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Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated
gene (Cas) system and RNA interference (RNAi)-based non-transgenic approaches are
powerful technologies capable of revolutionizing plant research and breeding. In recent
years, the use of these modern technologies has been explored in various sectors of
agriculture, introducing or improving important agronomic traits in plant crops, such as
increased yield, nutritional quality, abiotic- and, mostly, biotic-stress resistance. However,
the limitations of each technique, public perception, and regulatory aspects are hindering its
wide adoption for the development of new crop varieties or products. In an attempt to
reverse these mishaps, scientists have been researching alternatives to increase the
specificity, uptake, and stability of the CRISPR and RNAi system components in the
target organism, as well as to reduce the chance of toxicity in nontarget organisms to
minimize environmental risk, health problems, and regulatory issues. In this review, we
discuss several aspects related to risk assessment, toxicity, and advances in the use of
CRISPR/Cas and topical RNAi-based technologies in crop management and breeding. The
present study also highlights the advantages and possible drawbacks of each technology,
provides a brief overview of how to circumvent the off-target occurrence, the strategies to
increase on-target specificity, the harm/benefits of association with nanotechnology, the
public perception of the available techniques, worldwide regulatory frameworks regarding
topical RNAi and CRISPR technologies, and, lastly, presents successful case studies of
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biotechnological solutions derived from both technologies, raising potential challenges to
reach the market and being social and environmentally safe.

Keywords: exogenous dsRNA, genome editing, gene silencing, nanotechnology, offtargets, public acceptance,
regulatory aspects, toxicity

1 AN OVERVIEW OF PLANT BREEDING:
FROM ANCIENT TIMES TO GENETIC
MANIPULATION ASSOCIATED WITH
MOLECULAR BREEDING

The use of improved genotypes in agriculture started 10,000 years
ago with the process of crop domestication when humans began to
adapt wild plant species for cultivation as food plants (Doebley et al.,
2006). For many years, conventional plant breeding has been
performed by artificial crossing or induced random mutagenesis,
and the selection of parents and descendants is based majorly on the
phenotype, hence in the absence ofmolecular and physiological basis
of enhanced traits (Jorasch, 2019). These breeding approaches,
although time-consuming, labor-intensive, and randomly oriented
to some extent, continue to deliver crop varieties supporting
demands for increased agricultural production (Scheben et al., 2017).

In the last 30 years, biotechnology tools have allowed the
development of desirable genotypes in less time and generally at a
lower cost compared to conventional breeding. Modern agriculture
has profited from advances in molecular biology and next-generation
sequencing (NGS) technologies for high throughput sequencing,
which revolutionized genetic plant breeding, with emphasis on
transgenic technology, molecular markers, and genomic selection
(Kim et al., 2020; Thudi et al., 2021).

Transgenic breeding has been the most frequent technique
applied for plant genetic manipulation in history, allowing
desirable target genes to be introduced into the plant genome
ideally without making other unintended genetic changes (Qaim,
2020). These early developments showed the capability of genetically
engineering a plant genome and inspired other breeding approaches
such as gene silencing. The first report of gene silencing in plants was
demonstrated in 1989 in tobacco plants (Matzke et al., 1989), and a
subsequent study showed that the integration of transgenes
homologous to plant endogenous genes could result in
suppression of both expressed genes, a process called co-
suppression (Napoli et al., 1990). Later, Fire et al. (Fire et al.,
1998) used the nematode Caenorhabditis elegans to show for the
first time that the suppression of target transcripts expression is
triggered by double-stranded RNA (dsRNA) molecules, a
mechanism known as “RNA interference” (RNAi). Since then,
several components of the RNAi pathway were identified, and
the practical use of RNAi-based GMOs has advanced rapidly
(Saurabh et al., 2014). However, unlike GMO plants that are
generally modified to express a specific protein, RNAi-based
GMO plants have been modified to express dsRNA molecules
that enable specific silencing of target genes on the plant or
pathogen/pest genomes (Arpaia et al., 2020), a strategy termed
host-induced gene silencing (HIGS). According to Ghag et al.
(Ghag, 2017), HIGS was an innovative concept of RNAi

technology for effective silencing of one or a few genes with
agronomic importance. This technology has many potential
applications in agriculture, including enhancing resistance against
biotic and abiotic stresses, improving industrial and nutritional
quality, delayed ripening, male sterility, plant architecture
modification, and removal of allergens and toxins (Rajam, 2020).

RNAi pathways are natural mechanisms present in almost all
eukaryotic organisms. Basically, these pathways work through
processing long dsRNA into called small interfering RNA
(siRNA) or micro-RNA (miRNA) molecules, which are
responsible for recognizing the target messenger RNA
(mRNA), as well as guiding the DNA and histone
modifications or chromatin remodeling, leading to target gene
silencing (Wilson and Doudna, 2013). RNAi-based GMOs have
become key elements for plant breeding, due to their ability to
modulate gene expression in a sequence-specific manner.
However, there are great constraints and delicate issues related
to the use of transgenics—including the transgenic approach of
RNAi-based technology—that have negatively impacted the
development of new GMO crops, such as high costs, negative
perception of some consumers, long timelines to succeed,
restrictive regulatory framework, and the lack of genetic
transformation protocols for many crop species (Scheben
et al., 2017; Fletcher et al., 2020). Despite the mentioned
rapidness of the transgenic approach, the approval of a new
GM plant takes, on average, 10–12 years of successive
biochemical, molecular, environmental, and animal health-
related trials, according to the regulation adopted by each
country (Qaim, 2020).

In this context, since the early 2000s, the use of RNAi-based
non-transgenic approaches (e.g., exogenous and self-deliverable
dsRNA molecules) has been explored in agriculture, mostly for
plant protection against pathogens and pests (Tenllado et al.,
2003; Rego-Machado et al., 2020; Kalyandurg et al., 2021). This
strategy, currently known as spray-induced gene silencing (SIGS),
has been attempted as a potential and alternative biotechnological
tool for transgenic plants, due to its appealing features, being too
much faster, cheaper, easier to handle, and capable to encompass
a broader range of target organisms (Rank and Koch, 2021), while
avoiding plant transformation/screening steps, and biosafety
issues in some extent. Furthermore, this approach holds
enormous potential to meet the increasing public demand for
reducing agrochemical applications toward more sustainable and
agroecological production. In addition, SIGS has been shown to
be more efficient under lab conditions compared to the HIGS
strategy (Koch et al., 2016). Nowadays, there is mounting
evidence suggesting that topically-applied dsRNAs molecules
are effective in silencing target genes aiming at plant resistance
against a broad range of biotic factors (Dubrovina and Kiselev,
2019; Dalakouras et al., 2020; Das and Sherif, 2020).
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Additionally, advances in genomics studies with nuclease
enzymes have allowed the emergence of equally revolutionary
novel non-transgenic tools that are used in site-directed genome
editing for precision plant breeding, also not necessarily involving
the integration of exogenous sequences into the plant genome. Based
on the mode of action of these gene-editing tools, DNA is modified,
inserted, replaced, or deleted in the plant genome at specific locations
using sequence-specific nucleases, leading to gene modification at
target sites. These genomic editing tools can be used to improve
multiple traits simultaneously, controlled by multiple loci of the
genome (Rodríguez-Leal et al., 2017), facilitating the development of
commercial products, which is often difficult using conventional
genetic breeding techniques.

In this decade, themost widely used gene-editing technology is the
clustered regularly interspaced short palindromic repeats (CRISPR)/
CRISPR-associated gene (Cas) system, an adaptive immunity
mechanism found in bacteria and archaea against bacteriophages
and mobile genetic elements, which was transformed as a genome
editing biotechnological tool in 2012 (Jinek et al., 2012). This tool
relies on a special site of the bacterial genome called CRISPR locus,
which is a gene array composed of spacers acquired from the
invader’s exogenous DNA and integrated between small bacterial
palindromic repeats. Flanking the CRISPR locus there are genes
encoding Cas nucleases, responsible for cleavage of exogenous DNA
upon new infection by the same invader. The spacers are transcribed
into small guide RNAs that once complexedwith Cas nucleases direct
the breakdown of the intruder DNA (Marraffini, 2015). The use of

CRISPR/Cas in plant breeding allows the segregation of system
components (e.g., Cas protein and guide RNA—gRNA) out of the
host genome, post-target gene editing, enabling the generation of
non-transgenic crops. Moreover, for this purpose, the system has
been experimentally optimized, and a transgene-free approach to the
technology can be performed which usually involves the use of a
ribonucleoprotein (RNP) complex made only by the gRNA and Cas
nuclease protein transcribed in vitro (Zhang et al., 2021a).

Indeed, both technologies—RNAi and CRISPR/Cas—have the
power to revolutionize plant research and breeding (Younis et al.,
2014; Guo et al., 2016; Ricroch and Hénard-Damave, 2016). In
this review, we present an up-to-date panorama on advancements
and breakthroughs of both technologies for breeding and plant
protection, as well as provide a broad perspective on the risks,
challenges, public perception, and regulatory aspects concerning
the applications of non-transgenic approaches of both genetic
engineering technologies in modern agriculture. In Figure 1, we
summarized the main risks and challenges related to both
technologies, which will be discussed further in this review.

