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The neonate skull consists of several bony plates, connected by fibrous soft tissue called
sutures. Premature fusion of sutures is a medical condition known as craniosynostosis.
Sagittal synostosis, caused by premature fusion of the sagittal suture, is the most common
form of this condition. The optimum management of this condition is an ongoing debate in
the craniofacial community while aspects of the biomechanics and mechanobiology are
not well understood. Here, we describe a computational framework that enables us to
predict and compare the calvarial growth following different reconstruction techniques for
the management of sagittal synostosis. Our results demonstrate how different
reconstruction techniques interact with the increasing intracranial volume. The
framework proposed here can be used to inform optimum management of different
forms of craniosynostosis, minimising the risk of functional consequences and secondary
surgery.

Keywords: calvarial bones, sutures, skull growth, sagittal synostosis, finite element method, biomechanics

INTRODUCTION

The neonate skull consists of several bony plates, connected by fibrous soft tissues along their
edges, called sutures (Opperman, 2000; Herring, 2008; Richtsmeier and Flaherty, 2013). Sutures
facilitate birth and accommodate rapid brain growth in the first year of life (Herring, 2008;
Richtsmeier and Flaherty, 2013). Premature fusion of sutures is a medical condition known as
craniosynostosis (Herring, 2008; Richtsmeier and Flaherty, 2013; Johnson and Wilkie, 2011).
The most common form of this condition is sagittal synostosis (SS) caused by premature fusion
of the sagittal suture, occurring in approximately 3 in every 10,000 births. This condition leads
to bi-temporal narrowing and excessive anteroposterior growth of the skull with frontal and
occipital bossing (Johnson and Wilkie, 2011; Mathijssen, 2015).

The management of SS involves surgical remodelling of the calvaria. The underlying aims of
the surgery are to normalise the head shape and relieve the constraint on the growing brain,
thus decreasing the potentially elevated intracranial pressure (ICP) (Mathijssen, 2015). Several
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techniques have been developed and used over the years
across the world for the management of SS (Mathijssen,
2015; Jane et al., 1978; Jimenez & Barone, 2012; Simpson
et al., 2017). These range from less invasive methods such as
strip craniotomy and spring-mediated cranioplasty which are
usually performed before 6 months of age, to more invasive
approaches such as total vault remodelling which are usually
performed at the age of about 12 months (Taylor and
Maugans, 2011; van Veelen et al., 2016; Fischer et al., 2016;
Gailey et al., 2021).

There is a growing number of clinical studies comparing
the outcomes of different techniques for SS (Taylor and
Maugans, 2011; van Veelen et al., 2016; Fischer et al.,
2016; Gailey et al., 2021). Nonetheless, our fundamental
understanding of how different reconstruction methods
interact with the growing brain is still limited. This is
crucial as one of the key factors during early craniofacial
development is the load arising from a growing brain. If this
load is not accommodated by the reconstructed skull, it can
constrain brain growth, leading to raised ICP and a possible
risk of re-operation (Thomas et al., 2015). Computational
models are a promising tool to predict calvarial growth and
optimise the management of craniosynostosis

(Weickenmeier et al., 2017; Lee et al., 2017; Malde et al.,
2019).

In a series of studies, we have previously developed a
validated computational model based on the finite element
method that enables us to predict the radial expansion of the
calvaria as well as the bone formation at the cranial sutures in
mice and humans (Marghoub et al., 2018; Marghoub et al.,
2019; Libby et al., 2017; Malde et al., 2020; Cross et al.,
2021a,b). In this current work, 1) we present a
computational framework that can be used to advance the
treatment of various forms of craniosynostosis; 2) we inform
and optimise the clinical management of sagittal
craniosynostosis. We first virtually reconstructed the
calvaria of a patient at 4 months of age, using 9 different
techniques. Then we predicted the calvarial growth up to
76 months of age across all treatment options. Finally, we
compared the overall morphology of the calvaria, level of
contact pressure across the intracranial volume (ICV), and the
pattern of bone formation between the considered techniques.
To the best of our knowledge, the computational framework
presented here is the first of its kind to predict the calvarial
growth and the first steps toward the biomechanical
optimisation of the clinical management of

FIGURE 1 | Using CT -scan data at an initial preoperative age of 4 months (A), a 3D finite element model was developed (B). The chosen surgical technique at the
appropriate age was performed (C). The intracranial volume was then expanded to a specified volume in 6 load steps (D). Elements across the sutures and craniotomies
were then selected based on the level of hydrostatic strain and/or radii process from the bone lining, following the algorithm described in the flow chart. This process was
repeated while updating the material properties and geometry of the model at each load step until the final load step has been reached (E). The intracranial volume
at the final load step was equivalent to 76 months of age.
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craniosynostosis. Both these elements are novel and constitute
the main contributions of this study.

