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The human brain is a complex organ composed of many different types of cells
interconnected to create an organized system able to efficiently process information.
Dysregulation of this delicately balanced system can lead to the development of
neurological disorders, such as neurodegenerative diseases (NDD). To investigate the
functionality of human brain physiology and pathophysiology, the scientific community has
been generated various research models, from genetically modified animals to two- and
three-dimensional cell culture for several decades. These models have, however, certain
limitations that impede the precise study of pathophysiological features of
neurodegeneration, thus hindering therapeutical research and drug development.
Compartmentalized microfluidic devices provide in vitro minimalistic environments to
accurately reproduce neural circuits allowing the characterization of the human central
nervous system. Brain-on-chip (BoC) is allowing our capability to improve
neurodegeneration models on the molecular and cellular mechanism aspects behind
the progression of these troubles. This review aims to summarize and discuss the latest
advancements of microfluidic models for the investigations of common neurodegenerative
disorders, such as Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral
sclerosis.
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INTRODUCTION

Neurodegenerative diseases (NDD), a type of neurological disorders (ND) involving the central
nervous system (CNS) and/or the peripherical nervous system (PNS) degeneration, affect tens of
millions of people worldwide, and this number keeps on increasing every year (Mofazzal Jahromi
et al., 2019). In vivo research using animal models have been an important tool to study both the
function of the peripheral nervous system and the pathophysiological mechanisms of NDD. While
genetically engineered animals have been the main paradigm to model human diseases for decades,
the physiological differences between animals and humans are significant and cannot be ignored
(Dauer and Przedborski, 2003; Haring et al., 2017; Osaki et al., 2018a; Ali et al., 2019) an
overwhelming quantity of clinical trials have failed because of the lack of translationality
between these animal models and humans (Haring et al., 2017; Osaki et al., 2018a; Ali et al.,
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2019). Besides in vivo studies, in vitro two-dimensional (2D) and
three-dimensional (3D) culture of neuronal cells or tissues have
been used to perform neuro-cytotoxicity screening and improve
the drug discovery process in the NDD research field (Choi et al.,
2017; Osaki et al., 2018a). In vitro 3D models especially have
enabled the development of more relevant models recapitulating
for brain complex functional connectivity patterns (Jorfi et al.,
2018). These models, particularly brain organoids, can recreate
several intricate features of the CNS and PNS via co-culturing
different subtypes of neuronal cells that self-organize into
microstructures (Roach et al., 2017; Osaki et al., 2018a; Ali
et al., 2019; Nikolakopoulou et al., 2020). Brain organoids can
be used to recapitulate the heterogeneity of neural cells, however
scaling up the intrinsic 3D organizational complexity of the
human brain is limited to only some specific brain regions
(Hasan and Berdichevsky, 2016; Park et al., 2018). In these
models, the exact positioning of the cells cannot be controlled,
leading to low architectural reproducibility and to neural
networks constructions that might highly differ from the
human brain (Jorfi et al., 2018; Slavin et al., 2021). Thus, there
is a lack of physiologically relevant neurological models to study
disease pathogenesis and to understand the complexity of neural
network architecture and function that microfluidic models
could fill.

Microfluidic devices are state-of-the-art research tools that can
reconstruct minimalistic human neural circuits for the in vitro
study of cellular connectivity (Taylor et al., 2005; Kamudzandu
et al., 2019). They are also used to create in vitro complex
neuronal networks allowing co-cultures (Hasan and
Berdichevsky, 2016; Park et al., 2018) and control over the
directionality of the neuronal connections (Peyrin et al., 2011;
Courte et al., 2018), while having the capacity to isolate the soma
of the seeded neurons from their neurites (Taylor et al., 2003;
Paranjape et al., 2019; Sung, 2021). Such devices are used for the
culture and compartmentalization of cells to perform large-scale
drug screenings and pharmacological assays in neuroscience,
particularly in NDD research (Jadhav et al., 2015; Yi et al.,
2015; Neto et al., 2016; Choi et al., 2017; Osaki et al., 2018a;
Ali et al., 2019; Tian et al., 2019; Nikolakopoulou et al., 2020).

In this review, we aim to highlight the role of minimalist brain
models using this type of microfluidic devices, also called brain-
on-chip (BoC), for the study of the cellular and molecular
mechanisms of NDD. First, we present an overview of the
microfluidic designs used to investigate the human brain.
Then, we describe the different microfluidic platforms that
modelled some of NDD such as Alzheimer’s disease (AD),
Parkinson’s disease (PD), dementia with Lewy bodies (DLB)
and amyotrophic lateral sclerosis (ALS).

MICROFLUIDIC TECHNOLOGY: DESIGNS
AND METHODS

Due to the inherent complexity of human neuronal networks, the
study of the CNS remains a puzzle to solve. Conventional
neuronal cell culture using petri dish leads to the creation of
random connections between neuronal cell types which is not

representative of human brain physiology (Hasan and
Berdichevsky, 2016; Choi et al., 2017; Haring et al., 2017).
Utilizing the capability of compartmentalization of
microfluidic devices, several researchers used microfluidic
technologies to effectively co-culture different neuronal cell
types to get closer to the physiology of the human brain
(Maschmeyer et al., 2015; Zahavi et al., 2015; Kamudzandu
et al., 2019). In comparison to classical cell culture techniques,
this technology is cost effective, highly reproductible and allows
for flexibility on the structural design of the devices, thus
improving cell manipulation and enabling the regulation of
cell interconnectivity (Hasan and Berdichevsky, 2016; Osaki
et al., 2018a; Kamudzandu et al., 2019; Mofazzal Jahromi
et al., 2019). These customized systems also enable users to
apply and control mechanical factors such as physical strains
and pressure gradients, that are necessary to mimic the
physiological conditions of the human brain (Neto et al., 2016;
Ahn et al., 2017; Osaki et al., 2018a; Nikolakopoulou et al., 2020).
Moreover, since microfluidic facilitates multiplexing,
repeatability and reproducibility, while using microvolumes of
reagents, high-throughput (HT) drug screening assays can also be
performed (Jadhav et al., 2015; Du et al., 2016; Muller et al.,
2016a; MacKerron et al., 2017; Fantuzzo et al., 2020; Spijkers
et al., 2021).

