of the major

issues with artificial scaffolds), growth, proliferation and

differentiation, diffusion and survival (Voigt et al., 2001;

GeorgeHussey et al., 2018; García-Gareta et al., 2020),

FIGURE 8
(A) Full thickness esophageal wall scaffold on histology after 6 months from surgery: mucosa, submucosa and muscular layer are well visible,
H&E, 1.25×. (B) The same on anti-SMA: single and thin muscular fibers, also with vascular images, at 6 months autopsy, Anti-SMA, 4×.
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resembling the native organ so closely that decellularized

scaffolds have been considered the best memory of the

original organ.

For all these reasons, natural acellular scaffolds based on

native ECM have been proposed as the ideal materials for

esophageal repair (Hussey et al., 2017), but it is assumed that

they cannot allow long full-thickness circumferential

reconstructions unless modified to be added with cells and

liquids (Totonelli, 2012).

Decellularized tissues/organs do not release toxic byproducts

due to their natural degradation, and do not stimulate foreign

body reaction unless they are ineffectively decellularized or are

chemically cross-linked (Anderson et al., 2008; Totonelli, 2012).

Above all, they resemble the native organ macro- and

microscopically, preserving also the biochemical signals

essential for cell adhesion/proliferation. They have been also

investigated, and sometimes clinically used, for their potential

effects in downregulating the expression of neoplastic cell

populations (Badylak et al., 2011; Saldin et al., 2019; Naranjo

et al., 2020). ECM complex composition is strictly specific

for each organ, which hinders artificially creating a scaffold

able to fully mimic both structure and functions of native

ECM (Chan and Leong, 2008). Finally, the composition of

mammalian ECM is similar among different species.

Therefore, the host reaction to implanted natural acellular

matrices is similar to both xenogeneic and allogeneic scaffolds

(Keane and Badilak, 2015).

In conclusion, all the above-mentioned issues allow assuming

that a scaffold with the preferred ECM components would be

considered the preferred TE matrix (Keane et al., 2015). On the

other hand, natural biomaterials are not tunable with regard to

shape and dimensions unlike artificial ones.

Many efforts have been made towards establishing

standardized criteria for a successful decellularization (Crapo

et al., 2011), but little has been considered in terms of function of

a decellularized scaffold after implantation.

Porosity is probably the most important issue for in vivo

vascular and cellular integration. It is essential for cell nutrition,

proliferation and migration during tissue regeneration. It has

been noticed for mechanical interlocking with the surrounding

tissue, guiding the hosts vascular, neurogenic and stem cell

infiltration and releasing biochemical factors like proteins or

genes providing good substrates for nutrient exchange (Hollister,

2005; Loh and Choong, 2013; Zhu et al., 2019). Moreover, the

scaffold mean pore size influences cells’ proliferation and

differentiation in some specific organogenesis situations

(Matsiko et al., 2015). Finally, porosity is essential for a 3D

cell seeding inside the scaffold, definitely the best environment

for an optimal immunomodulatory and regenerative cell-cell-

scaffold-host interactions (Jeong et al., 2020).

Unfortunately, porosity is rather different between natural

and artificial biomaterials. Artificial biomaterials are composed -

almost invariably - of synthetic fibers that privilege the spaces

between one and another, or solid materials with regular cavities.

On the contrary, natural biomaterials based on muscular tissue

privilege the purity of the connective tissue, which is completely

respectful of the original anatomy but do not allow a deep cell

penetration since residual ECM lacks adequate porosity.

Tubular-shaped constructs are difficult to be realized

(H.Nam et al., 2020), and many biomaterials have been

proposed as scaffolds to promote esophageal tissue

engineering reconstruction. Among them, gastric acellular

matrices (Urita et al., 2007), AlloDerm® (Isch et al., 2001),

xenogeneic small intestinal submucosa (SIS) and urinary

porcine bladder matrix (UBM) (Badylak et al., 2000; Badylak

et al., 2005; Poghosyan et al., 2015; Catry et al., 2017), porcine

aorta (Kajitani et al., 2001), esophageal acellular matrices

(Marzaro et al., 2006), retrievable synthetic scaffold carrying

autologous cells (La Francesca et al., 2018; Nam et al., 2020),

mixed materials with bioinks (Kajitani et al., 2001), PLC/PLGA

(Polycaprolactone/poly(lactic-co-glycolic) acid) tubular scaffolds

(Jensen et al., 2015), non-absorbable materials such as

polyethylene terephthalate, polyurethane electro-spun scaffold

(Miki et al., 1999), and silicone or expanded

polytetrafluoroethylene (Gonzalez Saez et al., 2003). Above all,

the use of pre-seeded scaffolds for full-circumferential esophageal

reconstruction resulted in higher degree of regeneration and

lower inflammation rates with respect to scaffolds implanted

alone (Tan et al., 2013). It is worth mentioning that artificial

biomaterials stimulate non-regenerative immune responses,

opposite to the natural ones that are characterized by M2/

Th2 reconstructive reaction (Mariani et al., 2019).

Finally, only episodic successful cases of commercial

biomaterials used in human patients to repair esophageal

iatrogenic lesions have been reported (Reames and Lin, 2013;

Nieponice et al., 2014; Dua et al., 2016).