2 GENOME EDITING TECHNOLOGY
FOCUSES ON CRISPR/CAS TECHNOLOGY

2.1 CRISPR/Cas in Agriculture
CRISPR/Cas has been used in different crops since 2013,
introducing into them agricultural traits of great value, such as

FIGURE 1 | Summary of the main risks (on the left—in red color) and challenges (on the right—in green color) addressed in the text and related to the application of
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated gene (Cas)- and RNA interference (RNAi)-based technologies in agriculture.
Created with Biorender software at https://biorender.com.
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yield, quality, and biotic-/abiotic-stress resistance (Shan et al.,
2013; Zhang et al., 2020). This technology holds an enormous
potential to address numerous concerns involving cost, time, and
complex biosafety issues, typical characteristics of the transgenic
strategy. Furthermore, the ever-expanding CRISPR/Cas toolbox
has allowed a myriad of applications in plants, including the
knockout and knock-in of target genes, modulation
(i.e., inhibition or activation) of gene expression, genome base
editing, among others (Zhu et al., 2020).

Differently from other genome editing-based technologies,
such as zinc-finger nuclease (ZFN) and transcription activator-
like effector nuclease (TALEN), the use of CRISPR/Cas does not
depend on engineered proteins, and it is essentially based on
RNA/DNA hybrids, in which its target specificity relies on a short
stretch of RNA, providing higher versatility, lower costs and an
easier building process. Furthermore, this technology enables the
editing of multiple genome sites simultaneously (Xiong et al.,
2015), and also introduces mutations directly into elite crop
varieties, bypassing limitations like narrowed natural genetic
variability, and time-consuming processes of backcrossing to
reconstruct the elite genetic background as in conventional
breeding technique (Scheben et al., 2017; Rato et al., 2021),
being especially useful for crops with rare resistance sources,
long life cycles, and polyploid genomes.

The gene regulation can be modulated by the use of
catalytically inactive Cas9 variants (e.g., dead Cas9—dCas9) or
orthologs. These enzymes are capable of binding to specific DNA
sequences mediated by gRNA without causing double-strand
breaks on the DNA molecule. (Lowder et al., 2018; Papikian
et al., 2019). The dCas9 fused to transcription regulatory
domains, such as VP64 or SRDX, or epigenetic modulators
can be used for activation or repression through CRISPR
interference (CRISPRa or CRISPRi, respectively), expanding its
range of applications (Moradpour and Abdulah, 2020). For
example, dCas9-VP64 and dCas9-TV systems increased the
expression of the UDP-glucose flavonoid glycosyl-transferases
(UFGT) gene in grape cells (Ren et al., 2022). dCas9 can also
promote/inhibit enhancers in promoter regions of genes due to
the interference in chromatin structure, consequently modulating
the gene expression (Morgan et al., 2017). Another way of
modifying the gene expression is the cleavage and degradation
of RNA-targeting using Cas13a and Cas13b. Editing RNA with
CRISPR/Cas13 is a novel and emergent tool in plants and is
currently being used mainly for developing resistance to viral
diseases in plants (Zetsche et al., 2015).

Beyond the coding (CDS) and promoter regions, other regulatory
elements are also good targets for genome editing aiming tomodulate
gene expression, such as polyadenylation signals, alternative
transcription initiation sites, and upstream open reading frames
(uORFs). Usually responsible for reducing the translation, uORFs
are situated in the 5′ untranslated regions (UTRs) of mRNAs, and
when edited can promote the upregulation of gene expression. For
example, the CRISPR knockout of gene’s uORF region resulted in an
increase in gene translation in lettuce (Lactuca sativa) and strawberry
(Fragaria vesca) plant crops, leading to a high content of ascorbate
and sweetness in the edited plants, respectively (Zhang et al., 2018;
Xing et al., 2020).

2.2 Risks and Challenges Involving CRISPR/
Cas Technology
2.2.1 Unintended Off-Target Effects (General Immune
Response)
During the activity of CRISPR/Cas machinery, the gRNA can
direct the Cas protein to other regions and consequently lead to
unintentional cleavage of DNA sequence, a process known as off-
target effect. Shahriar et al. (Shahriar et al., 2021) classified the off-
targets into two types: 1) sequences sharing high similarities to
the target, and 2) irrelevant genomic off-target sites. These off-
target mutations are of great concern mainly in the clinical-
therapeutic area (Zhang et al., 2015), which restricts its
application due to technical and ethical issues. In major crop
plants, several studies have reported the incidence of unwanted
changes in the genome, but at low rates (<10%) (Peng et al., 2017;
Tang et al., 2018; Young et al., 2019; Graham et al., 2020; Jin et al.,
2021), suggesting a remarkable specificity of CRISPR/Cas system
in the plant genome, or either a flaw in the currently available off-
target detection methods (Bortesi and Fischer, 2015; Hajiahmadi
et al., 2019). Nevertheless, when an off-target effect is detected, it
is generally located at genomic spots exhibiting great similarity to
the target sites (Lawrenson et al., 2015; Tang et al., 2018). Some
in vitro and in vivo methods have been developed to detect these
mutations, such as Digenome-seq (Kim D. et al., 2015), GUIDE-
seq (Tsai et al., 2014), SITE-seq (Cameron et al., 2017), CIRCLE-
seq (Tsai et al., 2017), and DISCOVER-seq (Wienert et al., 2019).
A gold standard recommendation would be performing genome-
wide NGS for the identification of these potential off-target
mutations, however, it seems not to be practical/feasible in
most cases (Hahn and Nekrasov, 2019; Shillito et al., 2021),
especially for polyploid crops. Consequently, an
underestimation of off-target mutation rates might be
occurring, although not likely.

2.2.2 Epigenetic Consequences
Epigenetic phenomena consist of a complex gene expression
regulation process for the maintenance of a precise state of
gene activation/repression in a given cell (Urnov and Wolffe,
2001). Such a sophisticated and fine-tuned mechanism involves a
series of alterations in DNA molecules, including chemical
modification of DNA structure (e.g., methylation),
modification in histone proteins (closely associated with the
gene locus), and chromatin remodeling, without altering DNA
primary sequence (Jaenisch and Bird, 2003). Although epigenetic
characteristics can influence cleavage by facilitating or hindering
DNA accessibility, unintended effects on the genome beyond off-
target mutations caused by the use of CRISPR technology are still
poorly explored. Lee et al. (2020) analyzed the DNA methylation
profiles in promoters of naturally hyper and hypomethylated
genes from Arabidopsis thaliana that underwent genome editing
through CRISPR/Cas. Edited and wild-type plants showed the
same epigenetic profile by sequencing the next generation of
bisulfite-converted DNA, concluding that CRISPR genome
editing did not result in unintended epigenetic changes.
However, only one work was carried out in the area and one
epigenetic mechanism was evaluated. DNA methylation is the
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most common epigenetic marker in plants and occurs mainly by
the insertion of a methyl group (CH3) on the fifth carbon of
cytosines in CpG (cytosine-phosphate-guanine) dinucleotides
(Laird, 2010; Yong et al., 2016). Meantime, epigenetic
information is also mediated by post-translational histone
modifications (MPTHs) and processing mechanisms of non-
coding RNAs (ncRNAs) (Bossdorf et al., 2010).

Another important point to be raised is the DNA accessibility
in target regions by CRISPR technology. Studies have shown that
the level of accessibility to the loci through DNA methylation or
chromatin structure can influence the efficiency of on-target gene
editing (Jensen et al., 2017; Verkuijl and Rots, 2019; Strohkendl
et al., 2021). The chromosome with high compaction can lead to
low DNA accessibility to non-specific Cas9 interactions (Chitra
et al., 2019). Nucleosomes are known to inhibit PAM
(protospacer adjacent motif) site recognition, reducing the
rates of Cas nuclease cleavage in vitro (Verkuijl and Rots,
2019; Strohkendl et al., 2021). Additionally, there is a positive
correlation between chromatin opening and the efficiency of
mutagenesis by the CRISPR system (Uusi-Mäkelä et al., 2018).
For example, a transcriptional activation domain fused to Cas9
improved the genome editing efficiency in condensed and relaxed
chromatin regions in rice (Liu et al., 2019). Given the above, in
addition to PAM recognition and complementarity between
gRNA and target DNA, DNA accessibility should also be
considered an important factor for genome editing efficiency.