Architecture of Micropatterned Systems
In the ‘90s, Robert B. Campenot, pioneered the application of
microfluidics for the study of neuronal connectivity. By
developing the “Campenot” devices, also called Campenot
chambers, he successfully cultured a small number of neurons
in one compartment and controlled neurites growth up to a
second compartment using nerve growth factors (Campenot,
1977, 1982). This methodology to separate the soma from the
neurites was revolutionary for the neuroscience field and many
scientists later used Campenot’s base concept to fabricate
improved designs taking advantage of the advances in
microfabrication. In these improved designs, the
compartments, also often called chambers nowadays, are
linked by microchannels which are of micrometrical
dimensions, effectively allowing the culture of several neural
types in a small volume of fluid on the same device (Taylor
et al., 2003, 2005; Park et al., 2009b). These microchannels are the
mean for the various neural types to connect to one another.

An original compartmentalized microfluidic design to model
neuronal connectivity was presented by Taylor et al. (Taylor et al.,
2003, 2005) in order to replace the Campenot’s (Campenot, 1977,
1982) for physiological models of neuronal networks in vitro.
They developed a platformwith fluidically isolated compartments
to implement physical confinement of neurons into pre-designed
locations thanks to microchannels dimensions (3-µm high and
10-µm wide) (Taylor et al., 2003). Neurons are seeded in chamber
through reservoirs linked with seeding channels (Table 1;
number 1, 2, 3, and 4, in the schematic visualization). Because
of the microchannels architecture linking two compartments
(Table 1; number 5 and 6, in the schematic visualization),
neuronal somas are confined in one chamber while only
neurites can pass through the microchannels (Table 1;
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number 7, in the schematic visualization) into the second
chamber. Most compartmentalized microfluidic systems that
are used for ND modelling are composed of one or more
separated compartments, that are connected via arrays of
microchannels (Table 1), enabling a fluidic isolation between
compartments while maintaining functional connectivity (Taylor
et al., 2003; Dinh et al., 2013). To further enhance and increase the
complexity of these connectivity patterns, microfluidic
architectures can be designed with multiple linking chambers.

Microfluidic systems can also be used to control the
mechanical stress applied on cells, by creating a regulated fluid
flow via hydrostatic pressure which is not present in conventional
cell culture (Taylor et al., 2003; Park et al., 2009b). A different
pressure between microfluidic compartments leads to flow
shifting from one chamber to another. It can be useful to
form specific chemical concentration gradients that stimulate
many biological processes (Seidi et al., 2011; Shin et al., 2012;
Muller et al., 2016b).

The original design can be adapted for other applications. For
example, Maisonneuve et al. (2021a) have manufactured a novel
triangle-shaped neurofluidic device to study the kinetics of
neurite growth (Table 1, 2nodes). Both channels were linked
by asymmetric microchannel of various length allowing the
accurate monitoring of neurite growth kinetics in a neuronal
culture. Maisonneuve et al. (2021b) have also developed a new

microfluidic technology, called deposition chamber, that allows
to control both the homogeneity and the density of cell seeded
while avoiding excessive shear stresses. They fabricated a single
compartment design (Table 1, 1 node), where no microchannels
are included and can be used to study functional aspects using
electrophysiological recording, optogenetics or calcium
imaging. Moreover, they used deposition chambers linked
with classical microchannels, to create a model of a CNS
network affected in NDD: the direct way of basal ganglia
(BG) loop, which is known to be involved in PD and HD.
This model is composed of five compartments interconnected
with microchannels, representing each anatomical region
involved in BG loop and respecting the cell number ratios
between these brain regions (Table 1, 4+ nodes)
(Maisonneuve et al., 2021b).

Scientists can also improve compartmentalized designs by
introducing axonal guidance systems that applied oriented
directionality to the developing neurites (Peyrin et al., 2011;
Schneider et al., 2013; Courte et al., 2018; Holloway et al.,
2019; Nikolakopoulou et al., 2020; Vakilna et al., 2021). One
of the microchannels architecture is the axonal diodes which are
asymmetrically shaped with large opening areas on one end
(15 µm wide) and small opening areas on the other end
(1–3 µm wide) (Peyrin et al., 2011). They allow neurites
growth from one compartment to the other because they can

TABLE 1 | Characteristics and reported applications of different microfluidic devices used in neuroscience research (Kamudzandu et al., 2019). Adapted from Kamudzandu
et al. (2019) (copyright Biomedical Physics & Engineering Express) (Peyrin et al., 2011); Extracted and adapted and from Peyrin et al. (2011). (copyright Lab on a Chip)
(Lassus et al., 2018); Extracted and adapted from Lassus et al. (2018) (copyright Scientific Reports). Schematic visualization: 1 and 3: inlets; 2 and 4: outlets; 5 and 6:
channels; 7: microchannels/microgrooves.

Schematic
visualization

1 node 2 nodes 3 nodes 4+ nodes

References architectures Maisonneuve et al.
(2021a)

Maisonneuve et al. (2021a) Maisonneuve et al. (2021a) Maisonneuve et al. (2021b)

Fabrication methods 3D printing (Amin
et al., 2016)

Photolithography (Taylor et al.,
2005)

Photolithography (Moutaux et al., 2018;
Virlogeux et al., 2018)

3D printing (Amin et al., 2016)

Materials PDMS PDMS, COC PMDS, COC PDMS
Add-on directionality N/A

(Peyrin et al., 2011)
(Lassus et al., 2018) (Kamudzandu et al., 2019)

Applications examples Functional recording Co-culture, (ex: Neuron-neuron,
NMJ neuro-glial)

Axotomy, synaptic injury Prion like propagation diseases,
functional recordings

Electrophysiology Fluorescent imaging,
MEA, HD-MEA

Fluorescent imaging, MEA MEA MEA
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pass through the large opening and not the small one, creating a
polarity system. Holloway et al. (2019) compared different
structures enabling directionality outgrowth. In addition to the
“axonal diodes” architecture, they have investigated
microchannels architectures using loop back structures
developed by Renault et al. (2016). These structure designs are
based on prohibitive and permissive edge guidance paths with
repetitive shaped motifs, called arch (Courte et al., 2018), pretzel,
heart and arrow head (Holloway et al., 2019).

