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LFIA is one of the most successful analytical methods for various target molecules
detection. As a recent example, LFIA tests have played an important role in mitigating
the effects of the global pandemic with SARS-COV-2, due to their ability to rapidly
detect infected individuals and stop further spreading of the virus. For this reason,
researchers around the world have done tremendous efforts to improve their
sensibility and specificity. The development of LFIA has many sensitive steps, but
some of the most important ones are choosing the proper labeling probes, the
functionalization method and the conjugation process. There are a series of
labeling probes described in the specialized literature, such as gold nanoparticles
(GNP), latex particles (LP), magnetic nanoparticles (MNP), quantum dots (QDs) and
more recently carbon, silica and europium nanoparticles. The current review aims to
present some of the most recent and promising methods for the functionalization of
the labeling probes and the conjugation with biomolecules, such as antibodies and
antigens. The last chapter is dedicated to a selection of conjugation protocols,
applicable to various types of nanoparticles (GNPs, QDs, magnetic nanoparticles,
carbon nanoparticles, silica and europium nanoparticles).
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1 INTRODUCTION

Lateral flow immunoassay (LFIA) is a popular, easy to perform and low-cost analytical method
which can be used for screening, diagnosis and monitoring of various diseases. For these reasons the
applicability of this type of tests is very high, they can be used by any medical staff and even by the
patient at home. It is a well-known fact that home-based lateral flow assay devices play a vital role in
the management of cardiovascular and infectious diseases. This method gives information regarding
the presence/absence or the quantity of a target analyte within minutes from the assay initiation.
Although this type of point-of-care (POC) devices were initially developed for the diagnosis of
diabetes and to detect the pregnancy hormone, nowadays can accurately detect a series of antigens
such as: hormones, vitamins, enzymes, viruses, microorganisms, cardiovascular diseases biomarkers,
cancer biomarkers, etc (Andryukov, 2020). They can detect one or more markers/analytes
simultaneously.
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The principle of LFIA is that liquid, containing the target
analyte coupled with the detection label, migrates through the test
membrane by capillary force, on which the capture molecules are
printed. The interaction between the detection and capture
molecules can give a positive or negative result, depending on
the presence/absence of the analyte and the test type (sandwich or
competitive assay) (Koczula and Gallotta, 2016).

LFIA tests consist of individual segments, namely pads, made
of various materials. The sample is placed on a pre-treated sample
pad. The dried conjugate is applied to the conjugation pad, which
is usually made of fiberglass or polyester, and interacts with the
analyte present in the sample, migrating into the reaction zone
formed by a porous nitrocellulose membrane (van Amerongen
et al., 2018). Depending on the format of the test, the antibody or
antigen is conjugated to the detection label. It is then applied to
the conjugated membrane and the membrane is dried. The
analytical membrane contains immobilized antibodies, proteins
or antigens in lines or spots. They serve to capture the analyte and
conjugate through specific interactions of the chromatographic
process. At the end of the strip is the absorbent pad that collects
the excess reagents (O’farrell, 2013).

Immunochromatographic lateral flow assays are divided into two
formats: direct assays (sandwich) or competitive assays (Figure 1). In
the sandwich format, the analyte is captured between two
complementary antibodies and the presence of a test line indicates
a positive result. This type of LFIA is typically used for analytes with
multiple antigen sites (hCG, SARS-CoV-2, HIV and others). In the
competitive formats, the target analyte blocks the binding sites of the
antibody and a positive result is indicated by the absence of a signal in
the test line, a negative result when a colored line of any intensity
appears on the test line. Competitive assays can be qualitative, semi-
quantitative or quantitative and are used for smaller analytes that
have a single antigenic determinant (drugs, toxins) (O’farrell, 2013;
Andryukov, 2020).

Although the development of an LFIA strip is quite complex
and all of the steps, from membrane selection to strip assembly
are very important, the efficiency of the conjugation process
(binding of the detection label to the detection antibody) is
crucial for the device performance. There are a series of
detection labels currently used, such as colored particles (gold
nanoparticles (GNP), latex microparticles, carbon nanoparticles,
luminescent particles (QDs, up-converting phosphor
nanoparticles) and magnetic nanoparticles (MNP) (Moyano
et al., 2020; Chen X. et al., 2021).

More recently, due to the need to enhance LFIA performance,
scientists have reported using amorphous carbon nanoparticles,
blue silica nanoparticles and europium nanoparticles with good
analytical sensitivity (Zhang L. et al., 2020; Ge et al., 2021; Yin
et al., 2022). By using the europium nanoparticles scientists were
able to develop a quantitative assay for the determination of
Neutrophil gelatinase-associated lipocalin (NGAL), with a
detection limit as low as 0.36 ng/ml (Yin et al., 2022). These
signal labels can be used to accurately and precisely detected
proteins, enzymes, hormones or any other antigen, and also for
highlighting the hybridization between nucleic acids. Signal labels
must meet a series of requirements such as: excellent stability;
efficient and reproductible conjugates, without the loss of the
detection molecule activity and functionality; absent or very low
non-specific binding and low costs (Koczula and Gallotta, 2016).
The conjugation of the signal label to the detection molecule can
be done by non-covalent or covalent binding, the last method
giving more stable and reproducible conjugates, according to the
specialized literature (Razo et al., 2021).

There are a number of articles dealing with signal labels
classification, characterization and LFIA applications (Huang
et al., 2015; Huang et al., 2019; Di Nardo et al., 2021). The
current review is focused on the synthesis and functionalization
of LFIA signal labels and offers synthesized working protocols for

FIGURE 1 | The operation principle of LFIA sandwich-based method (Created with BioRender.com).
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the conjugation of different particle types, available to both
experts in the field and young researchers. We also discuss the
influence of the coupling technique in regards of conjugates
quality and LFIA performance in terms of sensitivity.

The manuscript is divided into five sections, followed by a
discussion section. The first chapter is dedicated to a short
introduction in the LFIA concept, structure and functionality
with an emphasis on signaling labels. The second part is dedicated
to a classification and characterization of the signaling labels and
different functionalization methods, including green-synthesis.
The last part is dedicated to the conjugation process and
protocols, followed by topic related discussions.

2 DETECTION LABELS

Detection labels are a substantial component of the overall
analytical performance of LFIA in realistic applications. They
are used to label antibodies or antigens in LFIA in order to
improve their detectability. Bonding stability between the labeling
material and the bio component represents a significant factor.
Detection labels are stable materials that can go through various
functionalization and conjugation strategies in order to improve
the affinity parameters of the biocomponent in the detection
process of the target analyte.

Over time, multiple labeling materials have evolved in
innovative chemistry. These labeling materials include gold
nanoparticles (GNPs), latex microparticles (LMPs), magnetic
nanoparticles (MNPs), quantum dots (QDs), and carbon
nanoparticles (CNPs). In recent studies, scientists have used
different detection labels such as silica nanoparticles or
europium nanoparticles, to improve LFIA performance.