2.2.3 Toxicity Impacts on Human/Animal Health
The toxicity associated with CRISPR/Cas application may be
caused by its components, the exposure period, and/or depending
on the delivery methods. Several studies involving different
organisms, such as prokaryotes (Jiang et al., 2014, 2017; Cho
et al., 2018; Markus et al., 2019) and pluricellular eukaryotes (Ihry
et al., 2018; Li et al., 2018; Rosenblum et al., 2020), have shown
that either induced double-strand break (DSB) and heterologous
Cas9 protein expression can impair cell growth that leads to an
abnormality in cell morphology and/or trigger cell death. To date,
no reports of Cas9-associated toxicity have been found in plants
(Dey, 2021). Since the first applications of CRISPR technology in
plant cells, researchers have shown that whole plants can be
regenerated by tissue culture from edited cells, suggesting that the
CRISPR system components are not toxic to plants (Hahn and
Nekrasov, 2019). However, depending on the adopted CRISPR/
Cas strategy and the target chosen, serious pleiotropic effects may
occur (Zhu et al., 2020). For example, the knockout of plant
susceptibility (-S) genes, associated with pathogen compatibility,
but also engaged with multiple crucial pathways, often lead to
plant fitness penalties, including physiological and growth
tradeoffs (Kale et al., 2019; van Butselaar and Van den
Ackerveken, 2020; Kieu et al., 2021). In addition, studies have
evaluated the toxicity of CRISPR/Cas components not only in
plants but also in humans. Regarding the exposure of Cas protein
in humans, an interesting study conducted by El-Mounadi et al.
(El-Mounadi et al., 2020) concluded that exposure of human
beings to Cas9 proteins took place long before the emergence of
genomic editing tools. In the comparative genomic analyses, the
authors detected more than 80% similarity between Streptococcus

pyogenes (SpCas9) amino acid sequence with commensal/
pathogenic bacteria such as Streptococcus dysgalactiae subsp.
equisimilis, Staphylococcus aureus, Klebsiella pneumonia, and
Streptococcus canis, are commonly found in the environment
or even in foods intended for human consumption. Furthermore,
SpCas9 has homologs in Gram-positive and Gram-negative
bacteria naturally found in different niches throughout the
human body (Louwen et al., 2014). Hence, edited plants
containing Cas9 integrated into the genome probably do not
represent a potential risk to human health.

Nevertheless, the mode of delivery of CRISPR/Cas system
components seems to stand out as one of the main factors of
toxicity in plants. For example, nanoparticle (NP)-based delivery
approaches for the transfection of CRISPR reagents, while
representing a promising association as will be addressed later
in this review, toxicity concerns have been raised (Demirer et al.,
2021). As such, systemic toxicity studies have suggested that the
physical and chemical properties of nanomaterials must be taken
into account. For example, in the case of the carbon nanotube, in
which limitations of its use have been emphasized due to the non-
biodegradable nature and the presence of heavy-metal impurities
introduced during NPs synthesis (Kostarelos, 2008; Pikula et al.,
2020). In this setting, to avoid future problems in the
United States, the application of new substances as
nanocarriers in agriculture must demonstrate safety and
absence of toxicity effects before its application in the field,
following the regulation of the Toxic Substances Control Act
(TSCA) law (Heller et al., 2020). Furthermore, the generation of
data about nanomaterial’s lifecycle in CRISPR/Cas edited plants
and their progeny, its fate in the environment, likewise the
potential impacts on interacting organisms, including humans,
may provide crucial information towards the approval of new,
safer, and more sustainable NPs (Demirer et al., 2021).

2.3 Strategies to Increase On-Target
Specificity/Efficiency and Avoid Toxicity in
Plants
Efforts have been made toward the optimization of CRISPR/Cas
strategies to increase on-target specificity/efficiency as well as
reduce off-target effects and toxicity in plants (Hajiahmadi et al.,
2019). In general, the main technical factors that may influence
undesirable outcomes in plants are the gRNA design, choice of
Cas variant proteins, specific CRISPR component formats, and
the delivery methods of CRISPR/Cas reagents into the target
genome.

2.3.1 Properties and gRNA Design
A prerequisite for reducing off-target effects is optimizing the
gRNA design, and carefully selecting the sequence to be targeted
(Hsu et al., 2013; Zhu et al., 2017; Zischewski et al., 2017).
Bioinformatics web-based tools have been developed for the
gRNAs design and to predict potential off-target sites in plant
genomes, including Cas- OFFinder (Bae et al., 2014),
CHOPCHOP v.2 (Labun et al., 2016), CRISPOR (Haeussler
et al., 2016), CRISPR-P 2.0 (Liu et al., 2017), CRISPR-GE (Xie
et al., 2017), CRISPR-PLANT v.2 (Minkenberg et al., 2019), and
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CRISPR-BETS (Wu et al., 2022). For more details, refer to
Gerashchenkova et al. (Gerashchenkova et al., 2020), which
describes over a hundred software for gRNAs design. Hahn
and Nekrasov (Hahn and Nekrasov, 2019) emphasize that the
species having annotated genome sequence available is not
mandatory, but necessary for an effective prediction once it
would allow examining off-targets also located in non-coding
regions. In summary, these above-mentioned tools consider
incompatibilities within the gRNA seed sequence (8–12
nucleotides upstream to PAM), being its number and position
decisive for gene editing specificity. In addition, mismatches
located between the eight nucleotides proximal to the PAM
site reduce off-target effects. According to Modrzejewsk and
co-workers, the off-target effect rate decreases 59% if there is a
unique mismatch between the target and off-target sequence. In
the cases that there are four or more mismatches, this value
reduces further to 0.09% (Modrzejewski et al., 2020).

Another factor to consider for enhancing gRNA specificity is
the ratio of guanine-cytosine (GC) nucleobases, even though
there is no consensus among the studies. The hypothesis is
that a low GC content decreases off-target occurrence (Yu
et al., 2017), as the high content stabilizes the hybridization of
gRNA to genomic DNA (Fu et al., 2013).While some studies have
shown that gRNA sequences with low (<20%) or high CG (>80%)
content are less effective against targets (Wang et al., 2014b; Ma
et al., 2015), others did not identify interference from the total GC
content of gRNA (Ren et al., 2014; Jensen et al., 2017; Labuhn
et al., 2018; Modrzejewski et al., 2020). Recently, the study by
Malik et al. (Malik et al., 2021) showed that the high GC content
in the seed region (1–12 nucleotides close to PAM) decreases the
activity of gRNAs, negatively influencing the target cleavage
efficiency. So, the use of intermediate GC contents (~50%) is
indicated as a reference for gRNA design to improve the on-target
specificity. However, more studies are needed to better elucidate
how it operates.

2.3.2 Cas Protein Variants
Limitations for CRISPR technology using SpCas9 include protein
size, off-target effects, and the requirement of a specific PAM
sequence (NGG) in the genome, which restrain potential target
recognition sites (Zhi et al., 2021). Two main approaches have
been adopted as alternatives to overcome this restriction: the use
of Cas9 orthologs derived from different organisms and the Cas9
protein modification to recognize different PAM sequences
(Sukegawa et al., 2021). For a full list describing natural and
engineered Cas nuclease variants used in genomic editing, refer to
Anzalone et al. (Anzalone et al., 2020).

Natural Cas9 variants presenting different PAM sequences,
such as those from Staphylococcus aureus (SaCas9—NNGRRT),
S. thermophilus (St1Cas9—NNAGAAW, W = A/T), and S. canis
(ScCas9—NNG) had their specific recognition sites demonstrated
in different plant experiments (Steinert et al., 2015; Kaya et al.,
2016; Wang M. et al., 2020; Veillet et al., 2020). Numerous
engineered variants have also been developed (SpCas9-VQR,
SpCas9-EQR, SpCas9-VRER, SpCas9-NG, SpCas9-HF1,
eSpCas9, HypaCas9, evoCas9, Sniper-Cas9, xCas9, and SpRY)
based on the crystal structure of Cas9 attached to gRNA and

target DNA (Wada et al., 2020). These natural and engineered
variants exhibit relaxed PAM sites, smaller sizes compared to
SpCas9 (1,368 aa), high target specificity, and promising
applications (Negishi et al., 2019; Qin et al., 2019; Xu et al.,
2019; Zhong et al., 2019).

The nuclease Cas12a (previously called Cpf1), widely used for
genome editing in plants, opened the possibility to target
adenine-thymine-rich genomic regions (Zetsche et al., 2015).
Cas12a has a PAM sequence rich in “T” nucleotides (TTTV,
V = A/G/C). Unlike Cas9, Cas12a has two RuvC catalytic sites, its
cut generates blunt ends in the DNA double-strand, and it does
not have tracrRNA (trans-activating CRISPR RNA) in the
system. These properties make this nuclease more suitable for
generating larger deletions and multiplex gene editing (Zhang
et al., 2021b; Huang Holger Puchta et al., 2021).

The dCas9 engineered variant enzyme is able to alter the
phenotype (e.g., modulating gene expression and/or translation)
without changing the genetic code of plants, thus representing an
interesting alternative approach to reduce off-target effects,
bypass DSB-induced toxicity, avoiding pleiotropic and lethal
effects in the targeted plant (Lei et al., 2013; Brezgin et al.,
2019). The use of two dCas9 simultaneously at the same locus
to cleave each DNA strand has also been proposed to reduce
potential off-target effects (Pereira, 2016).