Microfabrication Techniques and Materials
To develop 2D and 3D microfluidic systems that can recreate the
in vivo human microenvironment, the materials and technical
approaches used for their fabrication must be carefully
considered. Microfluidic devices used for neuroscience
research are usually fabricated using a combination of SU-8
photolithography and soft lithography techniques (Campenot,
1977; Park et al., 2006). Recently, 3D printing techniques to
produce microfluidic devices have gained importance, since their
ability for a faster and lower-cost fabrication makes them an
attractive alternative to conventional microfabrication protocols
(Kundu et al., 2020). These techniques allowed the fabrication of
microfluidic device’s chambers and microchannels (Ren et al.,
2013). Bioprinting has recently been applied to microfluidics as
well (Haring et al., 2017), enabling the deposition of biological
materials and cells into a specific 3D organization for the
assembly of tissue scaffolds. This innovative technology has
already been used to develop several microfluidic organ
models (Yu et al., 2019) but, to our knowledge, there is still
no developed BoC model using bioprinting.

Currently, the most common material to manufacture
microfluidic devices are usually fabricated is an elastic silicon-
based polymer called polydimethylsiloxane (PDMS), offering
many advantages such as being nontoxic, biocompatible,
transparent and permeable to oxygen which is important for
engineering BoC models (Yang, 2010; Neto et al., 2016; Ali et al.,
2019; Jiang et al., 2019; Nikolakopoulou et al., 2020). Gas
permeability allows the long-term culture of cells for the study
of neuronal physiopathology (Taylor et al., 2003, 2005; Hasan and

Berdichevsky, 2016; Nikolakopoulou et al., 2020) and
transparency facilitates the examination of several cellular
features by enabling the use of different optical and
fluorescent microscopy techniques (Park et al., 2015; Haring
et al., 2017; Nikolakopoulou et al., 2020). Although all these
characteristics make the PDMS-based systems one of the most
used materials for microfluidic devices fabrication, they have
some limitations, such as their tendency to absorb some
molecules via non-specific binding, thus affecting locally the
concentration of specific cellular components or drugs
(Rodrigues et al., 2017; Mofazzal Jahromi et al., 2019;
Nikolakopoulou et al., 2020). Other microfabrication materials
have been investigated to be used as potential alternative to
PDMS, including transparent thermoplastics like poly(methyl
methacrylate) (PMMA), polycarbonate (PC), polyetherimide
(PE) and cyclic olefin copolymer (COC). These biocompatible
materials have reduced absorption of molecules although they
show a lower permeability to oxygen (Park et al., 2009a;
Kortmann et al., 2009; Gencturk et al., 2017; Haring et al.,
2017; Rodrigues et al., 2017; Yu et al., 2019).

Several companies have commercialized a numerous of
microfluidic devices for neurosciences research and brain
models (Table 2). Xona microfluidics, co-founded by Anne
Taylor who has developed microchannels technology with
fluidic isolation, proposes microfluidic devices with COC
allowing microfluidic industrialization. MicroBrainTech,
Ananda and NETRI have developed their microfluidic devices
using PDMS. NETRI for example has successfully developed
complex BoC with neurofluidic devices ranging from one to
five compartments, with and without microchannels. AIM
Biotech has used some thermoplastics for manufacturing
devices that can be used for cell migration studies with
addition of gel scaffolds. They have developed a 3D blood-
brain barrier (BBB) model created by a gel interface with a
neurovascular unit. Mimetas has developed hydrogel
compatible microfluidic devices for extracellular matrix models
as well. Synvivo has also developed a BBB model, using a
polycarbonate membrane in their devices with two or three
compartments. Emulate, as well, has manufactured two and

TABLE 2 | Microfluidic devices providers with the different materials used for manufacturing.

Companies Devices Applications

Architecture Materials

AIM Biotech 3 compartments TP Gel compatible devices for co-culture models (cell invasion and migration,
vascular functions. . .). BBB model

Ananda 2 compartments with microchannels PDMS Co-culture, high-throughput assays
AxoSim 1 and 2 compartments PEG Nerve on a chip model Mini-brain organoid
Emulate 2 and 3 compartments with membrane PDMS, membrane Co-culture neurons-endothelial cells
MicroBrainTech 2 and 3 compartments with microchannels and

axonal diodes
PDMS Axonal directionality for unidirectional neuronal network models

Mimetas 2 and 3 compartments with gel interface PS and glass Hydrogel compatible for ECM models
NETRI 1 to 5 compartments with/without microchannels

or membrane
PDMS, PS,
membrane

Co-culture, NDD models, Network architectures, Interface models, high-
throughput assays

SynVivo 3 compartments with membrane PDMS, membrane BBB model
Xona 2 and 3 compartments with microchannels COC and silicone Axonal isolation

COC, Cyclic olefin copolymer; PDMS, Polydimethylsiloxane; PED, polyethylene glycol; PS, Polystyren; TP, Thermoplastic.
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three compartments’ devices including a membrane for neuronal
and endothelial cells co-culture. AxoSim has developed a single
and two compartments’ devices used as a nerve on a chip model,
allowing the seeding of an explant or an organoid (mini-brain
organoid).

Microfluidic devices are mostly fabricated onto glass or
polymer and are bonded in an either reversible or irreversible
way. Reversible bonding usually consists of placing the device on
a glass coverslip previously coated for cell culture, while
irreversible bonding involves the activation of both contacting
surfaces though air or oxygen plasma (Zhang et al., 2010; Muller
et al., 2016a; Farnese et al., 2021). Most of the devices are
fabricated by irreversible bonding in order to accommodate
higher pressures and stresses (Neto et al., 2016).

Cell Culture Interactions in Microfluidic
Devices
Whether by bonding microfluidic device to a substrate pre-coated
with poly-L-lysine (PLL) or poly-D-lysine (PDL) or by coating
the substrate directly in the bonded device, it is possible to use
coatings that improve cellular adherence and survival on
substrate in 2D culture (Taylor et al., 2005; Park et al., 2006;
Neto et al., 2016; Nikolakopoulou et al., 2020). To obtain a closer
resemblance to in vivo brain microenvironments, biomaterials
mimicking the extracellular matrix (ECM) can also be integrated
into 2D and 3Dmicrofluidic devices as scaffolds. Neural cells and
spheroids can be introduced into a suspension of hydrogel or
ECM materials, such as collagen, and incorporated into the
device. This system allows 3D culture for the study of
angiogenesis or cell migration (Muller et al., 2016a; Lancaster
et al., 2017), for example. A more recent study of Fannon et al.
(2021), has used hydrogels for in vitro 3D cell culture. They have
developed a 3D culture platform allowing neural tube
development and model.