MATERIALS AND METHODS

Model Development
The overall computational methodology implemented here is
illustrated in Figure 1. Computed tomography (CT) images of a
single preoperative sagittal craniosynostosis child skull at the age
of 4 months were obtained from the Hôpital Necker–Enfants
Malades Craniofacial Surgery Unit (Centre de Référence
Maladies Rares Craniosténoses et Malformations
Craniofaciales CRANIOST, Paris, France) for 3D model
development. Full ethical protocol was approved by the
institutional review board, committee, and the patients’
guardians. The images had a voxel size of 0.625 mm across
all axes.

The image processing software, Avizo (V9.2.0; Thermo
Fisher Scientific, Mass, United States) was used for manual
and automatic compartmentalisation of highlighted internal
and external tissues. Here, the calvarial bones, sutures, and the
complete intracranial volume (ICV) were segmented. The
specifics of craniotomies performed across the model were
based on the common clinical practices of the authors of this
study. The model was then used to create a 3D mesh
consisting of approximately four million quadratic
tetrahedral elements suitable for finite element analysis
using the ANSYS platform (ANSYS V19.0; Canonsburg,
PA, United States).

Boundary and Interface Conditions
Isotropic material properties were assigned to all segmented
components. The calvarial bones and sutures were assumed to
have a linear elastic modulus of 421 MPa and 30 MPa,
respectively (Coats and Margulies, 2006; Moazen et al.,
2015), whereas the ICV and craniotomies elastic modulus
was defined as 10 and 0.3 MPa, values adopted from our
previous sensitivity study (Cross et al., 2021a). Appreciating
fully the complexity and multiscale poroelastic features of the
brain parenchyma, and related implications relating to skull
loading (Gou et al., 2020). The calvarial bones Poisson’s ratio
was 0.22, while the sutures were assumed to be 0.3. Both the
craniotomy and ICV had a Poisson’s ratio of 0.1. Techniques
adopting bioabsorbable fixators (for a particular technique,
i.e., TCR1—see simulation section) had an initial elastic
modulus and Poisson’s ratio of 2000 MPa and 0.1,
respectively (Landes et al., 2006). A sensitivity study
analysing the impact of incorporating fixators on
morphological shape predictions is presented in the
Supplementary Figure S1. To minimise rigid displacement,
nodal constraints in all degrees of freedom across the nasal ridge
and around the foramen magnum were maintained throughout
all simulations. To simulate the rapidly growing brain, we
expanded the ICV from the initial 4 months (659 ml) up to
76 months of age (1,376 ml) using a linear thermal expansion
analogy across six load steps. At each load step, the age was

estimated by correlating the predicted volume against
comparative age to volume literature data (Likus et al., 2014).

Establishing the brain growth across the model generated
various levels of strain across the sutures and craniotomies,
which were used to simulate the bone formation and
differentiation of bone stiffness. Here, a two criteria system
was parameterised: 1) Applicable elements must achieve a
predetermined level of hydrostatic strain (i.e., summation of
all principal strains and division by three) as a result of the
growth; 2) Elements were required to be within a specified radial
distance from the adjoining bone borders. Elements exclusively
relative to the sutures were confined to both of these conditions,
whilst elements representing the craniotomy followed only the
former criteria. To represent the differentiation of bone stiffness,
these elements would have their elastic moduli updated, which
varied based on the relative changes in age. See our previous
studies for a full detailed description of this approach (Cross et al.,
2021a,b).

To account for the contact conditions across the ICV, a
Hertzian contact algorithm was implemented between the
inner-calvarial table and ICV interfaces. The penalty-based
behaviour with a normal contact stiffness of 50 N/mm, a
penetration tolerance of 0.5 mm and a friction coefficient of
0.1 allowed for minimal levels of interpenetration between
surfaces (Malde et al., 2020; Cross et al., 2021a,b). While
initially in contact, normal/tangential separation was granted
during simulated growth. Interfaces between the calvarial
bones and sutures, calvarial bones and craniotomies, and
suture and craniotomies maintained a “bonded” contact,
restricting all forms of separation.

Simulated Surgical Techniques
Nine techniques were replicated across the model at various ages
of intervention (see also: Gailey et al., 2021). To represent an
intervention age greater than the initial 4 months, growth was
modelled across three load steps, with no correction having been
performed, resulting in three additional models at 6, 9 and
12 months of age. The changes in morphology and contact
pressure during the growth are highlighted in the
Supplemental Figure S2. The techniques denoted as Renier’s
“H,” modified Renier’s “H,” endoscopic, strip cranioplasty, and
two variations of spring-assisted craniectomy (SAC) which
consisted of two or three springs, respectively (i.e., 2 SAC & 3
SAC) were replicated across the 4 months of age model. For
comparison, the Renier’s “H” was also performed across the
alternative 6 months of age model. The model at 12 months of
age was further used for both total calvarial remodelling
techniques (i.e., TCR 1 & TCR 2).