2.1 Gold Nanoparticles (GNPs)
GNPs represent a class of nanomaterials that are widely used in
the medical field, in cancer therapy (Ali et al., 2020), diagnostic
imaging (Wu et al., 2019), vaccine development (Ferrando et al.,
2020), drug delivery (Zhang et al., 2019), food safety (Abedalwafa
et al., 2020), biosensing (Hiep et al., 2009), and immunoassays
(Fang et al., 2011). GNPs are nanostructures that have excellent
physicochemical properties, especially optical properties, and are
biocompatible with a wide range of compounds. They were used
for the first time in LFIA in the early 1980s (Hsu, 1984; Guo et al.,
2020). The detection method provides a macroscopic response
based on color observation. The size of the nanoparticles is a
critical factor affecting the sensitivity of an LFIA using GNPs,
especially influencing the color, respectively the intensity of lines
on the strip. The color of gold nanospheres in suspension varies
from wine red to dark shades in case aggregation occurs.
According to the study by Sahoo and Singh, 2014, the size of
nanoparticles depends mainly on the concentration of sodium
citrate, but other synthesis parameters such as pH and
temperature still have an important role to play. The diameter
of GNPs used in LFIA varies from 1 to 100 nm and they come in
various forms such as nanospheres, nanoshells (Shabaninezhad
and Ramakrishna et al., 2019), nanoflowers (AuNFs) (Zhang
et al., 2018), nanocages (Qiu et al., 2020), and nano stars (Xi and

Haes, 2019). Gold nanospheres most commonly used by scientists
in the optimization processes regarding parameters affecting
LFIA sensitivity have diameters in the 20–40 nm range. GNPs
with a larger diameter provide a better color observation, but
studies show that they are less stable (Wang J. et al., 2019). Kim
et al., 2016 investigated the influence of nanoparticles of different
sizes obtained by gradually adding, at intervals of 30 min, 1 ml
HAuCl4 and 1 ml sodium citrate, in order to better control the
size of the nanoparticles. They achieved a higher sensitivity at a
nanoparticle diameter of 42.7 ± 0.8 nm for the detection of
hepatitis B antigen by LFIA.

GNPs provide rapid detection through LFIA, have a much
lower cost compared to reference methods, such as polymerase
chain reaction (PCR), and are easy to synthesize. One of the oldest
and simplest synthesis methods is the Turkevich-Frens method
(Frens, 1973), which can be used to obtain GNPs with diameters
in the range of 10–120 nm. The method consists in reducing
chloroauric acid (HAuCl4) at 100°C with sodium citrate.
Nowadays, scientists are looking for green synthesis methods,
that can provide better results in a short time, and have low
environmental toxicity. Bogireddy et al. (2018) studied the
synthesis of GNPs using Coffea arabica seed (CAS) extract
and chloroauric acid hydrated (HAuCl4 x 3H2O), at room
temperatures, varying the pH of the CAS extract in order to
obtain GNPs of different sizes. The chloroauric acid reduction
occurred due to hydroxyl groups in the CAS structure. A green
method, such as the one studied, is considered a very important
discovery in terms of the synthesis of GNPs.

2.2 Latex Particles (LPs)
Latex microparticles (LMPs) are spherical particles derived from
an amorphous polymer. The most commonly used polymer for
their synthesis is polystyrene. A method for synthesizing latex
particles of well-defined sizes for various applications is seed
emulsion polymerization, which involves dispersion of the
monomer in water along with surfactants and a water-soluble
polymerization initiator that forms free radicals. Radicals initiate
polymerization, the process by which the latex polymer is
obtained. This method can be used to achieve dispersion of
latex particles with a diameter of less than 0.1 µm (Lovell and
El-Aasser, 1997). Another synthesis method, proposed by Eshuis
et al. (1991) involves the synthesis of particles by emulsion
polymerization, but in the absence of surfactants, in order to
eliminate the risk of undesired contamination in the final
product. By this method, the scientists obtained particles with
a size between 0.5 and 1.2 µm.

Zhu et al. (2019) synthesized, in one step, latex nanocrystals
with the surface-functionalized with carboxyl groups by
emulsifier-free emulsion polymerization. They used purified
styrene, methyl methacrylate (MMA), and sodium
methacrylate. The mixture of styrene and MMA was
deoxygenated by bubbling with nitrogen, then heated to 70°C
in an oil bath in the presence of mechanical agitation. Sodium
methacrylate and Vitoria Blue B were added and the mixture was
stirred until complete dissolution. Finally, sodium persulfate was
added and stirred for 6 h. The obtained microparticles were
characterized by scanning electron microscopy (SEM).
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Spherical, monodisperse particles, with a diameter of 300 nm
were observed.

Shen et al. (2021) studied the influence of latex microparticles
(LMPs) size and concentration on LFIA performance parameters.
The best results were obtained at a diameter of 200 nm, and the
line intensity on the strip was most pronounced at an added
volume of 25 µl of the suspension of LMPs.

The LMPs surface provides strong physical adsorption for
molecular species with hydrophobic regions. They have a
uniform surface that allows functionalization with carboxyl or
amino groups for the covalent binding of antibodies. The surface
is ideal for adsorption of bio components, such as antigens,
antibodies, peptides, and oligonucleotides, due to the benzene
rings in the styrene structure that predominate on the surface.
LMPs are used in various medical applications due to their
flexibility and optical properties. In LFIA, they offer the
advantage of a wide range of colors, which makes it possible
to develop a multiplex LFIA. Kim et al. (2019) developed a two-
color multiplex LFIA for the detection of Plasmodium spp.
differentiated from Plasmodium falciparum with an analytical
sensitivity of 31.2 ng/ml and 7.8 ng/ml, respectively.

2.3 Magnetic Nanoparticles (MNPs)
Magnetic nanoparticles are often used in medical research studies
and applications, but also in the geology field or physics. They
also have many applications in nanotechnology. They are the
active component of ferrofluids for audio speakers, and recording
tapes, also the recording media on the hard disk is made up of
MNPs assemblies (Kodama, 1999).

MNPs have an advantage over other detection labels in LFIA.
Due to their paramagnetic properties, the LFIA detection process
can be controlled. In their study, Ren et al., (2016) used magnetic
probes for labeling and an external magnet placed under the strip.
They relied on the concept of magnetic focusing and used the
external magnet to control the movement, respectively the
interactions between the elements on the strip. The results
obtained were surprising. The externally generated magnetic
field enhanced the analytical performance parameters of the
classical LFIA. The researchers achieved an analytical
sensitivity of ~23 CFU/ml for E. coli O157: H7 and ~17 CFU/
ml for Salmonella typhimurium, while the reaction time increased
up to 30 min, compared to the common 15 min reaction time
(Ren et al., 2016).