The human nervous system contains approximately 100
billion neurons, which cluster into specialized populations and
extend multiple neurites among the different brain areas to create
neuronal circuits that enable the processing and the storage of
information (Park et al., 2013b; Jadhav et al., 2015; Choi et al.,
2017; Mofazzal Jahromi et al., 2019). To form such circuitry and
make connections, neurons in each population are polarized,
meaning that their neurites differentiate into either an axon or
dendrites to either send or receive electrical information,
respectively. Several types of cells can be seeded in
microfluidic devices. All classical in vitro cell culture
approaches for studies of NDD can be reproduced in
microfluidic devices. Animal can be a common source of brain
cells for in vitro cultures. These cells are usually extracted from
different anatomical regions of the CNS and PNS of embryos,
pups or adult rodents before being seeded into compartments of
microfluidic devices (Kunze et al., 2011; Seibenhener and
Wooten, 2012; Southam et al., 2013; Robertson et al., 2014;
Ruiz et al., 2014; Hallinan et al., 2019). Despite the advantages
of using animals, this approach has some limitations. As there are
structural differences between animal and human brains, not all
types of neural cells can be obtained using this method: not all

brain regions are reachable in animals. Moreover, biological
differences appear to be problematic as well, since several
studies have identified that drug testing results on cells
acquired from animal models are poorly relevant when
compared with the results of human clinical trial (Dauer and
Przedborski, 2003; Choi et al., 2017; Kankala et al., 2018). To
obtain a more reliable research system, closer to the human brain,
scientists have recently started to integrate human-derived cells
into microfluidic devices for the study of CNS or PNS physiology
and of NDD pathologies (Ohtani-Kaneko et al., 2017; J; Siney
et al., 2018; Sances et al., 2018). Human induced-pluripotent stem
cells (hiPSCs) can be differentiated into cell types of interest while
maintaining the endogenous genomic background (Choi et al.,
2017; J; Siney et al., 2018; Kankala et al., 2018).

Neurons require to interact with glial cells to maintain
intercellular connectivity (Harada et al., 2016; Takata-Tsuji
et al., 2021). Glial cells are the most numerous neural cell type
in the CNS, regulating brain homeostasis through both the
structural and functional support of neurons and their role as
immune cells (Yi et al., 2015; Neto et al., 2016; Osaki et al., 2018a).
Several studies used 2D compartmentalized microfluidic devices
to accurately model neuron-glia communication, including
synapse formation, function, axonal myelination and signalling
(Park et al., 2009b; Hosmane et al., 2010; Majumdar et al., 2011;
Shi et al., 2013; Robertson et al., 2014). In 2018, Park et al. went
one step further into the research of neuron-glia interaction by
developing a human AD model by using a 3D microfluidic
platform for the co-culture of neurons, astrocytes, and
microglia (Park et al., 2018). Particularly, this design
mimicked the recruitment of microglia and astrocytes
hyperactivation under AD conditions, allowing for the
reconstruction of a complex pathophysiological environment
that could be used as an inflammatory or a pharmacological
model (Izzo et al., 2014; Vazin et al., 2014).

Besides neuron-neuron and neuron-glia interactions, the
study of the neuromuscular junction (NMJ) should also be
considered, specifically in the context of NDD affecting motor
neurons. The NMJ is composed by the synaptic interactions
between neurons from the CNS and myocytes, which role is to
induce muscle contractions. The analysis of such interactions
helps the understanding of the pathogenesis such as ALS (Zahavi
et al., 2015; Jongh et al., 2021). The current NMJmodels are based
on microfluidic devices containing two or three compartments,
allowing the co-culture of motor neurons and myocytes (Park
et al., 2013a; Zahavi et al., 2015; Santhanam et al., 2018). These
models were able to recapitulate for the neuron-myocyte
characteristic interactions and axonal isolation, thus enabling
the establishment of drug-screening platforms for NMJ
dysfunctions (Osaki et al., 2020).

Electrophysiological and Functional Activity
Recordings in Microfluidic Devices
The functional communication among neurons within a circuit
through axonal transmission is a biological process difficult to
monitor with classical non-compartmentalized neuronal cultures
(Park et al., 2013b; Choi et al., 2017; Osaki et al., 2018a). Neuronal
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network analysis is possible within microfluidic systems
(Maisonneuve et al., 2021a). They thus allow the monitoring
of both structural and functional aspects of neuronal culture,
making possible to study the impact of a compound applied in
one compartment, whose effects are observed in the others
(Johnstone et al., 2010; Delamarche et al., 2013).

Neurons’ functional activity can be recorded by different
setups compatible with microfluidic devices (Holloway et al.,
2021). Microelectrode array (MEA) is a technique that can be
placed perfectly under microfluidic devices’ chambers and using
micro electrodes that are in direct contact with neurons in
culture, have been usually used by the microfluidic community
(Bruno et al., 2020; Holloway et al., 2021). This technology allows
extracellular recordings, unlike patch clamps which allow only
single cell recording and are rarely used in combination with
microfluidics (Kamudzandu et al., 2019; Holloway et al., 2021).
Fluorescent-based techniques for live-cell imaging and
monitoring of neuronal functional activity (Holloway et al.,
2021). Calcium imaging is fully compatible with PDMS-based
microfluidic devices because of their transparency. Fluorescent
calcium probes, such as Fluo-4, Fura-2, and BAPTA-1, as well as
calcium voltage indicators, such as GCaMP6f, allow the
visualization of intracellular calcium changes as an indication
of neuronal functional activity (Robertson et al., 2014; Lassus
et al., 2018). However, since the use of calcium imaging is limited
to the microscopic scale, only a small group of neurons can be
monitored simultaneously, thus preventing the recording of the
entire neuronal network.

Nevertheless, the combination of both MEAs and calcium
imaging with microfluidic technology opened interesting
opportunities to record a complete picture of the in vitro
functional connectivity of neural circuits at high spatial and
temporal resolutions, as exemplified by Moutaux et al. (2018).
Using a three-chamber microfluidic device, they seeded two
separated neuronal populations in the two distal
compartments, defining the central one as the axon-dendrite
communication compartment. They then precisely characterized
synaptic signal transmission by simultaneously monitoring
intracellular calcium dynamics and the pre- and post-synaptic
electrophysiological activity (Moutaux et al., 2018).