RESULTS

First, we qualitatively assessed the pattern of bone formation
across all techniques at 76 months of age (Figure 2). Here, the
timing of calvarial bone healing was defined as when no
respective craniotomy (i.e., white) or suture (i.e., red) elements
remained visible across the models. We found that rapid calvarial
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healing/bone formation at the craniotomies could be achieved by
5 months postoperatively for the SAC techniques, perhaps due to
the shorter bilateral width. Followed by the endoscopic treatment

at 9 months after surgery. The remaining techniques performed
at 4 months of age achieved calvarial healing by 20 months after
surgery. When postponing the timing of intervention

FIGURE 2 | Predicted bone formation across all replicated techniques at the postoperative age of 76 months. The material properties across the newly and
previously selected elements were updated at each load step.

FIGURE 3 | Cephalometric measurements across all replicated approaches. The predicted length (A) and width (B) were used to calculate the cephalic index (C).
The circumference (D) was measured in the transverse plane as shown within the diagram.
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(i.e., Renier’s “H” at 6 months), little difference in the level and
rate of calvarial healing was observed vs. earlier intervention.
However, evidence of delayed healing was obtained for both TCR
methods; having healed by 24–36 months after surgery. Complete
fusion of all sutures was predicted in the modified Renier’s “H,”
strip cranioplasty, and both SAC approaches by 76 months of age.
Conversely, patency was still visible across the coronal and
squamosal sutures in the Renier’s “H” and endoscopic
methods at 76 months, respectively. Interestingly, this
characteristic was not evident in the later performed Renier’s
“H.” Delayed bone formation was predicted across the calvaria in
TCR 2 as opposed to TCR 1 (perhaps attributed to the modelled
bioabsorbable fixators in TCR 1).

To quantify the shape changes, we recorded cephalometric
parameters for all approaches (Figure 3). By 76 months of age, we
predicted the largest overall length in both SAC techniques
(Figure 3A), ranging from 175.2 to 173.1 mm, whilst the
earlier performed Renier’s H measured 163.3 mm,
demonstrating the overall lowest length. Conversely, the
greatest bitemporal widening (Figure 3B), measuring
131.7 mm, was achieved in the TCR 1 approach and the least,

measuring 124.1 mm, was seen in the earlier Renier’s H. Utilising
these values, we calculated the cephalic index by multiplying the
width against the length and dividing by one hundred
(Figure 3C). Here, with a value of 79.1, the strip craniectomy
predicted the overall best improvement with the caveat of a high
vertex (see: Figure 2). The worst cephalic index was seen in the 3
SAC predictions, valued at 72.7. We predicted that both total
calvarial remodelling techniques, while achieving the second and
third best cephalic index values, also showed a reduced level of pre
to postoperative relapse in contrast to all earlier techniques.
Further, the same response was also seen in the later
performed Renier’s H approach. It should be noted however
that no technique was able to bring the cephalic index fully back
to normal, seen within the normocephalic population at a value of
greater than 80 (Gailey et al., 2021; Sgouros et al., 1999). The
lowest circumference (Figure 3D) was achieved in the earlier
Renier’s H, whilst the greatest was seen in the 3 SAC.

Using pressure maps, we qualified the predicted contact
pressure across the ICV at 76 months for all techniques
(Figure 4A). To quantify these predictions, we subdivided the
ICV component for all techniques into six regions of interest,

FIGURE 4 | The predicted contact pressure captured across the brain surface for all replicated techniques at 76 months (A). Contact pressure was quantified
across different regions of the ICV for each replicated technique with standard deviations corresponding to the nodal distribution across the highlighted regions (B). All
results were recorded at 76 months of age.
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with standard deviations highlighting the differences in pressure
in these regions across the entire area (Figure 4B). The anterior,
middle and posterior cerebral areas were divided between the left
and right sides. We predicted that the TCR 2 approach leads to
the lowest consistent pressure outcome across the anterior (Left:
1.2 ± 1.0 MPa–Right: 1.3 ± 1.5 MPa), middle (Left: 1.3 ±
1.2 MPa–Right: 1.4 ± 1.2 MPa) and posterior (Left: 1.4 ±
1.2 MPa–Right: 2.0 ± 1.2 MPa) regions of the ICV. In an
earlier intervention, the modified Renier’s “H” approach
estimated the overall greatest pressure values across the left
(5.0 ± 1.7 MPa) and right (4.2 ± 2.7 MPa) anterior regions.
Similar pressure findings were seen between the modified
Renier’s “H” and the later performed Renier’s “H” procedure,
which consistently produced the largest values across the middle
left (modified Renier’s: 5.0 ± 2.5 MPa–Renier’s H: 5.0 ± 2.1 MPa),
middle right (modified Renier’s: 5.2 ± 2.1 MPa–Renier’s H: 5.1 ±
2.2 MPa), posterior left (modified Renier’s: 4.8 ±
3.5 MPa–Renier’s H: 5.0 ± 2.9 MPa) and posterior right
regions (modified Renier’s: 5.2 ± 2.8 MPa–Renier’s H: 5.5 ±
2.3 MPa). Interestingly, the number of simulated springs
across both 2 SAC and 3 SAC techniques did not impact the
overall pressure predictions, despite the small differences
observed in the cephalometric measurements.

