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To generate and evaluate post-therapeutic optical coherence tomography

(OCT) images based on pre-therapeutic images with generative adversarial

network (GAN) to predict the short-term response of patients with retinal vein

occlusion (RVO) to anti-vascular endothelial growth factor (anti-VEGF) therapy.

Real-world imaging data were retrospectively collected from 1 May 2017, to

1 June 2021. A total of 515 pairs of pre-and post-therapeutic OCT images of

patients with RVO were included in the training set, while 68 pre-and post-

therapeutic OCT images were included in the validation set. A pix2pixHD

method was adopted to predict post-therapeutic OCT images in RVO

patients after anti-VEGF therapy. The quality and similarity of synthetic OCT

images were evaluated by screening and evaluation experiments. We

quantitatively and qualitatively assessed the prognostic accuracy of the

synthetic post-therapeutic OCT images. The post-therapeutic OCT images

generated by the pix2pixHD algorithmwere comparable to the actual images in

edema resorption response. Retinal specialists found most synthetic images

(62/68) difficult to differentiate from the real ones. The mean absolute error

(MAE) of the central macular thickness (CMT) between the synthetic and real

OCT images was 26.33 ± 15.81 μm. There was no statistical difference in CMT

between the synthetic and the real images. In this retrospective study, the

application of the pix2pixHD algorithm objectively predicted the short-term

response of each patient to anti-VEGF therapy based on OCT images with high

accuracy, suggestive of its clinical value, especially for screening patients with

relatively poor prognosis and potentially guiding clinical treatment. Importantly,

our artificial intelligence-based prediction approach’s non-invasiveness,

repeatability, and cost-effectiveness can improve compliance and follow-up

management of this patient population.
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Introduction

Retinal vein occlusion (RVO) represents the second most

common cause of vision loss worldwide due to retinal

vasculopathy, predominantly affecting the middle-aged and

elderly (Wong and Scott, 2010; Ip and Hendrick, 2018; Fang

et al., 2021; Blair and Czyz, 2022). Macular edema is the most

common cause of RVO-related vision loss, characterized by fluid

accumulation within the central retina and macular thickening

caused by blood-retinal barrier dysfunction (Khayat et al., 2018;

Korobelnik et al., 2021). Except for a minority of patients with

non-ischemic RVO, most cases present with RVO-related

macular edema, leading to irreversible visual loss, poor quality

of life and substantial socioeconomic burden if proper and timely

treatment is not provided (Loukianou et al., 2016; Lee et al.,

2021a; Korobelnik et al., 2021).

The primary goal of treating RVO-related macular edema is

to reduce the fovea’s central macular thickness (CMT) and

maintain the central visual acuity, which involves reducing the

accumulation of the inner retinal fluid (Sangroongruangsri et al.,

2018; Lee et al., 2021a). In recent years, the treatment of macular

edema has become a research hotspot in the field of ocular fundus

diseases, and various new treatment methods have been

implemented (Chen et al., 2022). The first-line treatment for

RVO-related macular edema consists of intravitreal injections of

anti-Vascular Endothelial Growth Factor (anti-VEGF) (Fogli

et al., 2018; Korobelnik et al., 2021). In most cases, anti-VEGF

therapy can reduce fluid accumulation and improve visual acuity

(Korobelnik et al., 2021; Wallsh and Gallemore, 2021). However,

not all patients respond well to anti-VEGF therapy (Korobelnik

et al., 2021). Given the differences in drug regimen and patient

characteristics across treatment groups, it is difficult to predict

individual treatment responses before patients receive anti-

VEGF therapy, even for experienced retinal specialists

(Gallardo et al., 2021; Park et al., 2021). Optical coherence

tomography (OCT) is widely acknowledged as a high-

resolution imaging modality for quantifying retinal thickening

and fluid accumulation in patients with RVO and assessing the

severity of macular edema. Accordingly, OCT is the primary tool

for the examination and follow-up of RVO-related macular

edema cases (Kashani et al., 2017; Song et al., 2021).

Among non-surgery-related blindness-causing retinopathies,

RVO ranks second in incidence after diabetic retinopathy (DR)

and second to diabetic macular edema as the cause of inner retinal

fluid accumulation (Xu et al., 2021a; Hayreh, 2021). The broad

application of fundus fluorescein angiography (FFA) and OCT in

RVO-related macular edema has significantly improved our

understanding of its pathogenesis and provides an opportunity to

collect large-scale real-world imaging data (Sandmeyer et al., 2022).