NEURODEGENERATIVE
DISORDERS-ON-A-CHIP: MICROFLUIDIC
DEVICES FOR THE STUDY OF
NEURODEGENERATIVE DISEASES

For decades, the main challenge of neuroscience research in drug
development has been the lack of translationality from preclinical
studies to human, the preclinical trials usually performed being
classical cell cultures and in vivo animal modelling.
Unfortunately, preclinical results have showed little
significance when compared with outcomes in humans;
primary because of physiological differences between animals
and humans (Syama and Mohanan, 2021). In the context of
neurodegeneration, the development of BoC enabled important

advances in drug discovery as relevant in vitro brainmodels (Neto
et al., 2016; Choi et al., 2017; Haring et al., 2017). Microfluidic
devices have demonstrated their usefulness for toxicity assays,
pharmacological tests, and drug screening on various cell types,
including neurons (MacKerron et al., 2017). For example, several
studies have successfully investigated the pathological process
within injury using compound application in microfluidic devices
developed for neurological disorders (Seidi et al., 2011; Deleglise
et al., 2013, 2014; Southam et al., 2013; Ruiz et al., 2014; Tran
et al., 2014; Gribaudo et al., 2019; Courte et al., 2021). Thanks to
their ability to isolate neurites from somas, microfluidic devices
have also been used to study axonal regeneration after mechanical
or chemical axotomy (Taylor et al., 2005; Deleglise et al., 2013;
Tong et al., 2015; Lyu et al., 2017; Shrirao et al., 2018).

NDD critically affect neuronal function, leading to the
progressive loss of neurons in specific regions of the brain and
the disruption of the neural network integrity (Yi et al., 2015;
Busche and Konnerth, 2016; Choi et al., 2017; Osaki et al., 2018a;
Fortanier et al., 2019; Mofazzal Jahromi et al., 2019). An effective
curative treatment for such disorders is still a challenge, since the
molecular mechanisms causing cellular degeneration are still
hypothetical (Cutsuridis and Perantonis, 2006; Calsolaro and
Edison, 2016; J; Siney et al., 2018; Natarajan et al., 2019). To
overcome this lack of knowledge, it is crucial to closely study the
alterations occurring in the neuronal microenvironment.
Microfluidic devices, and more especially BoC systems, have
improved the collective knowledge in the field of NDD thanks
to the minimalistic in vitro platforms that enabled the
investigation of cellular mechanisms in diseases such as AD,
PD and ALS.

In the next sections, we discuss the currently available
microfluidic devices fabricated and used for the study of NDD
and their main outcomes, also summarized in Supplementary
Table S1.

Alzheimer’s Disease
AD is the most common NDD worldwide, with a prevalence of
approximately 10%–15% of people above 80 years old (Morley
et al., 2018; Fish et al., 2019; Lewis and Spillane, 2019). It is
considered a sporadic disease whose causes have still yet to be
identified, although 1%–5% of AD cases show some degree of
heredity (Morley et al., 2018; Guest, 2019; Lewis and Spillane,
2019). AD is mainly characterized by two pathological hallmarks,
which are the extracellular accumulation of β-amyloid (Aβ)
plaques and the intracellular aggregations of
hyperphosphorylated Tau protein known as neurofibrillary
tangles (NFTs), and are often referred to “amyloid cascade
hypothesis” in the literature (Karran and De Strooper, 2016).
They cause neuronal damage, leading to loss of synaptic
connections and cell death in the human brain (Braak et al.,
2006; Alonso et al., 2008; Minter et al., 2016; Guest, 2019).

Microfluidic AD models have been fabricated with the goal to
accurately analyse the molecular mechanisms leading to the
pathology (Figure 1). Many studies attempted to recapitulate
the formation of Aβ plaques and NFTs and to evaluate their
propagation by examining axonal transport in microfluidics
(Stoothoff et al., 2009; Lee and Park, 2010; Kunze et al., 2011;

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org June 2022 | Volume 10 | Article 9196466

Miny et al. Microfluidic Devices for Neurodegenerative Diseases

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Poon et al., 2011; Deleglise et al., 2014; Dujardin et al., 2014; Song
et al., 2014; Calafate et al., 2015; Takeda et al., 2015; Brahic et al.,
2016; Katsikoudi et al., 2020). Deleglise et al. (2014) used a

microfluidic device composed of two compartments to recreate
an in vitro cortico-striatal neuronal network model allowing to
evaluate the toxic effect of Aβ. Using diodes-shaped

FIGURE 1 | Microfluidic devices used in Alzheimer’s disease modelling. (A) Generation of a co-culture of neurons with disease induction using 3 nodes
compartmentalized chip with reservoirs to study molecular schematization of inhibitor effect of okadaic acid (OA) on dephosphorylation of Tau-microtubule-binding.
Extracted from Kunze et al. (2011) (copyright Willey Periodicals). (B)Design of multi nodes compartmentalized microfluidic device and immunofluorescence pictures (βIII-
tubulin (red) for axonal and MAP2 (green) for somatodendritic staining, Hoechst (blue) for cell bodies, Synaptophysin 1 (yellow) for presynaptic, Homer 1 (cyan) for
postsynaptic sainting, MAP2 (magenta) for dendrites) of presynaptic (pre), postsynaptic (post) and synaptic chamber as well as co-culture chamber with non-neural cell
types. Extracted from Kilinc et al. (2019) (copyright Oxford University Press—Brain). (C) 3D microfluidic platform with AD neurons, astrocytes h-NPCs-derived and
human adult microglia in culture for organotypic human AD modelling. The platform quantifies microglial engagement using immunofluorescent pictures [AD neurons/
astrocytes (green), microglial cells (red) and nuclear staining (white)]. Scale bars of picture d and e represent 250 µm. Scale bars for picture f and g represent 150 µm.
Extracted from Park et al. (2018), (copyright Nature Neuroscience).
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microchannel to force unidirectional growth of neurites, they
injected Aβ peptide into the neurites compartment and observed
a dying-back process in the soma compartment. Song et al. (2014)
studied neuron-to-neuron Aβ transmission using microfluidic
devices composed of two and three compartments. With these
microfluidic architectures, they showed that Aβ was internalized
by distal neurites and retrogradely transported to neuronal cell
bodies. Other research groups, like Takeda et al. (2015), Calafate
et al. (2015) and Nobuhara et al. (2017), used microfluidic devices
with three compartments to seed two distinct neuronal
populations either into the distant compartments (Calafate
et al., 2015; Takeda et al., 2015), using the central one as a
synaptic compartment, or in one distant and the central
compartment (Nobuhara et al., 2017). They studied Tau
propagation between neurons, demonstrating that the
spreading of Tau was facilitated with the presence of synaptic
contacts (Takeda et al., 2015), and examined the proprieties of
different Tau isoforms along neurites (Calafate et al., 2015).
Nobuhara et al. (2017) also showed that a specific Tau
antibody could influence peptide aggregation and neuronal
propagation thanks to this microfluidic architecture. Kunze
et al. (2011) used a device with three compartments to
generate neurite synapses in the central compartment from
two distinct neuronal population. They used okadaic acid
(OA), to promote Tau hyperphosphorylation, in the one distal
compartment and analysed the connection between the diseased
and the healthy neuronal populations (Figure 1A). Other studies
used microfluidic devices composed of two or three isolated
compartments to investigate tau peptide transport and
propagation along neurons using animal cells (Wu et al., 2013,
2016) or hiPSC-derived cortical neurons (Usenovic et al., 2015;
Wu et al., 2016).