In general, particles of magnetite (Fe3O4) and maghemite (γ-
Fe2O3) are used in medical applications. The most commonly
used synthesis method is co-precipitation. Iron oxides, such as
Fe3O4 and γ-Fe2O3, can be obtained from aqueous Fe2+/Fe3+ salt
solutions by adding a base solution in an inert atmosphere at
room temperature or at high temperatures (Abu-Dief and Abdel-
Fatah, 2018). Another important synthesis method is
hydrothermal synthesis. This technique involves a reaction
between a solid and a liquid in a solution but requires very
high boiling temperatures and vapor pressure (Abu-Dief and
Hamdan, 2016). Green synthesis methods are used by scientists in
order to minimize the high toxicity of chemical synthesis. The
method proposed by Karade et al. (2018) involves the reduction
of ferric nitrate solution with green tea extract and ethylene

glycol, which is used as a reducing agent and also as a solvent.
Particles with a diameter of 20–25 nm were obtained and have
been characterized by X-ray diffraction (XRD) and field emission
scanning electron microscope (FESEM). It was observed that as
the reaction time increases, the size of the nanoparticles formed
also increases.

2.4 Quantum Dots (QDs)
Quantum dots are fluorescent label materials. Compared to
conventional fluorophores, QDs have unique properties such
as photostability, stronger fluorescence, and a more flexible
surface in terms of their modification (Savin et al., 2017). QDs
have been found to emit 20 times more light than conventional
fluorophores and are 100 times more stable (Michalet et al.,
2005).

QDs have attracted the attention of scientists in recent years
due to their constant and unique optical properties. In general,
quantum dots are composed of group III-V and group II-VI
elements. The most commonly used materials for the synthesis of
these particles are cadmium selenide (CdSe), indium arsenide
(InAs), and cadmium telluride (CdTe) (Tang et al., 2021). Despite
their unique properties, cadmium-based quantum dots exhibit
increased toxicity, similar to GNPs (Li et al., 2020).

Surana et al. (2014) used a more environmentally friendly
synthetic method to prepare cadmium selenide quantum dots. A
solution of sodium selenosulfate (Na2SeSO3) was prepared and
subsequently injected into a solution of cadmium acetate (Cd
(CH3COO)2) heated at 30°C. Post-injection, the solution color
changed frommilky white to lemon green. Finally, a solution of 2-
mercaptoethanol was added, for strengthening stability, and
stirred for 10 min. The process was repeated for different
temperature values. The obtained QDs were characterized by
UV-VIS absorption spectroscopy, photoluminescence
spectroscopy (PL), transmission electron microscopy (TEM),
and X-ray diffraction (XRD) (Surana et al., 2014).

Ginterseder et al. (2020) obtained indium arsenide
quantum dots by a synthetic method that does not require
pyrophoric precursors. They used a simple hot injection
method with the main precursor iodine monochloride
(In(I)Cl), which also serves as a reducing agent in the
synthesis. It reacts with a tris(amino)arsenic precursor, and
finally, indium arsenide is produced.

For the synthesis of cadmium telluride quantum dots,
Alvand et al. (2019) proposed a green synthesis method
using Ficus Johannis fruit extract. They used two extraction
methods: microwave-assisted extraction (MWAE) and
ultrasonic-assisted extraction (UAE). The extract was later
used as a stabilizer in the synthesis. The pH of the obtained
Ficus Johannis fruit extract solution was adjusted to 9. A
hydrated cadmium nitrate solution (Cd (NO3)2 × 7H2O) was
added under constant stirring at room temperature and under
a nitrogen atmosphere. Then, a tellurium solution (Te) was
added in the presence of sodium borohydride (NaBH4). The
obtained results show that the MWAE is an efficient, fast, and
environmentally friendly technique for the synthesis of CdTe
QDs, and is also suitable for the synthesis of other
nanoparticles.
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2.5 Carbon Nanoparticles (CNPs)
Carbon nanoparticles are nano-sized carbon elements. They
represent a class of nanomaterials that have recently been used
in applications in the medical field as carriers for drugs, in
imaging or biosensors, and also in the engineering field (Ray
and Jana, 2017) or agriculture (Shojaei et al., 2019). CNPs are
stable nanoparticles and have a high specific surface area, being
considered an ideal candidate for labeling biocomponents (Guo
et al., 2020). Although they have a high specific surface area, the
number of functional groups which these nanoparticles can be
coated with is quite low, making the covalent binding of bio
components, such as proteins or nucleic acid sequences,
practically impossible. These can be linked to the functional
groups on the CNPs surface by physical adsorption, with the
advantage that specificity is maintained.

Wang Z. et al. (2019) developed a sandwich format LFIA with
CNPs for the detection of Salmonella enteritidis. The analysis was
appreciated by researchers, who achieved a detection limit of
102 CFU/ml, by a much simpler and less expensive method than
the classical sandwich format LFIA.

One method for synthesizing CNPs is laser ablation of
graphite. In this process, a piece of carbon graphite is heated
to a high temperature where the carbon atoms split off occurs,
and they reassemble on a cooled surface in the form of
nanoparticles. Similarly, CNPs are formed by chemical vapor
deposition (CVD), but instead of the graphite piece, hydrocarbon
gas is used as the source of carbon atoms, which separate either
thermally or in the presence of plasma (Shojaei et al., 2019).

Ghosh et al. (2021) synthesized fluorescent carbon
nanoparticles by controlled carbonization of biomolecule-based
carbon precursors with a mixture of ethylene glycol and sodium
phosphate. The obtained nanoparticles were purified by acetone-
cyclohexane-based precipitation/redispersion method and then
functionalized with PEG-diamine or arginine for further bio
applications.

2.6 Silica Nanoparticles (SiNPs)
SiNPs are silicon dioxide nanoparticles, achievable in an
amorphous or crystalline state, with a spherical shape, that can
be used in both nonporous and mesoporous forms in
nanomedicine applications (Karomah, 2021). Mesoporous
SiNPs have attracted the attention of scientists due to their
special characteristics, such as a large surface area with
variable sizes pores (Wang et al., 2015). SiNPs are highly
biocompatible, have a surface that can be easily functionalized,
and have a high chemical reactivity that facilitates the staining of
these particles. Due to these properties, they have the potential to
become a detection label with applications in LFIA. Lirui Ge et al.
(2021) reported the first use of silica nanoparticles in LFIA,
achieving a detection limit of 10–5 (0.01 IU/ml) for Brucella
spp. antibody detection.

Through controlled synthesis processes and various
functionalization methods, researchers have succeeded in
improving the biocompatibility and stability of SiNPs (Slowing
et al., 2007). Thus, they have become nanomaterials capable of
controlled drug delivery and detection of target analytes in
biomedical applications, such as LFIA. Gao et al. (2021) used

in their study dendritic mesoporous SiNPs to enrich QDs in order
to improve the analytical sensitivity of LFIA. Following
optimization, they obtained an analytical sensitivity of 10 pg/
ml for CRP detection.