Meanwhile, the application of artificial intelligence (AI) in the

medical field has become increasingly popular in recent years

(Caixinha and Nunes, 2017). The past decade has witnessed

several inroads achieved with AI being harnessed for learning

and mining fundus image data, assisting doctors in screening,

diagnosing, and treating various retinopathies (Xu et al., 2021b;

Ting et al., 2021). Generative adversarial network (GAN), first

proposed by Ian Goodfellow in 2014, is an AI-based “image-to-

image” algorithm that can synthesize new images based on existing

ones (Goodfellow et al., 2016; Xu et al., 2021a). The core principle of

GANs is to generate fake data that closely resembles real data

(Kazeminia et al., 2020). In recent years, the GAN-based algorithm

has yielded satisfactory performance when used to predict the effect

of anti-VEGF therapy or laser photocoagulation for neovascular age-

related macular degeneration (nAMD) and central serous

chorioretinopathy (CSC) (Liu et al., 2020a; Xu et al., 2021a).

Given the high incidence of RVO-related macular edema, the

difficulty in predicting the therapeutic effect, the burden of anti-

VEGF therapy, and the frequency of follow-ups, it is essential to

develop a novel approach for individualized prediction of the

therapeutic effect (Wecker et al., 2017). Accordingly, this study

aimed to generate and evaluate individualized post-therapeutic OCT

images that could predict the short-term response of anti-VEGF

therapy for RVO-related macular edema based on pre-therapeutic

images using a GAN-based algorithm.

Materials and methods

Clinical data and imaging examinations

To predict the short-term response to anti-VEGF therapy and

generate individualized post-therapeutic OCT images based on pre-

therapeutic images using a GAN-based model, we retrospectively

reviewed the records of patients with RVO-related macular edema

who underwent intravitreal injection of anti-VEGF drugs at the

Department of Ophthalmology, QiluHospital, ShandongUniversity

from 1May 2017, to 1 June 2021. The inclusion criteria consisted: 1)

patients aged≥ 18 years; 2) patients with a pre-operative diagnosis of

RVO based on fundus photography and fundus fluorescein

angiography (FFA) and further examination based on OCT; and

3) patients treated with an injection of anti-VEGF including

conbercept or ranibizumab, at any phase in the treatment

protocol of three consecutive monthly injections and pro re nata

(PRN) injections. The exclusion criteria were: 1) presence of any

other retinal and/or choroidal diseases, including diabetic

retinopathy (DR), age-related macular degeneration (AMD), and

polypoidal choroidal vasculopathy (PCV), which may affect the

study; 2) history of surgery, or intraocular injections of medications
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other than anti-VEGF agents; 3) history of other ocular disorders,

including glaucoma, pathological myopia; and 4) low image quality

caused by media opacities, or an abnormal signal strength index on

the OCT images. The follow-up visit was scheduled at 1 month after

the intraocular injection. However, it was difficult for the

ophthalmologist to perform the follow-up on fixed dates due to

the different work schedules of RVO patients. Accordingly, we

determined a time range for the follow-up to ensure data

accuracy: 1 month ± 7 days after anti-VEGF therapy. All OCT

images enrolled were stripped of personally identifiable

information. The need for written informed consent was waived

by our ethics committee due to the retrospective nature of the study,

and all data used were fully anonymized. Moreover, this study was

conducted based on the ethical principles of the Declaration of

Helsinki and approved by the institutional review board of Qilu

Hospital [Ethical Code: 2021 (068)].

Data collection

Pre-and post-therapeutic B-scan swept-source OCT (Zeiss,

Germany) images were obtained in a 21-line 9 mm macula

pattern using the follow-up mode, which enabled the paired

pre-therapeutic and post-therapeutic images to be scanned at the

same location. OCT images were section-matched based on the

retinal microstructure, including the position of the fovea and

retinal vessels. OCT images of different layers obtained from the

same patient with macular edema were included in the study to

ensure optimal use of the image resources of patients with RVO

(Supplementary Figure S1). To prepare OCT image pairs for

GAN model training, every pre-therapeutic OCT image was

paired with the corresponding post-therapeutic OCT image of

the same patient. For convenience of model training, image pre-

processing was conducted to resize the images. OCT images with

an original resolution of 1,264 × 596 pixels were cropped to

obtain images of 760 × 490 pixels and further resized into 512 ×

512 pixels, the unified format for input during model training.