The design of compartmentalized microfluidic systems for the
isolation of soma, neurites and synapses is not only an advantage
for the assessment of peptide propagation between neurons, but
also for the study of their neurotoxic effect. In Ruiz et al. (2014)
fabricated a gravity-induced flowmicrofluidic device to analyse Aβ
toxicity in different neuronal populations seeded in four distinct
compartments linked by four streams. They showed that FTY720, a
drug used for the treatment of ALS, had a neuroprotective effect. In
Kilinc et al. (2019) presented an AD synaptotoxicity model by
using a three-compartmentalized device that permitted the
isolation of presynaptic and postsynaptic neuronal regions.
With this model, they exposed cell cultures to Aβ toxic peptides
at low concentrations and analyzed their effects in the synaptic
compartment (Figure 1B). Several researchers took advantage of
microfluidic designs with multiple compartments for the
assessment of the Aβ toxic effect on several neuronal regions.
For example, Li et al. (2017) demonstrated that Aβ-induced
neurotoxicity depended on its primary localization. By utilizing
a three compartments device attached to a constant Aβ perfusion
system, they detected that Aβ application on cell bodies and axonal
terminals induced neuronal death, but not when applied on
dendritic neurites.

Besides the importance of the neurotoxic effect of peptides,
neuroinflammation also seems to play a fundamental role in the
pathogenesis of AD (Lewis and Spillane, 2019). The immune

response in the CNS, and the subsequent neuroinflammation,
are mediated by the activation and recruitment of astrocytes
and microglia, which contribute to neuronal loss through the
secretion of pro-inflammatory cytokines (Calsolaro and Edison,
2016; Minter et al., 2016; Choi et al., 2017). Therefore, in addition
to the recreation of the inclusion of mechanisms of inflammation
into microfluidic devices has also been a key goal for the
construction of a comprehensive AD model. In Park et al.
(2018) designed a 3D circular microfluidic system to model AD
by co-culturing neurons, astrocytes, and microglia. Thanks to their
platform, AD molecular and cellular hallmarks could be studied
simultaneously in one single device, including Aβ aggregation, Tau
hyperphosphorylation, and neuroinflammation induced by the
recruitment of microglia into the neuronal compartment (Park
et al., 2018) (Figure 1C). Cho et al. (2013) aimed to study
microglial accumulation in response to maintained gradients of
Aβ. To do so, they developed a microfluidic chemotaxis platform
and found that soluble Aβ could send recruiting signals to
microglia, inducing their migration towards the central
microfluidic compartment (Cho et al., 2013).

Parkinson’s Disease and Lewy Body
Dementia
PD is the second most common neurodegenerative disease
worldwide, presenting a prevalence of approximately 4% of
people above 80 years old (Dauer and Przedborski, 2003;
Dexter and Jenner, 2013; Stoker and Greenland, 2018; Reich
and Savitt, 2019). From an etiological point of view, PD can be
described as a multifactorial disorder which main causes range
from genetic to environmental factors (Reich and Savitt, 2019).
The main neuropathological hallmark associated with PD is the
loss of midbrain dopaminergic neurons from the substantia nigra
(Stoker and Greenland, 2018; Reich and Savitt, 2019). A major
consequence of this neuronal loss is the disruption of the
dopaminergic signaling from the basal ganglia to the rest of
the brain, which leads to the impaired control of the human body
motor movements (Dauer and Przedborski, 2003; Stoker and
Greenland, 2018; Reich and Savitt, 2019). It is believed that this
neuronal loss is associated to the development of intracellular
protein-rich inclusions known as Lewy bodies, whose main
component is aggregated α-synuclein (Braak et al., 2003,
2004). One of the most studied molecular mechanism of PD
[also involved in other synucleinopathies like Lewy body
dementia (LBD)] is the propagation of misfolded α-synuclein
between neurons, as it is prone to aggregate and promote the
initiation of a neurotoxic process (Braak et al., 2003; Delenclos
et al., 2017; Sanford, 2018).

Several studies (Seidi et al., 2011; Freundt et al., 2012; Tran
et al., 2014; Cavaliere et al., 2017; Gribaudo et al., 2019) attempted
to create a precise in vitro PD and LBD microfluidic model by
recreating toxic α-synuclein spreading (Figure 2). For example,
Tran et al. (2014) used a three compartments microfluidic device
to show that α-synuclein monoclonal antibodies could diminish
Lewy body formation in vitro, and thus prevent neuronal death.
They could demonstrate a reduction of neuron-to-neuron α-
synuclein propagation, leading to a decrease in peptide fibril
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formation and uptake (Tran et al., 2014). Freundt et al. (2012)
presented a neuronal culture model to study α-synuclein
spreading mechanisms. Their microfluidic device was
composed of two compartments linked with microchannels,
where fibrils of α-synuclein were injected into the axonal
compartment. They showed that α-synuclein was internalized
by neurons, transported along axons, and then released from
neurons into the extracellular media (Figure 2B). Volpicelli-
Daley et al. (2011) investigated the toxic effect of endogenous
α-synuclein aggregates that propagated along neuronal axons up
to synapses. They showed that the accumulation of aggregated α-

synuclein leads to severely injured synaptic connections and
impaired neuronal excitability.