One of the most common synthesis methods for SiNPs is the
Stöber method (Stöber et al., 1968), which involves the
condensation of tetraethyl orthosilicate (TEOS) in ethanol,
under alkaline conditions at room temperature. Ammonia is
used as a catalyst, contributing to the formation of spherical-
shaped particles. Rossi et al. (2005) developed luminescent SiNPs
with applications in bioanalysis, by the Stöber method in the
presence of a fluorophore. The synthesis had an 80% yield.

Yadav and Fulekar (2019) proposed a green synthesis method
from silico-aluminous class F fly ash. It is a two-step synthesis
method compared to the one-step Stöber synthesis. In the first
part of the synthesis, silica was extracted from fly ash in form of
sodium silicate after sodium hydroxide treatment. In the second
part of the synthesis, SiNPs were obtained by the alkali
dissolution method. After purification, SiNPs were
characterized by various methods and the results revealed
highly purified nanoparticles were obtained (90–96%).

2.7 Europium Nanoparticles (EuNPs)
Europium oxide (Eu2O3) nanoparticles have the appearance of a
white powder and cause irritation to the eyes, skin, and respiratory
tract. They are thermally stable particles, with a melting temperature
of 2,350°C, insoluble in water, and partially soluble in strong mineral
acids (Marcu et al., 1981). Europium (III) is the most widely used
lanthanide for the synthesis of luminescent nanoparticles used in
immunoassay and imaging applications (Syamchand and Sony,
2015). Using EuNPs, Wang et al. (2021) developed an LFIA for
the simultaneous detection of three different types of antibiotic
residues of veterinary drugs: tetracyclines, sulfonamides, and
fluoroquinolones, which are common food contaminants. The
analysis allowed both qualitative and quantitative detection. For
qualitative analysis, the following detection limits were
determined: 3.2 ng/ml for tetracyclines, 2.4 ng/ml for sulfonamides,
and 4.0 ng/ml for fluoroquinolones. Quantitatively, the EuNPs
fluorescence intensity was scanned in the regions of detection lines.

Wakefield et al. (1999) synthesized europium nanoparticles
with less than 50 nm diameters by a colloidal precipitation
method. A solution of trioctylphosphine oxide (TOPO) was
added to a methanolic solution with europium chloride
hexahydrate (EuCl3 x 6H2O), to form a surface layer, in order
to eliminate recombination effects at the particle surface and
control the size of the nanoparticles. After 10 min of stirring, the
nanocrystals precipitated after the addition of a methanolic
sodium hydroxide solution. In her study, Kweyama (2018)
proposed a green synthesis method using Hibiscus sabdariffa
extract to obtain EuNPs. The synthesis was carried out in two
steps. First, a Hibiscus sabdariffa extract was prepared. Then, the
extract was used to chelate europium (III) nitrate pentahydrate.
The obtained precipitate was dried at 100°C. The results
achieved after the characterizations were satisfactory, but the
analysis by high-resolution transmission electron microscope
(HRTEM) showed that the obtained nanoparticles were not
well dispersed.
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2.8 Up Conversion Nanoparticles (UCNPs)
These nanoparticles can be obtained through a process called
up conversion. Up conversion is an optical process based on
an anti-Stokes process in which two or more low-energy
photons are sequentially absorbed by up conversion
materials, followed by the emission of a single photon of a
shorter wavelength (Wilhelm, 2017). This process has many
advantages, including low toxicity, high chemical stability,
large anti-Stokes shift, and low light scattering (Zhang and
Han, 2016). Upconverting nanoparticles are a class of
luminescent nanomaterials doped with lanthanide ions.
They are excited by light in the near-infrared range
(usually 800–1,000 nm) and can be modified to emit in the
infrared, visible, and UV ranges, depending on the absorption
requirements of the photosensitive component (Andresen
et al., 2019). The synthesis of up conversion nanoparticles
is directly related to the synthetic parameters of the methods,
such as reaction temperature and time, pH, and concentration
of precursors and surfactants. Modification of these
parameters can result in some control over size,
morphology, phase, composition, and size distribution. In
recent years, a number of synthesis methods have been
developed, including coprecipitation, thermal
decomposition, hydrothermal and solvothermal methods
(Tao and Sun, 2020). Thermal decomposition is a method
in which organometallic precursors (rare-earth-based organic
salts) are decomposed in heated organic solvents in the
presence of surfactants. The principle of the method is that
the C-F bond of the organometallic precursor breaks when the
reaction temperature is suitably high. The most commonly
used organometallic precursor is trifluoroacetate, and the
most commonly used organic solvent is octadecene (ODE).
Surfactants used include oleic acid (OA), oleyl amine (OM),
trioctylphosphine oxide (TOPO), and oleate salts (Tao and
Sun, 2020).

Hydrothermal/solvothermal synthesis uses rare earths
(water, fluoride, or organic solvent) and a capping ligand to
form a homogeneous solution. Rare earths include rare-earth-
based oxides, nitrates, chlorides, and acetylacetonates.
Fluoride precursors are usually HF, NH4F, NaF, and KF,
while EDTA is usually used as a capping ligand. The
method is based on a phase transfer and separation
mechanism. The metal ions transfer from the liquid
solution to the solid phase and react with anions to form
nanoparticles. [4] In coprecipitation synthesis, inorganic salts
are used to generate positive and negative ions. Surfactants are
also added to control nanoparticle growth and prevent
aggregation. This method can be used to obtain rare Earth
cations from rare-earth-based salts and fluorine anions from
NaF and NH4F. Coprecipitation can also be carried out in an
organic solvent, obtaining rare Earth cations from oleates,
acetates, chlorides, and nitrates based on rare earths (Tao and
Sun, 2020).

Upconverting nanoparticles have been used as reporters on
rapid lateral flow immunoassay in a few applications.
Martiskainen et al. (2021) [5] developed a rapid test for the
diagnosis of hepatitis B virus surface antigen, using upconverting

nanoparticles as reporter. The assay reported improved
specifications than the conventional visually read LFIA,
the limit of detection being 0.1 IU HBsAg/ml in spiked
serum, compared to 3.2 IU HBsAg/ml. In terms of
sensitivity, the conventional LFIA had 87.7% (95%CI:
79.9–93.3%), while UCNP-LFIA showed (95% CI:
89.5–98.5%). Bayoumy et al. [6] propose a quantitative test
for cardiac troponin I using UCNP-LFIA. The performance
of the developed assay was evaluated using plasma samples
and compared the results with two reference tests. UCNP-
LFIA’s limit of detection was 30 ng/L and limit of blank
8.4 ng/L.