2.3.3 Alternative CRISPR Component Formats
In general, plasmid DNA expression vectors harboring a
CRISPR gene cassette are used in the genetic transformation
of target organisms via Agrobacterium tumefaciens (Das et al.,
2021) or through particle bombardment (Imai et al., 2020).
However, this most frequently applied strategy has as major
concerns the random integration into the genome and the
continuous expression of Cas protein and gRNA(s), which
increases the possibility of chimeric mutants, off-target effects,
and toxicity (Feng et al., 2014; Hashimoto et al., 2016). To
overcome these issues, the availability of different CRISPR/Cas
system reagent formats, such as mRNA and pre-assembled
RNPs, represent promising alternatives (Liang et al., 2017).
RNP-based DNA-free genome editing in plant cells usually
occurs through PEG, electroporation, lipofection, and particle
bombardment (Zhang et al., 2021a). After delivering the
complex into the cell nucleus, RNP is rapidly degraded,
thus avoiding potential off-target effects (Kim J.-S. et al.,
2015, 2017; Subburaj et al., 2016). Moreover, for cellular
toxicity associated with long-term expression of Cas and/or
integration of exogenous DNA, the RNP complex approach
may represent a good choice due to the transient and stable
transfection in the plant cell (González et al., 2021). On the
other hand, as this strategy does not use selection marker
genes, the screening of edited plants with desirable phenotypes
may become more laborious and costly. Additionally, this
method often presents lower editing efficiencies (~10%)
compared to stable integration vectors, as already
demonstrated for corn (Zea mays) (≤9.7%) (Svitashev et al.,
2015), brassica plant species (≤24.51%) (Murovec et al., 2018),
potato (Solanum tuberosum) (≤25%) (Andersson et al., 2018),
and petunia (Petunia juss) (≤11.9%) (Yu et al., 2021).
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2.3.4 The Use of Viral Vectors and the AssociationWith
Nanomaterials
The success of CRISPR technology relies directly on the approach
used to deliver its reagents. However, the cargo of biomolecules
consists of one of the main steps and bottlenecks in genetic
transformation. Unlike animals, plant cells possess a cell wall that
represents a natural physical barrier limiting the entrance of
exogenous molecules into the cytoplasm. Biolistics and A.
tumefaciens transformation are the conventional methods
typically used to overcome plant cell wall, but these
approaches have several disadvantages that can negatively
impact the transformation process, such as low efficiency of
target edition, plant tissue damages, and technical
incompatibilities (Altpeter et al., 2016; Demirer et al., 2021).
Notwithstanding, the recent advancements in the field of delivery
using viral vectors and nanoparticles have delineated new
possibilities, surpassing traditional limitations and contributing
to improvements in the genetic engineering of plants
(Cunningham et al., 2018).

Some viruses are efficient in the genomic editing of plants due
to their ability to infect and replicate into the cells of a wide range
of plant species (Zhu et al., 2020). Over the years, there have been
remarkable advances in virus research as carrier agents involved
in plant genome editing, also known as virus-induced genome
editing (VIGE) (Gentzel et al., 2022). In principle, only
engineered RNA or single-stranded DNA viruses positive-
sense were used to express gRNA strands, however requiring
the expression of Cas protein in genetically modified plants for
the effectiveness of the CRISPR/Cas system (Ali et al., 2015a,
2015b; Yin et al., 2015; Oh et al., 2021). Later, it is possible to
stably express Cas and gRNA in single-stranded RNA virus
negative-sense. For example, Barley yellow striate mosaic virus
(BYSMV) and Sonchus yellow net virus (SYNV) were able to
efficiently edit Nicotiana benthamiana, but without
transgenerational effect due to the inability of these viruses to
penetrate the meristematic and reproductive tissues of the plant
(Gao et al., 2019; Ma and Li, 2020). Currently, the fusion of
mobile elements to the gRNA in the infection clone has belonged
to the presence of the virus in meristematic tissue, consequently
inducing the mutation in the progenies (Ellison et al., 2021; Lei
et al., 2021).

In theory, all available formats of CRISPR/Cas system reagents
(e.g., plasmid DNA expression vectors, mRNA, and RNP
complexes) can be encapsulated in nanomaterials prior to cell
delivery. Nanomaterials can improve cellular uptake, as well as
circumvent technical limitations, such as the low stability of
CRISPR reagents depending on the format chosen (Demirer
et al., 2021). A multitude of NPs have been developed and
tested in an attempt to improve the transformation efficiency
of different crops, however few of them have been successful as
carriers of CRISPR/Cas system components. The most common
nanomaterial tested to deliver DNA and other chemical reagents
in plant cells is mesoporous silica (Torney et al., 2007). Other
well-known NPs are carbon nanotubes, which are passively
absorbed by plant cells without being degraded by
endonucleases (He and Zhao, 2019). Promising results using

these NPs to nanoencapsulation and deliver plasmid DNA
into chloroplast organelles have been reported in brassica,
cotton (Gossypium hirsutum), and wheat (Triticum aestivum)
(Kwak et al., 2019; Demirer et al., 2020). Likewise, layered double
hydroxides (LDHs) and carbon dots are also a good choice of
NPs, once they can penetrate plant cells causing minor injuries
and efficiently protecting the internalized content (Bao et al.,
2017). Doyle et al. (Doyle et al., 2019) performed one of the few
studies in the literature reporting the use of NP to deliver
CRISPR/Cas components to plant cells. Authors showed that
naturally occurring carbon dots (quasi-spherical, <10 nm
nanoparticles) can be used as a vehicle for carrying Cas9 and
gRNA plasmid coated carbon dots into wheat plants via foliar
application by spraying and to generate target mutations. Instead,
Sandhya et al. (Sandhya et al., 2020) suggest the direct delivery of
RNPs to regenerative tissues using a pollen magnetofection-
mediated delivery. The methodology aims to use pollen as a
nanocarrier agent for exogenous DNA molecules, and later the
use of this pollen to fertilize the plant’s ovary and directly induce
the genetic edition of seeds.

Altogether, the rapid evolution of CRISPR/Cas technology and
all associated-approaches/strategies available for plant genome
editing provide optimal conditions to target the above-mentioned
technical-related challenges and also to improve the
understanding of risk/safety implications. Lastly, although
concerns about unintended off-target effects and potential
toxicity have raised discussions around CRISPR adoption in
plant breeding, these should not be considered criteria for
restricting CRISPR technology application, as in the case of its
usage in animal cells, apparently. Moreover, in most plant species
it is possible to eliminate off-target mutations and inferior traits
through genetic segregation by the backcross breeding approach
(Murovec et al., 2018).

3 RNAI PLANT-BASED TECHNOLOGIES

RNAi-based transgenic plants, designed to express dsRNA
sequences to knock down the expression of specific genes in
the host and/or pathogen genome, have represented a remarkable
complementary tool to face the abusive usage of pesticides in
agricultural fields, with great potential to cause environmental
and human health problems (Mezzetti et al., 2020). However, in
the last few years, the global demand for a more sustainable and
non-transformative technologies of crop protection has
substantially intensified (Budzinski and Couderchet, 2018;
Fletcher et al., 2020). In this context, the scientific community
has strived to develop and master the application of novel non-
transgenic RNAi-based technologies.

3.1 Topical RNAi-Based Approach Towards
a More Sustainable Plant Protection
The breakthrough and Nobel Prize-winning discovery that oral
delivery of dsRNA to C. elegans induced a potent and specific
gene silencing (Fire et al., 1998), nourished the perception that
exogenous dsRNA application could trigger RNAi response on
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any target organism, and paved the way for the emergence of the
topical RNAi-based technology. Such approach consists of
producing high amounts of self-delivering dsRNAs to be
topically used in the field as bio-defensive molecules (Das and
Sherif, 2020), so far standing as a promising tool in agriculture to
achieve plant protection against several pathogens (Dalakouras
et al., 2020; Kiselev et al., 2022).

Tenllado and Diaz-Ruiz (Tenllado et al., 2003) and Tenllado
et al. (Tenllado et al., 2003) were the first to report the plant
protection from viruses by topical dsRNA application. They
showed the foliar application of in vitro expressed dsRNA
molecules targeting the plant viruses Pepper mild mottle virus
(PMMoV), Plum pox virus (PPV), Alfalfa mosaic virus (AMV),
and Tobacco etch virus (TEV) conferred plant resistance against
infections. Following this pioneering discovery, different studies
reported successful control of multiple families of plant viruses by
topical RNAi-based technology (Mitter et al., 2017).

Similar to viruses, fungal control by topical application of
dsRNAs seems to be promising. Koch et al. (Koch et al., 2013)
showed that in vitro cultures of Fusarium graminearum treated
with dsRNAs complementary to three cytochromes P450
(CYP) genes resulted in growth inhibition, similarly to the
observed after treatment with fungicide tebuconazole. Also,
they reported that topical application of these dsRNAs on
detached barley leaves impaired F. graminearum growth
beyond the applied sites, suggesting a systemic activity
(Koch et al., 2016). Moreover, the surface of fruits,
vegetables, and flowers sprayed with dsRNAs targeting two
DICER-LIKE (DCL) genes of Botrytis cinerea resulted in
effective control of the pathogen, demonstrating that topical
RNAi-based approaches may be useful to protect crops either
during the production cycle as in post-harvest stages (Wang
et al., 2016).