To ensure that the data of the training set and validation

set were not duplicated, we divided the training set and

validation set by date. The total number of B-scan OCT

image pairs was 583; 515 pairs collected from May 2017 to

October 2020 were attributed to the training set for model

training, and the remaining 68 OCT image pairs from October

2020 to June 2021 were used as the validation set for model

evaluation.

Image synthesis

The generative adversarial network (GAN)-based algorithms

were successfully applied in the model training process to establish

a deep learningmodel capable of generating post-therapeutic OCT

images based on pre-therapeutic ones (Li et al., 2020; Tschuchnig

et al., 2020). As one of the most widely used algorithmic paradigms

in deep learning, GAN-based algorithms involve an iterative

training process to generate almost realistic data. It has been

established that the overall framework of GAN mainly includes

two deep neural networks as players: a generator network and a

discriminator network.While the generator net is designed to learn

mapping from pre-therapeutic images to post-therapeutic ones,

the discriminator net distinguishes between real post-therapeutic

images and generated post-therapeutic ones. These two networks

are trained simultaneously in an adversarial learning process: the

generator net iteratively updates itself to generate near-realistic

images that are difficult to distinguish by the discriminator net,

while the discriminator net constantly updates itself to ensure that

near-realistic images can be distinguished from the real ones. After

this game-playing process is terminated, an equilibrium is

achieved, and the final generator net is expected to generate

OCT images almost close to real post-therapeutic ones. During

the training process in our study, Adam was used as the optimizer

and the momentum term of Adamwas set to 0.5. The learning rate

was set to 0.0002, the number of iterations to 150, and the number

of iterations to linearly decay the learning rate to zero to 150.

During model training, we implemented pix2pixHD using Python

and Pytorch on Ubuntu 16.04 LTS with GeForce GTX 2080 Ti.

The training process of pix2pixHD is shown in Figure 1. The

overall training process is displayed in Figure 2.

During model training, the parameter settings were set as

follows. For the deep neural network optimizer, we used Adam

(Adaptive Moment Estimation, a widely accepted improvement

of SGD (Stochastic Gradient Descent) for deep neural network

optimizing) as the optimizer for parameter updating.

Furthermore, we used the decay learning rate setting, in

which the number of iterations for the linear decay of the

learning rate to zero was set to 150, the forgetting factor

stochastic gradients to 0.5, and the second moment of the

stochastic gradient to 0.999.

Evaluation of post-therapeutic optical
coherence tomography predictionmodels

To evaluate the performance of the pix2pixHD model, the

quality and similarity of synthetic OCT images were evaluated

by a screening experiment independently. The screening

experiment evaluated the similarity of synthetic post-

therapeutic OCT images of patients with RVO. All

synthetic images and corresponding real OCT images were

presented to two retinal ophthalmologists (Fabao Xu and

Xuechen Yu), who independently answered two questions:

1) Is the synthetic image suitable for clinical interpretation;

and 2) Can you identify the synthetic image? Only synthetic

images of sufficient quality that were difficult to distinguish

from the original ones were further analyzed in the evaluation

experiment.
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To quantitatively evaluate the model performance, we

applied two evaluation indicators. First, we measured the

CMT of both synthetic OCT images and the real ones. Then

we used the mean absolute error (MAE) as the evaluation metric.

The MAE is calculated as the average value of the absolute error

of the prediction results, directly reflecting the deviation of the

predicted values from the actual values. The formula for theMAE

is as follows:

FIGURE 1
The training process of pix2pixHD. Illustration of the pix2pixHD-based solution used in this study for predicting post-therapeutic OCT images
from pre-therapeutic OCT images. OCT, optical coherence tomography.

FIGURE 2
Illustration of generating post-therapeutic OCT from pre-therapeutic OCT by the GAN-based algorithm. OCT, optical coherence tomography;
GAN, generative adversarial networks; RVO, retinal vein occlusion.
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The evaluation processes are shown in Figure 3.