2.9 Green Synthesis
Green synthesis methods have been listed for each class of
nanoparticles. The role of these synthesis methods is to
eliminate the risks of using chemical reagents that are
potentially hazardous to the environment. Green synthesis
methods involve the use of non-toxic reagents, consume less
energy in the manufacturing process and the resulting
compounds are more environmentally friendly. For these
reasons, green synthesis has attracted the attention of
researchers in recent years. Although they offer a wide
range of advantages for the synthesis itself, extensive
studies are needed in order to become a candidate with
greater potential than nanoparticles obtained by classical
methods. In the case of nanoparticles synthesized by green
methods, various problems (Ying et al., 2022) are reported
such as their lower stability and the fact that chemical
reagents with increased toxicity cannot be completely
removed for some particles synthesis. Reaction conditions
are also more difficult to control, with many particles
necessitating purification steps and making it very difficult
in some cases to separate secondary compounds from the
reaction medium.

There is still insufficient data on the impact of the use of
green synthesized nanoparticles on LFIA performance
parameters, however, gold nanoparticles and cadmium free
QDs obtained by this method revealed some good
characteristics, suitable for this kind of application. GNPs
obtained by green synthesis were used for the development of
a LFIA for the detection of Listeria monocytogenes, with a
detection limit of 2.5 × 105 CFU/ml for pure culture and 2.85 ×
105 CFU/ml in pork tenderloin sample. The obtained
nanoparticles were spherical, had 20–28 nm and showed
higher salt stability than nanoparticles obtained by
classical synthesis (Du et al., 2020). Cadmium free QDs
structures had low toxicity, good stability and
photostability and were used to develop a rapid test for the
detection of C-reactive protein (CRP), with a 5.8 ng/ml
detection limit (Wu et al., 2018). In conclusion, there are a
series of methods for the synthesis of labeling probes, however
their suitability is to be determined according to the
application and although each have their advantages,
they also have some drawbacks. The advantages and
drawbacks of the synthesis methods for each particle type
are presented in Table 1.
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3 FUNCTIONALIZATION METHODS

In order to bind certain ligand molecules, specific for the target
analyte, signal molecules must be functionalized with compounds

carrying functional groups such as -COOH and -NH2, because
covalent binding generates much more stable conjugates than
physical absorption. Various methods have been reported, and
their applicability depends on the signal molecule and/or ligand type.

TABLE 1 | Pros and cons of the synthesis methods for each type of detection label.

Detection
label

Synthesis method Advantages Disadvantages

GNPs Turkevich-Frens method - simple and reproducible technique - GNPs with a diameter greater than 30 nm lose their
spherical shape; Dong et al. (2020)

- stable GNPs with controlled size are obtained - at suboptimal reagent concentrations, pH, or temperatures,
GNPs lose their stability- the method is applicable to a wide range of precursors

Green synthesis - more environmentally friendly - involves several steps in the synthesis in general, as it adds
the step of extracting the active compound from the CAS

- it is a rapid and low-cost method - it is difficult to determine which are the reactive compounds
in the extract- reaction parameters are much easier to control

LMPs Seed emulsion
polymerization

- products are obtained in latex form that is ready for use - if excessive amounts of seeds are added, bimodal latexes
with low viscosity can form

- the latex particles obtained are more stable - surfactants and other additives remain on the particle
surface and are difficult to remove

- organic compounds increase toxicity
Emulsifier-free emulsion
polymerization

- the absence of an emulsifier eliminates the risk of undesired
contamination in the particles obtained

- larger diameter particles are obtained due to the hydration
layer on the surface

- synthesis involves a single step
- spherical, monodisperse microparticles are obtained

MNPs Co-precipitation - is an efficient method - washing, drying, and calcining cycles are required to obtain
a pure compound

- the process can be easily controlled - pH adjustment may be necessary
- particles of well-defined size and properties are obtained

Hydrothermal synthesis - a process that occurs with excellent control over the size
and shape of nanoparticles

- requires high temperature and vapor pressure

- involves minimal waste - require expensive equipment and installations
Green synthesis - the reducing agent is a natural compound - to obtain larger particle diameters, the reaction time

increases- exhibits low toxicity

QDs CdSe synthesis - synthesis occurs at room temperature - increased cadmium toxicity
- stability is improved

InAs synthesis - pyrophoric precursors are not required - some of the compounds involved are highly toxic
- In(I)Cl is used both as a reducing agent and as a source of
indium

CdTe synthesis—green
synthesis

- the extraction method of the reactive natural compound has
been shown to be useful for other nanoparticle syntheses

- requires nitrogen atmosphere

- it is a fast and efficient method - cadmium is highly toxic

CNPs Laser ablation of graphite - nanoparticle size can be controlled - use of the equipment requires qualified operators
- good dispersity is achieved - the cost of the equipment is high
- high efficiency

Chemical vapor deposition - high purity particles are achieved - secondary reaction products are highly toxic
- low pressure is required - nanoparticle deposition is achieved at high temperatures

Carbonization - the process can be easily controlled - requires nanoparticle purification
- biological precursors are used - sodium phosphate has negative effects on the human

organism

SiNPs Stöber method - occurs at room temperature - ammonia, used as a catalyst, is highly toxic
- monodisperse nanoparticles are obtained

Green synthesis - the final compound obtained reaches a purity of 90–96% - method involves two steps
- exhibits low toxicity - purification of the nanoparticles is required

EuNPs Colloidal precipitation
method

- is a versatile method - reaction waste products are a negative factor for the
environment

- the method requires mild synthesis conditions - the method is limited regarding the size of the nanoparticles
obtained

Green synthesis - more environmentally friendly - nanoparticles obtained are not well dispersed
- crystalline nanoparticles are produced - requires purification steps
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3.1 Gold Nanoparticles
Ligands with thiol, amine or carboxyl groups can be used to
increase GNPs solubility and bind different proteins or
antibodies. One study reported using 1-dodecanethiol for the
functionalization of GNPs immediately after reduction. The
binding was fast and the nanoparticles precipitated from the
diglyme solution. The particles appeared to be dispersible in a
series of nonpolar solvents. In order to make them water soluble,
they used 2- (dimethyl amino) ethanethiol hydrochloride, added
to a dichloromethane solution. They concluded that amine
ligands generated larger particles than the thiol ligands
(Schulz-Dobrick et al., 2005). GNPs can also be modified
using amino acids such as cysteine. Citrate stabilized GNPs
can form a double layer type structure, in which the cysteine
replaces the citrate layer on the gold surface, but aggregation is
still a problem (Majzik et al., 2010). Better results were obtained
when they covered the particles with Aβ1-42 (β-amyloid peptide)
and no aggregation was observed (Majzik et al., 2010). Gold
particles and nanorods can be effectively functionalized using
Poly (ethylene glycol) methyl ether thiol (mPEG thiol).
Functionalization with mPEG thiol can easily be performed by
adding a concentrated solution of CTAB-AuNR, drop by drop,
into a solution of mPEG thiol (5 mg/ml) and leaving it to stir for
at least 12 h. The purification can be carried out by tangential flow
filtration (TFF) (Lohse et al., 2013).