The first demonstration of exogenous dsRNA application
against insect pests came from a study on citrus and
grapevines to control two hemipteran pests, the xylem-feeding
glassy-winged sharpshooter Homalodisca vitripennis, and the
phloem-feeding psyllid Diaphorina citri. Both insects tested
positive for dsRNA ingestion after feeding on plants treated
with dsRNAs applied to the root zone, showing the movement
of dsRNA through the graft junction of rootstock and scion
(Hunter et al., 2012). Later, SanMiguel and Scott (SanMiguel and
Scott, 2016) demonstrated the dsRNA application on leaves of
potato plants targeting the actin gene on Colorado potato beetle
(Leptinotarsa decemlineata) resulted in significant mortality of
insects. Moreover, the result showed that dsRNA remained
biologically active on potato leaves for at least 4 weeks under
greenhouse conditions.

Although mounting evidence demonstrates the efficacy of
topical RNAi-based technology to enhance quantitative and
qualitative valuable agronomic crop traits, relevant concerns
have been raised about its feasibility, from delivering methods
to relative costs of the technology, as well as the associated risks.
All these matters must be overwhelmed to allow a straightforward
translation of research data into new biotechnological
commercial solutions, intending to minimize environmental,
health, and regulatory issues.

3.2 Risks and Challenges Involving Topical
Application of dsRNA
Topical RNAi-based technologies offer clear benefits over most
existing crop protection chemical pesticides. However, an
approach based on scientific parameters to develop and
validate procedures is fundamental to defining which risk
assessment criteria are most appropriate for these technologies
(Mezzetti et al., 2020).

3.2.1 Weighting the Unintended Off-Target Effects
Usually, off-target effects are due to the existence of any degree
of sequence similarity between siRNA (e.g., synthetic and/or
derived from dsRNA processing by DICER enzyme) and non-
target mRNA transcripts (Chen et al., 2021a). In this context,
the presence and position of nucleotide mismatches along with
the siRNAmolecule structure, in relation to the target sequence,
seem to exert a major influence in the silencing of nontarget
genes. Kulkarni et al. (Kulkarni et al., 2006) investigated dsRNA
specificity using the model insect Drosophila melanogaster.
Through a high-throughput screening, authors reported that
long dsRNAs sharing a perfect identity of as few as 19 nt-long
with predicted unintended targets, lead to off-target effects.
Investigating governing rules of dsRNA specificity in the beetle
Tribolium castaneum, Chen et al. (Chen et al., 2021b) showed
that a dsRNA targeting a member of the CYP, the gene
CYP6BQ6, was able to silence another eight genomic regions
with nucleotide sequence identity ≥68%. Among these genes,
CYP6BK7 and CYP6BK13 showed significant alteration in
transcript modulation. Sequence analysis found that
CYP6BK7 and CYP6BK13 contain 24 and 26 bp of
contiguous matching bases with only two single mismatched
bases, respectively. Further investigations using mutational
analyses showed that dsRNAs with ≥16 bp perfectly matched
sequence or >26 bp almost perfectly matched sequence
(i.e., with one or two mismatches scarcely distributed) were
also able to trigger RNAi gene silencing on T. castaneum off-
target transcripts. Taning et al. (Taning et al., 2021a) used a
sequence complementarity-based approach to evaluate
potential off-target effects in bumblebee (genus Bombus),
following oral exposure to a chimeric dsRNA. Interestingly,
no modulation was found in the transcript level for all potential
predicted off-targets, including sequences with 20 continuous
nucleotide matches or with 21 bp stretch with only one
mismatch.

Besides the important role of nucleotide mismatches, as well as
the apparent variation in the occurrence of off-target gene
silencing between organisms, two other ways may trigger off-
target activity. First, the RNAi enzymatic complex (more
specifically the Argonaute RISC Catalytic Component 2-
AGO2 enzyme) can erroneously incorporate the wrong strand
of siRNA sequence (e.g., the passenger strand) leading to the
downstream degradation of unintended transcripts (Schwarz
et al., 2003). The second and unpredictable triggering of off-
target activities may occur if the small RNA binds to the miRNA
pathway, which can result in the silencing of dozens if not
hundreds of transcripts (Doench et al., 2003; Jackson et al., 2003).
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3.2.2 Cross-Kingdom Nontarget Risks and Related
Biosafety Issues
Considering that off-target effects are usually surveyed only
within target organisms, very little is known about how
dsRNAs affect the gene silencing in nontarget organisms.
Suffice to say that, aiming at the generation of RNAi-based
technological solutions for agriculture, the risk analysis
should encompass each of the myriad interacting
organisms in the agroecosystem, including humans, that
may be directly or indirectly exposed to the dsRNA
molecules.

The fact is that cross-species and cross-kingdom nontarget
effects may occur more often than is commonly argued. For
example, Zhang et al. (Zhang et al., 2011) reported a quite
intriguing result showing that a great amount (up to 10%) of
plant exogenous microRNAs were found in sera and tissue
samples of various animals and that these are likely taken
orally with food. MIR168a is a plant miRNA very abundant in
rice crops. Surprisingly, the amount of MIR168a was found to
increase in the serum of rats fed with a rice-containing diet,
even when it was cooked. Following in vitro and in vivo
functional assays showed the ability of rice MIR168a to
bind both to human and mouse transcripts, resulting in
non-target gene silencing effects. Another interesting study
demonstrated that dsRNAs expressed by transgenic maize
crops, and designed to silence target genes in the western corn
rootworm (Baum et al., 2007). Diabrotica virgifera also
impacted the expression of orthologous gene members
present in the other insect species, D. undecimpunctata
and L. decemlineata, despite the relatively low sequence
homology between genes in the target and nontarget
organisms.

In terms of cross-kingdom dsRNA transference, recent studies
have shown the transference of small RNAs between plants and
pathogens occurs spontaneously in nature, participating mainly
in defense mechanisms (Guo et al., 2018). For example, cotton
plants produce miRNAs (e.g., miR166 and miR159) which are
exported directly to the hyphae of the fungusVerticillium dahliae,
a vascular pathogen responsible for wilt in many cotton crops,
targeting transcripts engaged with fungus’s virulence, and
conferring plant resistance (Zhang et al., 2016). Likewise, it
was described that small RNAs (e.g., TAS1c-siR483 and TAS2-
siR453) produced by the model plant A. thaliana were detected in
cells of the fungus B. cinerea during plant-pathogen interaction,
and plant lines overexpressing these small RNAs displayed
reduced susceptibility to this pathogen, which showed a
negative modulation of targeted transcripts (Cai et al., 2018).

Similarly, small RNAs can also be transmitted in the opposite
direction, i.e., from the pathogen to the host plant. One of the first
studies that demonstrated the transfer of small RNAs from
pathogens to plants was performed by Weiberg et al. (Weiberg
et al., 2013), where three siRNAs from the fungus B. cinerea (Bc-
siR3.1, Bc-siR3.2, and Bc-siR5), with predicted targets in A.
thaliana and tomato (Solanum lycopersicum) plants, rendered
both host plants susceptible to fungus infection. Furthermore,
Arabidopsis AGO1 mutants, unable to process the small RNAs
from B. cinerea, exhibited reduced susceptibility to the fungus, as

well as to B. cinereaDCL1/DCL2 double mutant, which exhibited
reduced pathogenicity on both plants.

The natural traffic and delivery of these small RNA molecules
inside and between interacting plant-pathogen organisms can be
done through extracellular vesicles (EVs), i.e., membrane-bound
particles that carry manly transmembrane proteins and RNAs,
being produced by both sides of the pathosystem (Liu et al., 2021).
In plants, stress-associated EVs were isolated and characterized in
apoplast fluids from Arabidopsis leaves, from where they are
assimilated by the pathogen/pest (Rutter and Innes, 2017).
Different studies on the A. thaliana and B. cinerea interaction
have demonstrated the transfer from plant to fungus of “tiny
RNAs,” which are 10–17 nucleotides in length, and derived
mainly from the positive strand of mRNA transcripts (Cai
et al., 2018; Baldrich et al., 2019). On the other direction,
recent studies have also reported the EVs delivery from
pathogens to plants. Bleackley et al. (Bleackley et al., 2020)
demonstrated that EVs secreted by the fungus F. oxysporum
induced phytotoxic responses in cotton plants. Likewise for the
fungus Zimoseptoria tritici, whose EVs are engaged with the
triggering of pathogenesis in wheat crops (Hill and Solomon,
2020).

Based on the studies of cross-kingdom small RNA transfer,
small RNAs exchanged between plants and pathogens could have
five possible fates: 1) if the expression is not sufficient and the
concentration of small RNAs is low, the transferred dsRNA could
be diluted during proliferation and division of the recipient cell;
2) RNAi-mediated signaling can be amplified by the production
of secondary siRNAs; 3) the transferred RNAs can be degraded by
RNAi suppressor proteins; 4) long dsRNAs can activate RNAi
system and induce gene silencing in recipient plant and; 5) the
transferred RNAs can improve the adaptability of recipient plants
to the environment and it can be retained and fixed in the genome
of the recipient plant through horizontal gene transfer (Zhao
et al., 2021).