Results

Demographic data of training and
validation data

515 pairs of OCT images from 64 patients were assigned to

the training set, and 68 pairs of OCT images from 18 patients to

the validation set. 51.56% of eyes in the training group from

female patients with a mean age of 53.86 (±13.78) years. In

contrast, in the validation set, 55.56% were eyes from female

patients with a mean age of 54.16 (±12.54) years. More baseline

clinical and demographic data are shown in Table 1. There were

no significant differences in age, gender, VA, classification of

RVO, Anti-VEGF agent, and injection phase between the

training and validation sets. 68 synthetic post-therapeutic

images were generated based on pre-therapeutic OCT images

of patients with RVO in the validation set.

Screening experiment of synthetic images

A total of 68 synthetic OCT images were generated based on

pre-therapeutic OCT images by GAN models. The post-

FIGURE 3
Workflow of evaluating themodel performance. OCT, optical coherence tomography; RVO, retinal vein occlusion; GAN, generative adversarial
networks; CMT, central macular edema.
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therapeutic OCT images predicted by the pix2pixHDmodel were

compared with the ground truth data. During the screening

experiment, 3 pairs of synthetic images considered inadequate by

ophthalmologist 1 (Fabao Xu) were found adequate by

ophthalmologist 2 (Xuechen Yu). Finally, the third specialist

(Ying Zhang) was consulted, and one pair was considered

inadequate and excluded from the subsequent experiments. In

the following experiment designed to distinguish the synthetic

OCT images from the real images (ground truth),

ophthalmologist 1 accurately identified 5 pairs of synthetic

images, while ophthalmologist 2 accurately identified 3 pairs

(overlapped with the image identified by ophthalmologist 1) of

synthetic OCT images. Most synthetic images (63/68) were

challenging to identify by retinal ophthalmologists. Synthetic

images that could not be identified were further analyzed in the

following evaluation experiment. Examples of inadequate and

easily distinguishable synthetic images deleted in the screening

experiment are shown in Supplementary Figure S1.

Evaluation experiment of adequate
synthetic images

During the evaluation experiment, two retinal specialists

(Ying Zhang and Jiawei Wang) measured the CMT of all

synthetic post-therapeutic OCT images independently. The

mean values of the two measurements were calculated for

further analysis. The evaluation experiment included

63 synthetic images from the pix2pixHD algorithm, with

an MAE of 26.33 ± 15.81 μm. Illustrations of the synthetic

post-therapeutic OCT images with different types of macular

edema are shown in Figure 4. In the subgroup analysis of

different classifications of RVO-related macular edema, the

MAEs of post-therapeutic OCT images from patients with

CRVO and BRVO were 28.55 ± 17.32 and 24.21 ± 14.82 μm.

Further subgroup analysis based on anti-VEGF agents

showed the MAEs of post-therapeutic OCT images from

patients treated with Ranibizumab and Conbercep were

25.91 ± 18.22 and 26.33 ± 13.94 μm. In addition, during

the subgroup analysis of the injection phase, the MAEs of

post-therapeutic OCT images from patients in the loading

and PRN phases were 21.76 ± 12.35 μm and 28.56 ±

18.93 μm. Finally, the MAEs of post-therapeutic OCT

images from patients with and without laser

photocoagulation were 33.30 ± 21.02 and 24.80 ±

13.12 μm. Details of MAEs between synthetic OCT images

and ground truth data are shown in Table 2.

Discussion

Herein, we presented and evaluated the ability of a GAN-

based algorithm to generate synthetic post-therapeutic OCT

images to predict the structural prognosis after anti-VEGF

therapy for RVO-related macular edema. Our results

demonstrated that 91.18% of the synthetic OCT images

TABLE 1 Patient demographics.