Our group previously tested a homologous acellular

esophageal muscular scaffold as a partial substitute of the

esophageal muscle layer (Marzaro et al., 2006). A patch of

homologous non-perforated smooth muscle scaffold,

decellularized with the Meezan protocol (Meezan et al., 1975;

Badylak and Gilbert, 2008), was used to cover a defect in the

muscular layer alone of the thoracic esophagus in 3 months old

pigs. The mucosal layer was left intact to allow autonomous oral

feeding. Non-seeded patches showed a more severe

inflammatory response and were negative for α-smooth

muscle actin immunostaining 3 weeks after surgery, while the

patches seeded with autologous satellite cells previously isolated

from the cervical esophagus had a consensual growth with the

host without dysphagia or stenosis, with vascular and small

fascicules muscular ingrowth. Unfortunately, the 2D limited

number of living cells seeded on the scaffold upper surface

compromised the reconstructive reaction in some cases.

For this reason, we moved toward the actual microperforated

donor derived decellularized homologous esophageal scaffold.

The perforation of the decellularized esophageal scaffold opened
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new channels by selectively breaking part of the ECM protein

bindings. As already shown in our previous study (Marzaro et al.,

2020), and already mentioned above, we realized about

1,000 micro channels/cm2 in a regular distribution throughout

the scaffold, pore diameters ranged from 50 to 100 μm and

interspaces had the same dimensions (Figure 3).

In the present application, the tubular shape of the

esophagus was preserved as well as all the original

esophageal wall layers. Moreover, the decellularization

method was performed through a new custom-made

perfusion bioreactor.

The scaffold macroscopic appearance was preserved while

thickness was slightly reduced if compared to the decellularized

scaffold due to the partial compression on the ECM structure by

the needle action; no burns or tissue damages were documented,

both macroscopically and microscopically (analysis performed

with a digital microscope and a Scanning Electron Microscopy).

The resulting scaffold looks like an evolved natural one with a

controlled porosity. Since the microchannels penetrate from the

outer muscular surface to the submucosa and mucosa layers, the

most important effect is due to the substantial increase of the

available surface for cell seeding (e.g., + 400%). This is of the

utmost importance because, owing to this artificial porosity, we

can hypothetically avoid cell dispersion during seeding and

increase their number and interaction inside the connective

tissue.

At the same time, we can claim that the cells seeded inside the

channels are close and communicate to each other, but are also

able to spread outside and migrate into the surrounding tissue

through the leakages of the ECM fibers that are still present inside

the microchannels since, as evidenced before, the perforation

does not provoke burning or coagulation on the channel’s wall

(Figure 7). Vascular structures of the scaffold, located between

tunica mucosa andmuscularis, are maintained. The closure at the

very beginning of the channels, at the surface proximity, is due to

the sample crushing during sectioning.

Histology confirmed an improved MSC 3D dispersion, if

compared to the 2D seeding documented in our previous

experimental trial, since we found nuclei and cytoplasm inside

all the scaffold layers, from the outer surface to the mucosa. Cells

also spread out the microchannels through the leakage of the

ECM fibers that still communicate with the pores after

perforation.

Due to the perforation treatment, another important side

effect is the improved stiffness of the perforated esophagus if

compared to native and decellularized ones. The needle action

during the perforations induces partial ECM compression with

thickness decrease and, consequently, higher values of both

elastic modules E1 and E2 and lower values of failure strain.

These characteristics were appreciated at surgery: the scaffold

pliability and resistance made it easy to realize the anastomosis

between the scaffold and the native esophagus, even using two

different sutures on the mucosal and the muscular layers,

naturally restoring the esophageal anatomy.

Anyhow, since the perforation is respectful and does not alter

the anatomical disposition of the ECM connective fibers of every

single layer, the macroscopic appearance and the dimensions of

the scaffold remain the same of the original esophagus, as does

the microscopic structure that still reproduces the native one.

In our model, we have shown that the seeding of autologous

MSCs is able to promote the regeneration of all the scaffold

layers, reproducing normal tissue histology. It is unlikely that

tissue regeneration can completely derive from differentiation of

seeded MSCs since it is well known that they have short in vivo

living capability, at least when infused intravenously (Eggenhofer

et al., 2012; Eggenhofer et al., 2014). The effect could be largely

derived from the ability of MSCs to promote tissue regeneration

from adjacent portions of healthy esophagus, although we were

not able to clarify the origin of cells that repopulated the scaffold

in vivo. Our findings are also in contrast to other attempts based

on different cell populations seeded on the muscular part and the

inner epithelial layer of a similar scaffold (Urbani et al., 2018).

Based on this experience, further experimental trials in a mini pig

animal model are currently ongoing to improve the surgical

model of the esophageal substitution.

Conclusion

Starting from an allogeneic donor-derived decellularized

esophagus and through the treatment with the QMR

microperforation, we obtained a microperforated

decellularized scaffold whose stiffness and pliability are ideal

for the surgical application. This device possesses an extremely

dense full-thickness web of microchannels, which greatly

increase the surface area available for cells seeding: cells can

easily penetrate inside and result in a homogenous spatial

distribution. Moreover, the proposed device combines the

advantageous characteristics of artificial and natural scaffolds:

an improved stiffness with a high porosity to facilitate cells’

distribution; an intrinsic biodegradability; the maintenance of

ECM biochemical signals that guide cells’ adhesion and

proliferation.

The QMR microperforation treatment produces a regular

pattern of microchannels that represent a beneficial

microenvironment to improve cell-cell-scaffold interactions,

thus promoting the regenerative process. From the surgical

point of view, the proposed device allows the easy

anastomosis to the native esophagus followed by the

regeneration of all esophageal wall layers. Therefore, it

represents a promising tool for esophageal tissue engineering.

Further in vivo trials on large animal-models are in progress

to assess all the properties of the microperforated tubular scaffold

in esophageal reconstruction without strictures or leakage.
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