Another efficient way to introduce functional groups on the
surface of GNPs is by immersing the particles in a 11-
Mercaptoundecanoic acid (MUA) solution which will generate
carboxyl groups, that can be activated using 1-ethyl-3-
carbodiimide hydrochloride (EDC) or for a better reaction
yield EDC and NHS (N-Hydroxy succinimide) (Fan et al.,
2020). However, caution should be taken when establishing
the optimum NHS concentration, because excess can lead to
aggregation. Citrate stabilized GNPs can also be functionalized
using thiol-modified glucose, which has been reported to facilitate
the study of the biological recognition of the maltose binding
protein (Spampinato et al., 2016). For this purpose, the GNPs
were mixed overnight with a 1-ß-D-thio-glucose solution, in
order to obtain a self-assembled monolayer on the surface of
the nanoparticles, via the S-Au bond (Spampinato et al., 2016).

Recent studies show that excellent and robust
functionalization of the GNPs can be obtained using calix [4]
arenes bearing diazonium groups on the large rim. One study
reported that by using a calix [4] arene-tetra-diazonium coupled
with four oligo (ethylene glycol) chains, very stable conjugates can
be obtained, due to the C-Au bond and also that this method can
be an excellent strategy when trying to obtain a well-defined
number of functional groups (Valkenier et al., 2017).

Another approach was reported by Harrison et al. (2017),
which generated a mix monolayer on the surface of GNPs, using
polyethylene glycol (PEG) and one of the following peptides:
receptor-mediated endocytosis (RME) peptide; endosomal escape
pathway (H5WYG) peptide or the Nrp-1 targeting RGD peptide
(CRGDK). The binding of these peptides was mediated by the
thiol group of the cysteine residue. They concluded that for each
of the tested peptides the optimum pHwas around 8.00 (Harrison
et al., 2017).

Quinoxaline derivatives, which are an important class of
heterocyclic compounds, have also been used for the capping
of GNPs. One study showed that GNPs were easily
functionalized using 2,3-diethanolminoquinoxaline
(DEQX) and 2-(2,3-dihydro- [1,4] oxazino [2,3- b]
quinoxaline -4-yl) ethanol (OAQX). They used these
conjugates to target cancer cells, because compounds with
a quinoxaline motif can bind to phosphatidylinositol-4,5-
bisphosphate 3-kinases (PI3Ks) and these enzymes are
overexpressed in some types of neoplasms (Araújo et al.,
2019). Quinoxaline derivatives have also been used to
functionalize silver and gadolinium-based nanoparticles
and were shown to give excellent stability, while providing
functional groups such as -NH2 or -OH, which could serve for
the binding of different ligands (Morlieras et al., 2013; Neri
et al., 2021).

3.2 Latex Nanoparticles
Cationic latex nanoparticles were decorated with amino groups
using multistep emulsion polymerization. In the first steps they
synthetized monodispersed cationic latex particles and in the last
steps, an amino-functionalized monomer (aminoethyl
methacrylate hydrochloride) was used to functionalize the
nanoparticles. These particles can be used to bind antibodies,
after the modification of the amino groups with glutaraldehyde
(Ramos et al., 2003). In a recent study the influence of the cationic
monomer N-(3-aminopropyl) methacrylamide hydrochloride
(APMH) concentration on the polymerization of styrene was
evaluated and the results showed that when the concentration of
APMH increased from 0.5% to 0.8%, there was a raise in the
particles number and a decrease in the particles size, from 600 nm
to only 100 nm (Marmey et al., 2020).

Functional groups can be added on latex particles by a reaction
called the copper-catalyzed Huisgen reaction, which is
representative for the click chemistry concept, that includes
reactions that can be performed fast, easily, products are easy
to purify and give excellent yields. Based on the Huisgen reaction,
polystyrene spheres containing 4-vinylbenzyl chloride were
synthetized without any organic solvents, buffers or stabilizers
(Breed et al., 2009).

One recent study reported using a new trithiocarbonate
holding two alkoxyamine moieties for the controlled reversible
addition–fragmentation chain transfer (RAFT) polymerization of
acrylic acid. The resulting PAA (polyacrylic acid) was used for the
polymerization of styrene and n-butyl acrylate, by
polymerization-induced self-assembly (PISA) which resulted in
well-defined latex nanoparticles covered with alkoxyamines
groups (Thomas et al., 2015).

Polysaccharides coated latex nanoparticles can be an excellent
environmentally friendly alternative. As an example, dextran has
already been successfully used to functionalize latex
nanoparticles. Basically, Dextran end-bearing CTA group was
synthetized in two steps: 1) the end chain was functionalized with
ethylenediamine (eDexN); 2) eDexN was functionalized using
CTA-NHS through an amidation reaction. The performance of
the functionalization has been verified by H NMR and the
obtained spectrum revealed the absence of peak for the
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anomeric proton of the terminal glucopyranosyl unit of dextran,
that suggested a successful functionalization with
ethylenediamine (Castro et al., 2021).

Polystyrene microspheres synthesized using divinylbenzene
and ethylene glycol dimethacrylate as cross-linkers were
functionalized using glucose by the thiol-ene reaction. These
microspheres can used can serve for studying ethylene glycol
dimethacrylate or sensing applications (Yang et al., 2013). Size
controlled polystyrene particles can be obtained by choosing the
optimum synthesis method, for instance studies show that by
emulsion and surfactant-free emulsion, particles of 50 nm to
2 µm can be obtained. After the polymerization with styrene
and a cross-linker the tert-butyl group can be removed in acidic
conditions in order to generate carboxylic acid (Sekerak et al.,
2018).

3.3 Magnetic Nanoparticles
One of the biggest challenges is the presence of hydrophobic
surfactant stabilizer on the magnetic nanoparticles surface
(MNP). To this purpose, scientists have tried various surface
modifications from the addition of polymers such as PEG, to
compounds such as 3,4-dihydroxyhydrocinnamic acid (DHCA)
in tetrahydrofuran (THF). By using DHCA the surfactant (oleic
acid) was replaced by this compound, which formed and anchor
on the surface of the MNP. In the next stage, the MNPs were
neutralized with a NaOH solution. The obtained functionalized
particles appeared to be very stable over a wide pH range, between
3.00 and 12.00. And of course, that this type of functionalization
confers the ability to bind different amine-containing molecules
using the carboxyl group (Liu Y. et al., 2014).

Polyethyleneimine (PEI) functionalized MNPs have been
reported to bind to different types of bacteria. By studying this
interaction, the scientists concluded that Gram-positive bacteria,
such as Staphylococcus aureus exhibited less capturing ability than
a Gram-negative strain such as Escherichia coli. The Gram-
negative strains cell wall is mostly made of lipopolysaccharides
(LPS) and lipoproteins. By partially dissolving LPS using ethanol,
scientists observed that the magnetic capturing decreased
significantly (Chen et al., 2019).