Training set Validation set p value

Patients (Female) 64 (33) 18 (10) N/A

Eyes 64 18 N/A

Ages 53.86 ± 13.78 54.16 ± 12.54 0.917

Paired OCT images 515 68 N/A

VA baseline 0.723 ± 0.215 0.718 ± 0.208 0.821

VA 1-month 0.476 ± 0.325 0.481 ± 0.331 0.863

Classification of RVO 0.989

CRVO 25 (39.06%) 7 (38.89%) N/A

BRVO 39 (60.94%) 11 (61.11%) N/A

Anti-VEGF agent (%) 0.771

Ranibizumab 38 (59.38%) 10 (55.56%) N/A

Conbercept 26 (40.62%) 8 (44.44%) N/A

Injection phase 0.542

Loading phase 44 (68.75%) 11 (61.11%) N/A

PRN phase 20 (31.25%) 7 (38.89%) N/A

Combined with laser photocoagulation 0.645

With laser photocoagulation 5 (7.81%) 2 (11.11%) N/A

Without laser photocoagulation 59 (92.19%) 16 (88.89%) N/A

VA, visual acuity, values are presented as the means ± standard deviations at baseline in different groups [in logarithm of minimum angle of resolution (logMAR) units].
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were of sufficient quality for clinical interpretation, with an

MAE of 26.33 ± 15.81 μm in predicting the CMT. Subgroup

analysis substantiated that the anti-VEGF agents

(Ranibizumab or Conbercept) had little influence on model

performance. The prediction efficiency of OCT images in

BRVO-related macular edema was comparable to the real

FIGURE 4
Illustration of the synthetic OCT images with different types of macular edema. The images in the right column are synthetic post-therapeutic
images generated by pix2pixHD. The images in the middle column are the real images.

TABLE 2 Accuracy of the synthetic post-therapeutic OCT images of RVO in the evaluating experiment.

Baseline 1-month prediction

CMT (μm) Real images Synthetic images Real images MAE

Validation data 389.30 ± 243.45 310.76 ± 198.23 297.34 ± 178.66 26.33 ± 15.81

Classification of RVO

CRVO 410.34 ± 256.27 321.22 ± 208.72 309.56 ± 188.61 28.55 ± 17.32

BRVO 367.69 ± 232.76 303.24 ± 187.31 279.54 ± 176.18 24.21 ± 14.82

Anti-VEGF agent (%)

Ranibizumab 390.15 ± 246.75 307.77 ± 201.15 302.65 ± 183.68 25.91 ± 18.22

Conbercept 386.22 ± 241.27 312.87 ± 195.29 297.34 ± 174.87 26.33 ± 13.94

Injection phase

Loading phase 371.38 ± 228.31 297.55 ± 186.41 281.26 ± 169.08 21.76 ± 12.35

PRN phase 405.21 ± 252.64 323.82 ± 203.47 310.02 ± 186.83 28.56 ± 18.93

Combined with laser photocoagulation

With laser photocoagulation 425.46 ± 272.28 320.52 ± 221.09 320.13 ± 190.22 33.30 ± 21.02

Without laser photocoagulation 384.21 ± 242.30 308.21 ± 191.65 280.37 ± 171.21 24.80 ± 13.12

CMT, central macular thickness; PRN, pro re nata; MAE, mean absolute error, values are presented as the means ± standard deviations.
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ones, unlike CRVO-related macular edema. In addition, the

predictions in the PRN phase were better than in the loading

phase.

Macular edema is the leading cause of vision loss in RVO

patients (Wong and Scott, 2010; Fogli et al., 2018; Korobelnik

et al., 2021). At present, intravitreal injection of anti-VECF is

established as the first-line therapy to promote structural and

functional recovery of patients with RVO (Campa et al.,

2016; Paciullo et al., 2021). During clinical practice, loss to

follow-up is common, given the high costs of anti-VEGF

therapy, the need for repeated treatment and the uncertainty

of prognosis. In a cohort study carried out for 7 years,

researchers found that patients with CRVO required an

average of 10.70 ± 4.76 doses of anti-VEGF therapy, while

patients with BRVO required 9.80 ± 5.39 doses of anti-VEGF

therapy (Arrigo et al., 2021). Moreover, a study by Yang et al.

showed that 41.2% of patients with RVO who discontinued

follow-up for more than 6 months developed complications

associated with retinal neovascularization, while all patients

experienced more severe macular edema than baseline, with

an average CMT of 738.7 ± 143.6 μm. Moreover, the visual

acuity significantly decreased compared with the baseline. In

another retrospective cohort study, patients lost to follow-up

for more than 6 months lost nearly 3 Best Corrected Visual

Acuity (BCVA) lines of vision, and their vision was not

restored after anti-VEGF therapy (Salabati et al., 2021). In

the present study, our model accurately predicted the

prognosis of anti-VEGF therapy based on the pre-

therapeutic OCT images. In the real world, the treatment

effect of most patients is satisfactory and can relieve the

psychological burden of patients, improve their follow-up

compliance, reduce the possibility of treatment interruption,

and thus reduce the risks of irreversible visual impairment in

patients with RVO.