To increase the pathophysiological relevance of the
microfluidic PD models, Gribaudo et al. focused on the
integration of hiPSC-derived neurons into a microfluidic
device including three compartments interconnected with
asymmetrical diode-shaped microchannels (Gribaudo et al.,
2019) (Figure 2A). Using this design, they studied the prion-
like propagation of different α-synuclein forms, such as
monomeric and fibrillar and showed that its accumulation
affected synaptic integrity and mitochondrial morphology.

FIGURE 2 |Microfluidic devices used in Parkinson’s disease modelling. (A) Representation of α-synuclein assemblies spreading from proximal chamber to distal
chamber of microfluidic device with 3 compartments, thanks to immunofluorescent staining. Scale bars represent 25 µm. Extracted from Gribaudo et al. (2019)
(copyright Stem Cell Reports). (B) Schematic representation of the experiment with (C) and without (A) neurons, stained by βIII-tubulin in red adding α-synuclein fibrils
stained by Syn-488in green, in first compartment of the microfluidic device. Extracted from Freundt et al. (2012) (Copyright Annals of Neurology). (C)
Representation of in vitro microfluidic device of basal ganglia circuit with five compartments representing anatomical region and connectivity. Neuronal co-culture was
characterized by immunofluorescent pictures of cortical (V-glut in green), striatum (GABA in red), globus pallidus (PY in green) and substantia nigra (TH in red) neurons.
Extracted from Kamudzandu et al. (2019) (Copyright Biomedical Physics & Engineering Express).
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Considering the importance of mitochondrial involvement in the
pathogenesis of PD, novel technologies were developed to
improve mitochondrial visualization along neurons. For
example, Lu et al. (2012) developed a two compartments
microfluidic device linked by microchannels for the specific
visualization of mitochondrial transport along single axons by
live-cell imaging using confocal microscopy, allowing axonal
staining through microchannels.

In PD and LBD, neuroinflammation with glial cells and
astrocytes involvement is a significant consequence of the
neuropeptide propagation leading to neurodegeneration
(Wang et al., 2015; Sarkar et al., 2020). To study interactions

between neurons and astrocytes, Cavaliere et al. (2017) used a two
compartments microfluidic device for the co-culture of different
neural cell combinations, to assess the transport and propagation
of α-synuclein aggregates. They could show that α-synuclein
spreading from astrocytes to neurons can lead to neuronal
dysfunction and degeneration.

Two recent studies (Kamudzandu et al., 2019; Maisonneuve
et al., 2021b) have used microfluidic technology to develop a BG
loop model deeply involved in Parkinson’s disease. Kamudzandu
et al. (2019) developed a complex in vitro brain circuitry as
“organ-on-chip” devices modelling BG. Using five compartments
linked with unidirectional diode-shaped microchannels in a

FIGURE 3 |Microfluidic devices used in Amyotrophic Lateral Sclerosis modelling. (A) Schematic representation of a 2 compartments microfluidic device for neuro-
muscular junction (NMJ) modelling in PDMS on glass coverslips with timeline of experimental procedure in the device. Extracted from Osaki et al. (2018c) (copyright
Science advances). (B)Co-culture representation of motoneurons andmuscular cells in microfluidic device with brightfield and immunofluorescent pictures of co-culture
from DIV2 to DIV18, DIV: Days In Vitro. Scale bars represent 20 µm Extracted and adapted from Southam et al. (2013) (copyright Journal of Neuroscience
Methods). (C) Schematic representation of microfluidic device with co-culture; Spinal cord explant and skeletal muscle cells in a device and Superior cervical ganglion
and cardiomyocytes in another device with immunofluorescent pictures of cell type and their functional activity. Scale bars represent 20 µm Extracted from Altman et al.
(2019) (copyright Journal of Cell Science). (D) Representation of a vascular (endothelial cells) and neuronal (motoneurons) networks co-culture in microfluidic device with
collagen gel. Extracted from Osaki et al. (2018b) (copyright Scientific Reports).
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microfluidic device, they co-cultured the specific neuronal
subtypes constituting the BG using rodent primary neurons.
They have shown a direct connectivity and network
communication across a five-population neuronal circuit
(Figure 2C). In another study, Maisonneuve et al. (2021a)
used neurofluidic technology to create a model of the direct
way of BG loop of the brain, involved in Parkinson disease and
Huntington disease, composed of five interconnected
compartments. Each nodes represented an anatomical region
involved in BG loop and were aligned on the device with
respect to the cell number ratios between the various brain
regions, linked with microchannel (Table 1) (Maisonneuve
et al., 2021b).

Amyotrophic Lateral Sclerosis
ALS is a NDD that specifically involves the loss of spinal motor
neurons, which control the voluntary contraction of muscles. For
the most case, ALS is a sporadic disease, with familial type
representing 5%–10% of the cases (Arjmand et al., 2022).
There are several theories explaining its pathology and
progression. The first one is the “dying-forward” hypothesis
and is based on a disorder of both motoneurons and cortical
neurons. The second one is the “dying-back” hypothesis, which
involves the muscle cells or the NMJ. The third hypothesis
proposes that the upper and lower motor neuron degeneration
occur independently from each other (Valko and Ciesla, 2019).

ALS is also defined as a “prion-like” disease and the
degeneration of the NMJ is one of the main hallmarks (Ayers
and Cashman, 2018). For the study of ALSmechanisms, scientists
have used microfluidic systems allowing the co-culture of motor
neurones and myocytes to build accurate in vitro NMJ models
(Southam et al., 2013; Blizzard et al., 2015; Natarajan et al., 2019;
Jongh et al., 2021) (Figure 3). Most researchers have used a two
(Park et al., 2013a; Southam et al., 2013; Blizzard et al., 2015;
Zahavi et al., 2015; Westergard et al., 2016; Santhanam et al.,
2018; Altman et al., 2019) or three (Machado et al., 2019; Spijkers
et al., 2021) compartments microfluidic device connected via
classical microchannels. The neurites of the motor neurons grew
from one compartment up to the compartment that was seeded
withmyocytes, therefore creating aminimalistic representation of
the NMJ. Zahavi et al. (2015) and Blizzard et al. (2015) used a
microfluidic device with two compartments and demonstrated
the degeneration from myocytes to motor neurons by showing a
retrograde transmission of toxic compounds. Other researchers
as Santhanam et al. (2018) and Westergard et al. (2016) seeded
hiPSC-derivedmotor neurons andmyocytes into themicrofluidic
device, in order to fabricate a more relevant model using human
cells. Santhanam et al. (2018) investigated dose response
evaluation of therapeutics to demonstrate pharmacological
relevant response while Westergard et al. (2016) have shown
toxic protein spreading led to cell death and thus,
neurodegeneration.