Human serum albumin (HSA) coated MNPs were obtained
by a one-step functionalization process involving diazo
transfer followed by in situ Cu(I)-catalyzed azide–alkyne
cycloaddition (CuAAC). The most important aspect is that
the protein, maintained functionality after binding to the
MNPs, which suggests that it could be an efficient technique
for new and improved diagnostic methods (Polito et al.,
2008).

Polymer coatedMNPs have also been reported. FeO4magnetic
nanoparticles have been functionalized using polypyrrole (PPy),
an organic, conductive polymer and this surface modification
induced an increase in the saturation magnetization. They
concluded that by attaching specific molecular groups to the
PPy MNPs, they could serve in a variety of biotechnology
applications (Turcu et al., 2008).

Polydopamine-derived magnetic core–shell nanoparticles
were functionalized based on their reaction with 4-
azidobutylamine. The newly synthesized material was used to

link biotin, proline, galactose and dansyl, but can also serve for
many other future applications in nanotechnology (Mrówczyński
et al., 2013).

3.4 Quantum Dots
Quantum dots (QDs) have some important advantages over
traditionally used fluorescent dyes, such as a broad excitation
spectrum and a narrow emission one, powerful signal, high
quantum yield and photostability. Two of the most important
challenges when it comes to using QDs in biomedical applications
are water solubility and the functionalization. There a series of
QDs types based on the material they are made of, such as
chalcogenides (selenides, sulfides or tellurides) of metals like zinc,
cadmium or lead and more recently carbon (Cotta, 2020). This
chapter aims to present some of the latest methods of
functionalizing QDs, currently used to obtain bioconjugates
with various applications.

3.4.1 CdTe QDs
One study reported using an innovative method of
functionalization, with hyperbranched poly (amidoamine)s
(HP-EDAMA), which in contrast to previously described
methods appears to enhance the photoluminescent properties
of the QDs by as much as 2 times. The nanocomposites were
prepared using a simple procedure, which involves the
preparation of a CdTe solution and adding it to a solution of
(HP-EDAMA), drop wise, under vigorous stirring (Shi et al.,
2013). CdTe with thioglycolic acid (TGA) and mercapto-
acetohydrazide (TGH), synthetized by the hydrothermal
method, were functionalized with PEG by forming a
hydrazone chain via the reaction of aldehyde and hydrazine
(Du et al., 2019).

The functionalization of CdTe QDs with 4-mercaptopyridine
(4-Mpy) determined an enhanced Raman signal, which is
potentially explained by a charge transfer mechanism. These
findings suggest that QDs with chemisorption could be used
as labels in various biological imaging applications and more.
After the preparation of the 4-Mpy functionalized QDs, a portion
was concentrated 5 times and 2-propanol was added drop-wise,
under stirring, until the solution became turbid, after 20 min, the
4-Mpy QDs were isolated by centrifugation (Wang et al., 2008).

Water soluble CdTe QDs prepared using thioglycolic acid
have been modified using ethylene diamine (EDA) and the
resulting particles exhibited enhanced fluorescence and
photostability and suppressed blinking (Mandal and Tamai,
2011).

CdTe nanoparticles have also been developed for the detection
of adenine and guanine, through the functionalization with
thioglycolic acid (TGA), but so far only synthetic probes have
been used for the validation of these fluorescence probes (Li et al.,
2012).

One study focused on developing an optical sensor for the
detection of herbicides. In this regard, QDs were functionalized
with cysteamine hydrochloride and they found that the
fluorescence decreased linearly in the presence of herbicides,
according to the Stern–Volmer equation (Mahdavi et al.,
2018). Another study designed QDs based probes for the
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detection of protamine (PT) in drugs and urine samples. The QDs
were functionalized with mercaptosuccinic acid (MSA),
according to the following procedure: a mixture of cadmium
chloride (CdCl2) at 100 μmol, sodium citrate dihydrate at
765 μmol, MSA at 100 μmol and sodium tellurite (Na2TeO3)
was prepared; then sodium borohydride (NaBH4) (660 μmol)
was prepared; 17 ml of ultrapure water was added in a round-
bottom flask, afterwhich, the components were added in a precise
order; the mixture was heated at 90°C, under reflux; the CdTe-
MSAmodified QDs were precipitated with ethanol and separated
by centrifugation (washed 3 times, 15 min at 3000 RPM). The
modified particles were resuspended in 10 ml of water and stored
away from light, at 4°C (da Costa et al., 2021).

3.4.2 CdSe QDs
This type of QDs has previously been functionalized using
various types of thiol molecules. The most efficient molecules,
that also improved their optical properties were 1,4-
benzenedimethanethiol (1,4-BDMT), biphenyl-4,4′-dithiol,
1,16-hexadecanedithiol, 1,11-undecanedithiol, 1,8-
octanedithiol, and 11-mercapto-1-undecanol (Zhu et al., 2014).
Another simple functionalization method for CdSe QDs is
through the use of mercaptopropyl acid (MPA) and surface
passivation by introducing a ZnS shell. The bioconjugation
properties of the MPA functionalized QDs was tested with
various antibodies and the results revealed that the obtained
conjugates were very stable and the QDs exhibited excellent
photoluminescence (Wang et al., 2007).

In order to obtain water-soluble QDs, while not altering the
size of the particles too much, hydrophilic molecules can be
bound to the hydrophobic ligands on their surface by covalent
bonds. Usually, these hydrophilic molecules are carboxylate
ligands, because the carboxy group has strong affinity for
binding to metals (Yu and Peng, 2002). One group designed a
ligand called 5-norbornene-2-nonanoic acid (NB-nonanoic acid),
which was introduced during QDs synthesis and the resulting
nanocomposite was successfully transferred to an aqueous
solution after clicking with tetrazine-PEG. These QDs can be
further functionalized by adding different functional groups,
depending on the application (Chen et al., 2018).

Ethanolamine-O-sulfate, aminotetraethylene glycol
(H2N–TEG–OH) and aminotetraethylene glycol azide
(H2N–TEG–N3) were also used for the surface
functionalization of CdSe QDs by a one-step procedure. The
procedure consists of mixing a QDs solution (7 μM) with each
one of the modifiers (concentration 600 mM), the pH was
brought to 9.00 with a solution of 2-(N-morpholino)
ethanesulfonic (1 M), cooled at 0°C and then about 12.5 μl of a
200 mg/ml EDC solution were added. The mixture was mixed
well and incubated overnight at 7°C. Bovine serum albumin was
used to demonstrate the efficiency of the modified QDs in the
conjugation process (Ranishenka et al., 2020).