DISCUSSION

Clinically, the target for SS correction is anteroposterior
reduction accommodated by mediolateral and dorsal
expansion. The computational framework proposed here
showed that all techniques achieve this underlying objective
yet with different morphological outcomes and relapses. The
predicted morphologies and the contact pressure maps obtained
across the calvaria highlighted that different reconstructive
techniques constrain/facilitate the growth of the brain to a
different extent.

Our results overall highlighted that the more invasive
techniques (TCR 1 & 2) can potentially lead to a higher
cephalic index compared to the less invasive techniques by
76 months of age. Further, the predicted contact pressure
maps highlighted a lower level of pressure over the surface
of the expanding brain for the two considered total calvarial
remodelling techniques as opposed to the other considered
techniques. Interestingly, our analysis of clinical CTs of over
100 scans corresponding to the techniques investigated in this
study did not find a statistically significant difference in the
morphological outcome of these techniques (Gailey et al.,
2021). However, it must be re-emphasised that the
framework presented here does not take into account any
clinical variables potentially differentiating the different cases
(Gailey et al., 2021) regarding the calvarial reconstruction
techniques. This can be interpreted as both an advantage of
the framework presented here and also as its key limitation.

Indeed, assumptions had to be made in the proposed
computational framework. Many chemical and biological
characteristics play a role in membranous bone formation
during infancy (Opperman, 2000; Herring, 2008; Richtsmeier

& Flaherty, 2013; Beederman et al., 2014) while a purely
mechanical approach was considered here. Even within the
considered approach, we have not incorporated a more
detailed description of the hydrostatic loads caused by the
normal skull and brain growth. Further, normal growth is
most probably non-linear and anisotropic, versus the linear
isotropic approach adopted here. Nonetheless, since this
approach was uniformly applied to all techniques that were
modelled, we were able to achieve a similar level of ICV
volume size and shape changes up to 76 months of age (Gailey
et al., 2021; Sgouros et al., 1999). Hence, while we cannot be
confident in the exact absolute values reported in this study, the
relative comparisons provide invaluable insights for years
to come.

Our previous studies have assessed the impacts that
alternative material properties could have on the predicted
calvarial growth (Cross et al., 2021a). As such, these properties
were brought forward to the current study, including the
method of uniformly updating the elastic modulus of the
bone. Whilst the effects of changing the elastic modulus of
the calvarial bones were assessed, the current model lacks the
consideration that viscoelastic properties could have on the
manipulation of the bone morphology (Margulies and
Thibault, 2000). Such impacts have been assessed
previously and are an important consideration for
computational models when replicating the after-effects of
surgery (Borghi et al., 2018; Borghi et al., 2020). However, as
we believe this only plays a role across a small time scale
(perhaps within hours post-operatively), the former method
of replicating the changes in bone properties was chosen
(considering that we predicted the skull growth up to
76 months of age).

The assessment of cognitive outcomes pre-and post-
operatively across differing techniques is typically conducted
using dedicated questionnaires. Within the literature, there is
still debate as to the optimum treatment option based on the
outcomes of such questionnaires (Hashim et al., 2014; Care et al.,
2019; Kljajic et al., 2019). The contact pressure data obtained in
our work is a surrogate to estimate to what extent different
techniques constrain the growth of the brain parenchyma. The
exact values predicted here must be treated with caution and
require further investigations and validation, yet, they may prove
informative for craniofacial surgeons in a comparative manner
and provide a level of postoperative cognitive predictability when
considering treatment options.

Clinically, the choice of a treatment option needs to be
optimised based on a number of factors such as the experience
of the team in performing a specific technique, the necessity of
blood transfusion (Meyer et al., 1993) and various associated
costs. These factors were not considered in the computational
framework proposed here. Further, more work is required to
implement facial growth in the proposed approach. Orbital,
mid-facial and palate deformations most probably play a role
in calvarial morphometric outcomes (Ranly, 2000).

In summary, we believe the presented approach provides a
sustainable way of assisting with preoperative sagittal
craniosynostosis management and estimating the postoperative
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outcomes. The potential to examine the changes in biomechanical
behaviour allows for the optimisation of morphological and
cognitive characteristics in patients’ years after surgery. This,
in the long term, can reduce the level of complications and
improve the overall quality of care.
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