3.2.3 Challenges Related to the Uptake and Stability of
Topically-Applied dsRNA
The advantages of topically-applied dsRNA and its potential as a
biopesticide commercial product are still hindered by technical
issues, including molecule uptake and stability, delivery methods,
inconsistent activity of the dsRNA trigger, and activity level of
RNAi suppression (Hunter et al., 2021). Hence, one of the first
aspects that should be addressed when thinking about topical
RNAi-based technology is the uptake efficiency of dsRNAs and/
or siRNAs/miRNAs either by the pathogen or plants, depending
on the adopted strategy. In the case of having phytonematodes as
a target for gene silencing, self-delivering dsRNA molecules are
ideally supplied as food nearby the plant root in vivo assay and the
uptake is made by pathogen’s ingestion. Once in the midgut cells
of the nematode, the molecule internalization is mediated by
several transmembrane proteins, known as systemic RNA
interference deficiency (SID), in particular, the proteins SID-1
and SID-2, triggering a systemic gene silencing (Winston et al.,
2002;Wang and Hunter, 2017;Whangbo et al., 2017). For insects,
there are two describedmechanisms of dsRNA uptake: 1) likewise
mediated by SID-like proteins (SIL), and 2) clathrin-mediated
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classical endocytosis. Different studies on the dsRNA uptake by
Apis mellifera (Aronstein et al., 2015), D. virgifera (Miyata et al.,
2014), and L. decemlineata (Cappelle et al., 2016) reported that
either the overexpression or knockdown of SIL genes caused
variations in gene silencing, while in Plutella xylostella (Wang
et al., 2014a), Schistocerca gregaria (Wynant et al., 2014) and
Tribolium castaneum (Tomoyasu et al., 2008), the knockdown of
those genes did not affect uptake efficiency (Xu and Han, 2008;
Bansal and Michel, 2013). Moreover, the molecular process
generally involves the recognition of dsRNAs by scavenger
receptors, which can be influenced by the length of dsRNA
molecules, as demonstrated for species of the order
Coleoptera, where very small dsRNAs were not effectively
internalized (Miller et al., 2012). Although these represent the
most accepted and well-described models for dsRNA uptake in
insects, it is still not known why dsRNA remains within the
endosomes of some species of the order Lepidoptera, which
directly influences the efficiency of RNAi-mediated gene
silencing (Yoon et al., 2017). For other disease-causing agents
of plants, such as phytopathogenic fungi, the knowledge about
dsRNA uptake mechanisms is still limited. However, a recent
study with Sclerotinia sclerotiorum suggested that dsRNA uptake
is mediated via classical clathrin endocytosis, likewise for insects,
but dsRNA recognition receptors remain elusive (Wytinck et al.,
2020).

Ultimately, it is reasonable that dsRNA uptake efficacy may
vary due to numerous factors, including differences in insect
feeding behavior, its availability on feeding sites, lack of gene
silencing amplification signal, and also dsRNA degradation
during ingestion (Niu et al., 2019). Furthermore, even though
in vitro assays involving the oral feeding of pathogen and/or
disease-carrying insect vectors with dsRNAs targeting their
essential genes have been shown to induce consistently high
mortality, reproducing these results on the field conditions by
topical application strategy represents a great challenge.

Another approach to improve plant crop resistance consists in
the foliar application of self-delivering dsRNAs to the plant
surface, aiming at the knockdown of plant genes whose
expression is associated with pathogen susceptibility. Such
strategy is likewise crucial to ensure that topically-applied
dsRNA display both appropriate stability, to hinder dsRNA
premature degradation by environmental factors (e.g.,
rainwater, sunlight/UV radiation, and microorganisms), and a
great capacity to penetrate the natural plant foliar barriers, such
as waxy cuticles, trichomes, and the cell wall (Bennett et al., 2020;
Rank and Koch, 2021). Therefore, due to these significant
challenges, there are still very few studies reporting the success
of this approach. Dubrovina and co-workers (Dubrovina and
Kiselev, 2019) showed that a prior foliar cuticle abrasion through
a high pressure using microparticles may facilitate dsRNA
absorption by plant cells. Likewise, the use of surfactant agents
has been shown to improve dsRNA entrance through the foliar
stomatal aperture (Bennett et al., 2020).

Furthermore, studies have shown that dsRNA molecules are
degraded very rapidly in the environment (Bachman et al., 2020).
Therefore, another point to be addressed is the increase in dsRNA
protection window, which is very short when applied “naked,”

limited to a few days in the environment (Rego-Machado et al.,
2020). In the case of topical RNAi-based products, in which
dsRNAs may be conjugated with nanoformulations to increase
their absorption, and stability, among other parameters, a case-
by-case risk assessment should be required (Mendelsohn et al.,
2020).

3.3 Strategies to Increase On-Target
Specificity, Stability, and Delivery of
Exogenous dsRNA
3.3.1 dsRNA Molecule Design
The accumulated experimental data is helping to increase the
accuracy of prediction models and RNAi design tools, which
allows inferences about the efficiency of the dsRNA in silico. To
obtain the greatest efficiency of the RNAi technology, three
factors must be taken into account: 1) the number of siRNA
generated from a single dsRNA; 2) the specificity of the siRNA to
the target transcript, and 3) chemical alteration in the seed region
of the siRNA guide strand. The enzyme DICER endonuclease
attaches to longer dsRNAs, resulting in the accurate cleavage of
dsRNAs into shorter siRNAs. The presence of the DICER
cleavage site increased effectiveness up to 100-fold compared
to a sequence without the site (Cooper et al., 2021). It has also
been proposed that apart from the cleavage of longer dsRNAs,
DICER endonuclease plays important role in the loading of
cleaved dsRNA into the RISC complex (Lee et al., 2004;
Vergani-Junior et al., 2021). Thus, the presence of DICER
enzyme sites is desirable when selecting target regions for
dsRNA design. Another interesting optimization of dsRNA
molecule aiming at enhancing dsRNA activity for exogenously
applied treatments to plants and insect ingestion was
demonstrated by Hunter and Wintermantel (Hunter et al.,
2021). Authors reported that chemically-modified dsRNAs
incorporating 2′-F pyrimidine nucleotides (32–55%) along
with dsRNA structure, led to considerable improvements in
the RNAi activity across multiple Hemipteran insect plant-
disease vectors which reflected in increased insect mortality by
12–35% greater than non-modified dsRNAs displaying the same
sequence.

Fortunately, the availability of stringent software to design
dsRNAs has largely minimized the occurrence of off-target and
nontarget effects by predicting the degree of sequence homology
between the antisense strand of siRNAs and target transcripts
(Knott et al., 2014; Lück et al., 2019). However, for species lacking
genome/transcriptome sequence annotation on databases, such
bioinformatic-based dsRNA design may require alternative tools
and even more important, supplemental information about the
biology of target organisms and the existing ecological
interactions, in which the dsRNA will be applied (Fletcher
et al., 2020).

3.3.2 dsRNA Association With Nanomaterials
A promising alternative to circumvent all aforementioned
constraints mainly related to dsRNA uptake, delivery, and
stability, boosting the practical use of topical RNAi-based
technologies, is the association with nanobiotechnology. The

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org June 2022 | Volume 10 | Article 91372810

Touzdjian Pinheiro Kohlrausch Távora et al. CRISPR/Cas- and Topical RNAi-Based Technologies in Agriculture

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


nanomaterial can be engineered to synthesize NP that operates as
nanocarriers for the delivery of dsRNAs, providing several
advantages, including protection/stability enhancement of
dsRNA molecules, improvement of foliar/microorganism
surface adherence, and cell internalization, with positive
impacts on the efficacy of RNAi gene silence response
(Ghormade et al., 2011; Adeyinka et al., 2020). There is an
ever-expanding list of NPs that have already been tested as
dsRNA carriers, and they are usually made from lipid
biomolecules or different polymers, which can be natural (e.g.,
agar, starches, alginates, chitosan, and cellulose), synthetics [e.g.
poly(vinyl alcohol)—PVA, poly(ethylene glycol)—PEG, and
poly(lactic-co-glycolic acid)—PLGA] or hybrids (Sikder et al.,
2021). The major challenge in elaborating these NPs lies in the
fact that they need to be quite stable, non-toxic, eco-friendly (e.g.,
biodegradable), and easy to be conjugated with RNAs molecules.
Moreover, there are several relevant characteristics of the NPs to
be taken into account for the efficient delivery of dsRNAs. For
example, in theory, particles larger than 5–20 nm are not capable
of entering the plant cell wall (Schwab et al., 2016). Likewise, NPs
must be designed to carry positive amino groups to allow the
binding with the negatively charged dsRNAs phosphate groups
(Avila et al., 2018). Lastly, the complex NP-dsRNA must be able
to dissociate into the cell cytosol, and the addition of polyanions
molecules or acid solution can confer such ability (Yan et al.,
2021).