Neuroinflammation is another hallmark of ALS (Guo et al.,
2017; Valko and Ciesla, 2019), with astrocytes and glial cells
involvement. Some studies aimed to determine the involvement
of glial cells in the development of this disease using microfluidic
models (Southam et al., 2013; Machado et al., 2019) (Figure 3B).

Machado et al. (2019) used a three-chamber device to study the
connection and the activity between motor neurons, astrocytes,
and myocytes through optogenetics (Machado et al., 2019). In
this study, ALS-mutant co-culture of neurons and astrocytes,
both expressing light-sensitive Channelrhodopsin 2 (ChR2), were
separately seeded into the two distal chambers, while myofibrils
were plated in the central compartment. They also seeded another
group of ALS-mutant co-culture that did not express the ChR2.
They explored axonal transport and protein aggregation by
contrasting ChR2-active and ChR2-inactive neural cells
(Machado et al., 2019). Using the same microfluidic device
design, Altman et al. (2019) studied moto neurons-muscle
cells synapses and mitochondrial motility and localization.
Thanks to parallelized microchannels, they were able to
actively follow mitochondrial transport within axons and
demonstrated that the health of NMJ depends on the
accumulation of mitochondria in the motoneurons-muscle
cells synapses (Figure 3C).

Recently, some innovative ALS models using microfluidic
systems have also been developed by integrating 3D cultures
generated with hiPSC-derived cells coming from ALS patients. In
2018, Osaki et al. performed two studies (Osaki et al., 2018c;
2018b) on in vitro ALS modelling. In the first study (Osaki et al.,
2018c), they seeded hiPSC-derived skeletal myoblasts in one
chamber and ChR2-positive hiPSC-derived motor neurons in
form of 3D spheroids in the other, connecting both chambers
with microchannels to reconstruct a functional NMJ. By
activating motor neurons through light, they demonstrated
that the muscle contraction initiated by ALS-derived motor
neurons was weak, although this phenotype could be
pharmacologically reversed (Osaki et al., 2018c) (Figure 3A).
In the other study (Osaki et al., 2018b), they investigated the
involvement of neurovascular coupling in the progression of
motor neuron diseases. They co-cultured 3D motor neuron
spheroids and human-derived endothelial cells in a
microfluidic device, showing that the presence of vascular cells
improved interneuronal connectivity (Osaki et al., 2018b)
(Figure 3D).

CONCLUSION

In this review, we presented the utility of microfluidic devices and
models for the in vitro study of NDD pathophysiology and
pharmacology. Most of the researchers that have used
microfluidic devices used devices with two or three
compartments. These devices enabled them to investigate the
propagation of peptides or molecules along neurons and
synapses, as well as some neuroinflammatory aspects involved
in NDD (Chen et al., 2016). These microfluidic architectures
could be used for CNS and PNS modelling to investigate
molecular mechanisms as well as perform pharmacological
studies and drug screening (Nikolakopoulou et al., 2020).
More NDD studies with microfluidic systems are progressively
using hiPSC to get as close as possible to the human physiology
and to reduce the gap between in vivo and in vitro models (Sosa-
Hernández et al., 2018).
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Specifically, iPSC technology is used to create cellular models
in 3D culture, called organoids, to reproduce human organs
including the brain (Lancaster et al., 2013) for in vitro brain
models (Bassi et al., 2021). The use of human stem cells and iPSCs
that have the capacity to give several neural and non-neural cells
is essential to create relevant and reproductible models. Organ-
on-chip technology, also called microphysiological systems
(MPS), allow to mimic multiple organs microenvironment and
improve the relevance of in vitro model systems (Sung et al.,
2019). To exemplify, SNP and SNC cell models can be integrated
in the same device to develop complex, yet relevant, neural
systems on chip (Anderson et al., 2021). By combining such
models, MPS have been developed to co-culture endothelial and
neural cells to mimic the BBB (Oddo et al., 2019; Yoon et al.,
2021) or with human tissues culture (Holloway et al., 2021). Key
features of BBB-on-chip are 2D or 3D co-culture and relevant
cellular microenvironment allowing improvements in drug
discovery, toxicology, brain research and personalized
medicine (Oddo et al., 2019; Yoon et al., 2021).

MPS have also found several applications in different organs
modelling, such as gut (Raimondi et al., 2019), liver (Banaeiyan
et al., 2017), retina (Achberger et al., 2019), skin (Sutterby et al.,
2020) and others reviewed by D.E. Ingber (Ingber, 2022). The
microbiota-neurodegeneration hypothesis can be study by the
interface between individual organ-on-chip as brain and gut
tissues creating a barrier model and study the penetration of
neurotoxins through microbiota (Raimondi et al., 2019;
Ambrosini et al., 2020; Ceppa et al., 2020). Other applications
of MPS includes blood-retinal with epithelial cells and vascular
endothelial cells co-culture for the investigation of
ophthalmological diseases (Ragelle et al., 2020; Arik et al., 2021).

These multi-organs devices allow the investigation of
absorption, distribution, metabolism, elimination and toxicity

(ADMET) of drugs and pharmacokinetic-pharmacodynamic
(PK-PD) studies and assays (Isoherranen et al., 2019; McAleer
et al., 2019; Shinha et al., 2020). Isoherranen et al. (2019) have
reviewed the role of organ-on-a-chip technologies in PK-PD
studies and presented several multi-organ-on-a-chip including
BBB target.

In summary, BoC technologies are increasingly used and
standardized in the search for new and relevant in vitro
models, while aiming at utilizing human cells and thus
limiting the use of the animal testing. Major advances are
being made in neurodegenerative diseases allowing to improve
knowledges of these disorders and providing relevant and
reproducible high-throughput drug screening for the
emergence of new treatments and hopefully they will allow
personalized medicine for every suffering patients (Kankala
et al., 2018). Moreover, in the future it can be envisaged that
BoC could be coupled with other organ-on-chip, for example
lung, liver and BBB, to improve ADMET assays (Herland et al.,
2020; Picollet-D’hahan et al., 2021).
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