Prediction and evaluation of the short-term efficacy of

anti-VEGF therapy are essential for clinical follow-up and

management of patients with RVO. In recent years, scholars

have carried out exploratory studies to bridge this knowledge

gap (Ting et al., 2021). Liu et al. (2020a) successfully used pre-

therapeutic OCT images to predict OCT images after anti-

VEGF of patients of nAMD based on GAN, with an accuracy

of 85% for predicting macular state after treatment. However,

they mainly conducted a quantitative evaluation of macular

types, lacking objective quantitative results of CMT. More

recently, Lee et al. (2021b) developed a deep learning model to

generate post-therapeutic OCT images of nAMD based on

OCT, FFA, and Indocyanine Green Angiography collected at

baseline, which yielded an acceptable accuracy and specificity

(range: 77.0–91.9 and 94.1–95.1, respectively). However, FFA

and indocyanine green angiography are widely acknowledged

as invasive examinations with high equipment and technician

expertise requirements. Despite their limitations, these

attempts also substantiated the potential application of

GAN-based algorithms in predicting the structural

prognosis of ocular fundus diseases. In this study, the

pix2pixHD algorithm was used to predict the effect of anti-

VEGF therapy on RVO-related macular edema based on pre-

therapeutic OCT images. Meanwhile, a structural assessment

was carried out to evaluate post-therapeutic images

qualitatively and quantitatively. Importantly, the

pix2pixHD algorithm could predict the short-term response

of anti-VEGF therapy with high accuracy, which could help

improve the treatment compliance of RVO patients and

identify patients with poor responses to treatment to

optimize the treatment plan.

In this study, the anti-VEGF agents adopted were

Conbercept and Lucentis. Lucentis is a 48 kDa recombinant

humanized immunoglobulin G1κ isotype monoclonal

antibody fragment (Fab) that binds to VEGF-A and avoids

interactions with VEGFR1 and VEGFR2. Conbercept is a

recombinant human IgG fusion protein composed of the

second Ig domain of VEGFR1 and the third and fourth Ig

domains of VEGFR2 (Fogli et al., 2018; Porta and Striglia,

2020). Overwhelming evidence suggests that Conbercept

yields a better effect than Lucentis, especially in improving

BCVA (Liu et al., 2020b). However, in our study, there was no

significant difference in the efficacy and predicted

performance between Conbercept and Lucentis. This

discrepancy may be attributed to the relatively small

sample size and short follow-up period. Indeed, this study

focused on predicting post-therapeutic OCT images and CMT

evaluation without BCVA and other functional indicators in

the prediction tasks due to the insufficient sample size and the

lack of feature extraction for machine learning and modality

fusion. This is also a shortcoming of our model that

emphasizes the need for further improvements.

Several limitations were present in this study. First, the

sample size in this study was limited, which may influence the

predicted performance of patients with RVO. Greater sample

sizes are warranted to improve the stability of the model.

Moreover, we included post-therapeutic B-scans for short-

term outcomes as the follow-up visit of the enrolled patients

was scheduled at 1 month ± 7 days, which limited the established

model’s ability to conduct long-term predictions. However, RVO

patients often require multiple types of treatment. Accordingly,

the long-term outcome is what ophthalmologists and patients are

most concerned about.

In conclusion, the GAN-based prediction model yielded

promising results and successfully demonstrated its potential

for predicting the prognosis of RVO-related macular edema.

Predicting therapeutic response to anti-VEGF treatment

remains challenging in clinical practice. Our pix2pixHD

algorithm could accurately predict post-therapeutic OCT

images 1 month after anti-VEGF therapy, providing the

postoperative OCT morphology and more prognostic

information, potentially improving treatment adherence
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and the prognosis of this patient population. Indeed, our

prediction model could assist physicians in identifying

patients with poor responses to treatment and optimizing

the drug regimen.
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