Among the dsRNA nanoformulations, lipid-based NP (e.g.,
liposomes and micelles) and chitosan-based dsRNA
formulations are by far the most widely used nanocarriers.
Numerous studies mostly involving insect species (e.g., Aedes
aegypti, Blattella germanica, Chilo suppressalis, D.
melanogaster, Euschistus heros, Ostrinia nubilalis, and
Spodoptera frugiperda), have reported success using these
NPs carrying small RNAs to knockdown different gene
targets, showing as well an enhancement of dsRNA stability
in the presence insect endonuclease enzymes (Wang K. et al.,
2020; Christiaens et al., 2020; Gurusamy et al., 2020; Cooper
et al., 2021). However, although the high efficiency of lipid-
based vesicles in the control of plant pathogens/pests, its
practical usage is majorly halted by the high cost and
dependence of adjuvants (e.g., surfactant, emulsifier, and
stabilizer) used on the generation process (Bauer et al.,
2006; Azarnezhad et al., 2020). Nevertheless, several other
innovative NPs have been created, expanding dsRNA delivery
strategies. Mitter et al. (Mitter et al., 2017) complexed dsRNA
with LDH nanosheets, termed Bioclay, which allowed to
expand the window of protection from viral pathogens from
5 to 7 days to more than 20 days. Another formulation
complexing NP-dsRNA-adjuvants was able to penetrate
through the aphid body wall into the haemocoel and spread
into various tissues, resulting in significant knockdown of
target gene expression and insect mortality (Zheng et al.,
2019). Even in recalcitrant insects such Lepidoptera, dsRNA
complexed with a synthetic cationic polymer, poly-[N-(3-
guanidinopropyl)-methacrylamide], was effectively taken up
by S. frugiperda, resulting in significant knockdown and larvae
mortality (Parsons et al., 2018).

Furthermore, complexing dsRNA molecules to NP hold also
the potential to address another big challenge related to the cost of
dsRNA synthesis. The production of quantity and quality dsRNA
for spray applications is still considered expensive, although the
cost (per Gram) to synthesize dsRNA has been considerably
reduced, dropping from U$ 12.500 in 2008 to U$ 0.5 in 2021
(Zotti et al., 2018; Rank and Koch, 2021). A low-cost dsRNA
production is imperative due to the necessity of applying
approximately 2–10 g of dsRNA per hectare (Zotti et al., 2018).

Taken together, technological advances in dsRNA
nanoformulations hold the capacity to overcome inherent
bottlenecks of topical RNAi-based technique, providing the
desirable molecule protection, higher efficiency of dsRNA
uptake, and delivery, beyond reducing potential collateral
environmental risks. All crucial features for the full
establishment of these next-generation crop protection solutions.

4 PUBLIC ACCEPTANCE AND
REGULATORY ASPECTS OF CRISPR/CAS
AND TOPICAL RNAI-BASED
TECHNOLOGIES

The fact that only a handful of these bioproducts and varieties
have been approved for commercial release worldwide is
probably not only related to the everlasting regulatory hurdles,
but also unsettled consumer perception and acceptance (Mat
Jalaluddin et al., 2019). According to Taning et al. (Taning et al.,
2021b), for society to accept biotechnology products, diverse key
tasks should be addressed.

In terms of reporting biotechnology advancements, regular
communication among researchers, farmers, and other relevant
players in the food production chain are crucial to reassure
stakeholders, assist regulatory compliance, and also to support
the general public (e.g., consumers) perception. Moreover, the
public acceptance of CRISPR/Cas- and RNAi-based bioproducts
(e.g., plant crop resistant varieties, biopesticides), mostly relies on
a proper and unbiased broadcast addressing technical issues (e.g.,
gene editing/silencing driving mechanisms), as well as all
potential negative and positive (risk-benefits) related impacts.
In this process, scientists may play key roles in finding
instruments for a straight dialogue with civil society
organizations, and supporting educational initiatives (Taning
et al., 2021b; Rank and Koch, 2021).

Ethical and moral issues should also be properly addressed
early on in the development process of CRISPR/Cas- and RNAi-
based technological solutions, since these concepts exert a strong
appeal to the target audience (Frewer et al., 2013; Gupta et al.,
2015). According to Beghin and Gustafson (Beghin and
Gustafson, 2021), most consumers are willing to consume and
pay for foods derived from more sustainable plant engineering
techniques, especially if they embody useful traits for the
environment, animal, and human health. Additional studies
have suggested that the use of topical applied RNAi-based
products for plant crop disease management may increase
public acceptance since this new technology does not involve a
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stable expression of transgenic genetic elements by treated
organisms (Shew et al., 2017). Similar public behavior was
observed for the food consumption of non-transgenic
CRISPR/Cas bioproducts already launched (Shew et al., 2018).
In these two last-mentioned studies, the authors aimed to test the
market viability of RNAi- and CRISPR-based bioproducts,
respectively. For this purpose, consumers from different
countries, including the United States, Canada, Australia,
France, and Belgium, were surveyed for their preference for
consuming three bioproducts: a hypothetical GMO rice variety
developed by using Bacillus thuringiensis (Bt) transgene
technology, a hypothetical non-GMO rice variety generated by
SIGS approach (i.e., topical RNAi-based technology), and a
CRISPR-based crop. The results showed that applicants from
all countries were far more inclined to consume non-GMO rice.
In addition, authors reported that on average, half of the
participants would consume both GMO and CRISPR food.
Further studies and more exhaustive field surveys are very
welcomed to endorse public acceptance and perception of
these new agricultural technologies. Ultimately, to assure a
sustainable production of high-quality food, the entire
production chain must be ruled with parsimony and balance
between environmental, economic, and social claims, as well as be
assisted ideally by strong public policies that safeguard
consumers’ health and their concerns (Montenegro, 2016;
Hamburger, 2018).

Concerning the regulatory aspects of CRISPR edited plants,
even though the discussion is still ongoing worldwide, several
countries already have specific regulatory policies for evaluating
these products. Technologies generated through gene editing can
be classified as SDN1, SDN2, and SDN3 (SDN, site-directed
nucleases) following the terminology proposed by Podevin
et al. (Podevin et al., 2013). Regarding the SDN1 strategy, the
non-homologous end joining (NHEJ) cell repair pathway is
explored mainly to induce gene knockout. In the case of
SDN2, the homology-directed repair (HDR) pathway is used
to introduce mutations resulting in the alteration of one or few
base pairs, for example, to make an allelic substitution. In the
SDN3, although it explores the same repair pathway as in SDN2,
the inserted sequence is longer and could be a promoter, coding,
or terminator region, from a sexually compatible species or not
(Podevin et al., 2013). Therefore, depending on the strategy
employed, it could or not generate a final product ruled as
GMO, even though in many cases it does not involve the
introduction of exogenous DNA sequences.

The worldwide scenario of regulatory policies for the
evaluation of CRISPR edited plants is changing rapidly and
continues to evolve as more countries launch their own
regulatory policies, an expanding list which includes so far
Argentina, Brazil, Chile, Colombia, United States, Paraguay,
Japan, Australia and, more recently, the United Kingdom
(Entine et al., 2021). The main focus of the deliberations is
still on the question of “be or not to be” a GMO and, although
the criteria adopted by each of these countries are quite different,
in most situations the risk assessment is evaluated case-by-case.
Such tailored-made assessment takes into account specific
parameters, including the CRISPR-toolbox strategy employed

for genome editing, the resulting combination of the genetic
material, whether the mutation could be generated by
conventional breeding or mutagenesis, and the absence of
recombinant DNA in the final product (Molinari et al., 2021).

Briefly, according to the aforementioned legislation, mutations
produced by SDN1 systems generate products not qualified as
GMOs, and for this reason, they are not evaluated under the same
criteria applied for conventional genetically modified products
(Jenkins et al., 2021; Molinari et al., 2021). Technological
solutions originating from SDN2 may or may not be ruled as
GMO under the legislation of most countries in the Americas,
with the analysis made on a case-by-case basis. In addition, the
major parameter to classify SDN2-based products as GMOs is the
presence of exogenous DNA in the final product. In the case of
SDN3 systems, due to the complexity of the genetic elements
introduced in the recipient genome, its derived products are
frequently qualified as GMOs, although being assessed case-
by-case, as well as considering the origin of the DNA used
(Molinari et al., 2021).

A different position was adopted by some countries of the
European Union and New Zealand. So far, they decide that plants
obtained through gene editing will follow the same criteria applied
to GMOs, regardless of the genome editing strategy employed
(Jenkins et al., 2021). The People’s Republic of China, despite its
outstanding role in the world trade of commodities, has not yet
launched regulatory policies for the evaluation of edited plants.
These singularities in terms of legislation between countries seem
to be linked with different economic aspects, social practices and
behaviors, and also political backgrounds. Nevertheless, non-
compatible regulatory processes are problematic for
international trades, especially in the case of agricultural
commodities (Entine et al., 2021). The scientific community, in
general, has argued and supported a global level alignment of
regulatory policies, which should preserve and strengthen general
biosafety requirements, while converging towards the exclusion of
some edited bioproducts from the scope of GMOs, depending on
the genome editing strategy used. The main point is that whether
the obstacles imposed for risk assessment of the edited products
were larger than the risks, it surely will discourage innovation, due
to increments of costs and time for the technology commercial
release. Moreover, in countries where legislation considers that
certain products of gene editing may be excluded from GMOs’
scope, there has been a remarkable growth in the number of
startups and small and medium-sized biotechnology companies
(Entine et al., 2021). Ultimately, it would benefit farmers and final
consumers with a wide range of technologies generating superior
agronomic traits and better nutritional quality agricultural
products.

On the other hand, for the use of topical RNAi-based products
in agriculture, worldwide regulatory aspects are still in infancy. In
many countries, genetic engineering approaches based on this
new technology do not fall within the legislation scope applied to
GMOs, nor in the legislation applied to conventional chemical
and biological pesticides. Due to its potential advantages,
manifold studies on plant protection have been carried out
aiming at the development of topically-applied RNAi-based
bioproducts.
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In 2019, the scientific, industrial and governmental
communities gathered at the conference of the Organization
for Economic Cooperation and Development (OECD, Paris,
France), to discuss various aspects of the technology, and
guidelines for risk assessment on human, animal, and
environmental health were settled (Mendelsohn et al., 2020).
One of the most prominent considerations that emerged from
this conference was the strong recommendation to carefully
analyze the potential off-targets in the risk assessment of these
technologies. The availability of in silico tools and the growing
genomic data annotation for several species have enabled
researchers to identify efficient and specific small RNA
molecules, including dsRNAs, reducing the risks of off-targets.
This is a clear advantage of that technology over the routinely
applied chemical pesticides with a broad spectrum of action,
hence, affecting also non-target species (Taning et al., 2020).
Moreover, it is recommended that risk analysis likewise look over
the lifecycle of RNAi-based products in varied environmental
conditions, which in many situations may require reapplication
(Mendelsohn et al., 2020).

Pre-existing regulatory frameworks for chemical pesticides
and bio-inputs risk assessment in different countries could be
used as a basis for evaluating products from RNAi, as long as the
specificities of this technology are respected. It is worth noting
that if the design and development of these products are
performed carefully and rigorously, these technologies might
revolutionize with an effective and safe basis to manage pests,
weeds, and pathogens effectively.

5 CASE STUDIES AND PROSPECTS ON
THE HORIZON

To date, no topical RNAi-based herbicide/pesticide has been used
commercially. However, numerous patents involving topical
RNAi for use in agriculture have been applied (Mat Jalaluddin
et al., 2019), showing the importance of a worldwide definition of
the regulation of these technologies.

Actually, there are commercially approved RNAi-based
transgenic crops, like the RNAi insecticidal maize, the soybean
with improved fatty acid profile, the non-browning Arcticp apple,
and the low lignin alfalfa (Mat Jalaluddin et al., 2019). However,
the whole process of the development and the commercial
approval of genetic engineering plants is slow, costly, and for
various species very difficult to achieve. Besides, transgenic plants
face various regulatory barriers since the first genetically
engineered plant was approved in 1994 (Smyth, 2020). It is
expected to achieve endogenous plant gene silence using
dsRNA at a low cost when compared to GMOs development
(Das and Sherif, 2020). In addition, RNAi-based technology with
topically applied dsRNA presents low toxicity, and it is species-
specific and designed to minimize off-target impacts. Only closely
related species to the target presents more risk to be susceptible
due to genetic similarity, whereas risks to human health and the
environment are very unlikely (Fletcher et al., 2020).

Advances in exploring the use of RNAi technology for crop
protection are enabling research results to be transformed into

products that are reaching the market. After the commercial
release of the first plant expressing dsRNA for pest control
(Smart-Stax PRO “MON87411”), Rodrigues et al. (Rodrigues
et al., 2021) announced the application for registration of the
first sprayable biopesticide based on dsRNA (Ledpronap)
intended for the control of the Colorado potato beetle (L.
decemlineata). The RNAi-based biopesticide is in the process
of being registered by the United States Environmental Protection
Agency, and in vivo tests showed that the Ledprona has an
efficiency similar to the Spinosadp insecticide. In Brazil, the
Evolluta Agro Biotecnologia Ltda. intends to launch the
product “EVO-201A,” based on the dsRNAs topical
application to control S. frugiperda and Helicoverpa armigera.
The product has already been classified by the Comissão Técnica
Nacional de Biossegurança (CTNBio) as a non-GMO (CTNBio,
2020). As it is a product under development, no data were
revealed regarding the method of dsRNA delivery or the
efficiency in control, but it represents a great advance for the
development of products based on the dsRNA topical application
in agriculture. These events have reinforced the discussion about
the environmental safety of the technology for this application.

On the other hand, a large number of plants with an edited
genome by CRISPR/Cas are released for cultivation all around the
world, in particular United States and Canada. Nowadays, 37
genetically edited organisms using CRISPR/Cas technology have
been cleared (i.e., designated as non-regulated product) by the
U.S. Department of Agriculture’s Animal and Plant Health
Inspection Service (USDA APHIS), being the vast majority
composed of plants (USDA APHIS, 2022). In 2016, The Paris
mushroom (Agaricus bisporus) was the first organism edited
using the technology CRISPR/Cas to be designated by the
USDA as non-regulated. This product, which normally
displayed the darkening of tissues, after the knockout of the
polyphenol oxidase (PPO) gene, showed a reduction in the
darkening of tissues by 30% and an increase in its shelf life of
mushroom (Waltz, 2016). Days after the edited mushroom being
cleared by the USDA, the “waxy corn” cultivar, with starch
composed entirely of amylopectin, received the same
designation as non-regulated product by USDA (Gao et al.,
2019; USDA APHIS, 2022). Waxy corn is extremely important
for the food, paper, and adhesives industry in the United States,
where 2.1 million tons/year are produced in an area of 202.3
thousand hectares (Gao et al., 2019). These and other edited
plants and products have been released to commercialization
after being exempt of regulation, such as a soybean with high oil
and protein content; corn edited to increase drought tolerance
and yield stability; plants edited for fungal, bacteria, and
herbicides resistance as well as a plant with adapted
architectures to different cropping systems (Turnbull et al.,
2021; USDA APHIS, 2022). It was in Japan that, for the first
time, a product with a genome edited by CRISPR/Cas was
released for direct consumption—the tomato variety “Sicilian
Rouge High GABA.” This variety has been available in Japanese
supermarkets since September 2021 (Newscientist, 2021).
Tomato plants naturally contain high levels of gamma-
aminobutyric acid (GABA), a beneficial amino acid used for
the treatment and prevention of chronic disease that affects the
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population. The knockout of an auto-inhibitory domain that
regulates enzymatic glutamate decarboxylase (GAD) using
CRISPR-Cas technology, specifically the knockout of SlGAD2
and SlGAD3 genes, resulting in the occurrence of plants with a 5-
to 7-fold greater capacity to produce GABA (Nonaka et al., 2017).
The “Sicilian Rouge High GABA” tomato variety is one of the few
products already available for consumption and represents an
easy and realistic way for consumers to improve their daily diet.

In Brazil, the first plant edited by CRISPR/Cas released for
cultivation was the waxy corn from Corteva in 2018.
Furthermore, Brazilian researchers developed (through DNA-
transgene free CRISPR genome editing) the first non-GMO
sugarcane in the world to be considered as non-GMO on 10th
December 2021, according to the CTNBio—Normative Resolution
16 (RN 16) (CTNBio, 2018). The sugarcane varieties (Flex and Flex
II) offer higher cell wall digestibility and higher sucrose content in
plant tissues, respectively.More recently, the soybean editedwith low
raffinose was also considered as non-GMO by CTNBio on 9th
March 2022. Also in South America, a non-GMO potato with
reduced enzymatic browning was obtained by the knock-out of a
tuber specific polyphenol oxidase (González et al., 2021) (Res. NO-
2020-65450768-APN-SABYDR#MAGYP). This variety is under
field trials for cultivar registration as a conventional breeding
product in Argentina.

Finally, the long-lasting coupling between scientific research
and biotechnology has been leading to unprecedented
improvements in agricultural products, represented in this
review mainly by plant crops, commodities responsible for
feeding the globe. CRISPR/Cas- and RNAi-based technologies
have revolutionized science and biotechnology due to their high
precision, versatility, and relative ease of use, with factual
agricultural bioproducts already on the market shelves. Beyond
gains in productivity and profitability, these new cultivars
(adapted to a broader range of adverse conditions, resistant to
diseases and herbicides), eco-friendly bio-pesticides, and all
derivative biotechnological solutions hold great potential to
solve critical agriculture and environmental issues worldwide,
likewise ensuring a sustainable global food supply. However, as
reasoned throughout the manuscript, there are still crucial
challenges (e.g., delivery, uptake, and stability of the

components) and relevant safety issues (e.g., off-/non-target
effects and toxicity) to be addressed for a full bench-to-field
biotechnological transition. Fortunately, the remarkable fast-
paced expansion of both technologies generates an ambience
of permanent improvement, which positively impacts the
developmental progress of these next-generation crop
protection bioproducts. Furthermore, manifold research
groups highlight the key role of nanotechnology in the
creation of transformational tools suitable to overcome most
of the above-mentioned challenges, faced by CRISPR- and
topical RNAi-based solutions. Although fine-tune adjustments
are still required to overcome inherent technical bottlenecks, it
seems that the greatest challenge to be faced towards the full usage
of those technologies in modern agriculture is linked with social
and political matters (Sprink et al., 2016). Nevertheless, the
scientific community, through its inherent transparency and
commitment, play key role in the desired convergence of
global regulatory landscapes, also in supporting public
perception and trust, translating into positive impacts in
regulatory policy approvals related to agricultural bioproducts
(Maximiano et al., 2021).
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