3.4.3 (Cu:InP) QDs
Recently, copper ion-doped indium phosphate (Cu:InP) QDs
have been synthetized and functionalized via ligand exchange
with dihydrolipoic acid (DHLA) and dihydrolipoic acid-

polyethylene glycol (DHLA-PEG), which resulted in
biocompatible and water-soluble QDs, with high brightness,
photostability and a slight increase in the particle size from
2.1 ± 0.5 nm to 2.6 ± 0.2 nm (Xu et al., 2019). The
conjugation properties of DHLA functionalized Cu:InP QDs
has previously been evaluated by binding biotin on the surface
after activation of carboxyl groups with EDC and S-NHS and
coupling them with streptavidin-agarose beads. The transmission
electron microscopy (TEM) and X-ray diffraction (XRD) analysis
revealed 3.9 ± 0.4 nm sized particles were obtained and that Cu
doping does not affect the structure of the QDs (Lim et al., 2019).

3.4.4 Lead QDs
Lead QDs were first used for the development of gas sensors,
such as an NO2 detection sensor, which showed a linear
response in the range of 0.5–50 and 84 ppm detection limit
(Liu H. et al., 2014). The DHLA-PEG ligands were also used
for the functionalization of PbS QDs and the results showed
that stable and even biocompatible colloidal nanoparticles can
be obtained (Zamberlan et al., 2018). More recently, PbS QDs
have been covered with cancer marker HER2 specific
affibodies and zinc (II) protoporphyrin IX (ZnPP). The
modified affibody (Afb2C), by the introduction of two
cysteine residues at the carboxyl-terminus, was used as a
capping agent to form the Afb2C-PbS QDs. The procedure
involved adding Afb2C in 70% (v/v) (NH4)2SO4, which was
pelleted and washed with TRIS buffer and the final pellet was
dissolved in lead acetate trihydrate (Pb (CH3CO2)2 3H2O))
solution (0.0167 M). The pH was adjusted to 11.0 and the
mixture was stirred for 30 min in N2 atmosphere. After this
step, a solution of 0.1 M Na2S was added and the PbS QDs
were obtained, as indicated by the solution color which turned
to dark brown (Al-Ani et al., 2021).

3.4.5 Carbon QDs
The functionalization of carbon QDs (CQD) can be easily
achieved by the treatment with acid solutions. By refluxing
with high nitric acid concentrations for a few hours various
oxygen functional groups can be introduced on the surface of
the CQD, such as carboxyl, hydroxyl or carbonyl (Dimos, 2016).

Carbon QDs can be functionalized using different nitrogen-
containing compounds such as 6-aminohexanoic acid (AHA),
1,6-diaminohexane, N-octylamine, dimethylamine (DMA), and
tryptophan. The functionalized QDs were obtained by mixing
glucose (2.8 mmol) and each of the above-mentioned reagents
(2.8 mmol) in 19 ml of H2O and 1 ml of 2 M HCl, under stirring.
After mixing for 30 min, the solution was placed in a microwave
oven. The black precipitate was resuspended in deionized H2O
and stirred for 5–10 min, followed by centrifugation (Nallayagari
et al., 2021).

The functionalization of CQD with chitosan has also been
reported, to serve as a nanoprobe for the detection of trace
amount of water in organic solvents. Chitosan gels were used
to cover the surface of the QDs after which they were
functionalized using 4-(pyridine-2-yl)-3H-pyrrolo [2,3-c]
quinoline (PPQ), by covalent binding through the
carbodiimide reaction (Pawar et al., 2019).
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A new CQD synthetization method, using citric acid as the
carbon source and thiourea as N- and S-doping source was
developed and the Fourier-transform infrared spectroscopy
(FT-IR) characterization of these particles reveled that various
functional groups are available on their surface (carboxylic acids,
amines, and thiocyanates), which can serve for the covalent
binding of different detection molecules (Karingal and Hsu,
2021).

3.5 Silica Nanoparticles
The surface of Si QDs has been modified using functional organic
molecules, such as N-vinylcarbazole. The functionalization
procedure consisted of dissolving N-vinylcarbazole in 15 ml
mesitylene, transferring it to a flask coupled with a reflux
condenser and then adding 2 ml of Si QDs by injecting it with
a syringe. All remaining gases were eliminated and the mixture
was subjected to 156°C for 12 h under N2. The resulting modified
QDs were purified and washed with ethanol to remove excess
reagents (Ji et al., 2014).

Silicon nanoparticles have been functionalized with 7-
octenyltrichlorosilane (OTS) to obtain oil-soluble particles
with vinyl groups, which were subsequently submitted to a
mini emulsion polymerization procedure, with styrene, to
make them water-soluble. These newly synthetized and
functionalized particles exhibited increased photostability
and biocompatibility, and could be used as fluorescent
labeling samples in a series of biological applications (Mai
and Hoang, 2016). Recently, Si nanoparticles have been used
for the development of a LFIA test for the detection of human
brucellosis. The Si NPs were modified using 3-aminopropyl
triethoxysilane (APTES), for the covalent binding of
Staphylococcal protein A (SPA), after the activation with
glutaraldehyde (Ge et al., 2021). In another recent study, a
rapid test for the detection of the prostate specific antigen
(PSA) was developed using silver assembled silica
nanoparticles. These nanoparticles were functionalized with
APTS and NH4OH, for the introduction of amine groups and
then dispersed in 1-methyl-2-pyrrolidinone (NMP) and the
whole mixture was added in N, N-diisopropylethylamine
(DIEA). The carboxyl-functionalized nanoparticles were
activated with EDC and NHS and added to a NH2-
PEG600-COOH (1.6 mM) solution. The anti-PSA antibody
was subsequently covalently bound to the surface of the
modified silver assembled Si QDs, also via carbodiimide
reaction (Kim et al., 2021).

3.6 Europium Nanoparticles
Europium doped silica nano shells (Eu/SiO2) were synthetized
and their absorption efficiency was increased by the
functionalization with poly (ethylenimine) (PEI), in order to
increase the positive charge on their surface. This method was
employed for the interaction with HeLa cellular line, but can also
be applicable to negatively charged molecules such as DNA. The
coating procedure consisted in the suspension of the nano shells
in 1.5 ml of PEI solution (0.1 mg/ml), followed by stirring for 2 h
and collection of the modified Eu/SiO2 NPs by centrifugation
(Yang et al., 2011).

Europium-quantum dot nano bioconjugates were obtained
using cadmium selenide QDs and europium complexes (EuC)
and their performance in biotin-streptavidin long-lived
photoluminescence applications was assessed. The first step
in the preparation of these bioconjugates, is the coupling of
EuC and biotin to an amphiphilic polymer such as poly
(isobutylene-alt-maleic anhydride) (PMA), followed by the
coating of the QDs with the modified polymer. The QD-EuC-
biotin complex was found to have excellent properties and
potential to become a very sensitive tool for new
diagnostic methods and imaging applications (Cywinski
et al., 2014).

Europium nanoparticles have been very recently used to
develop a LFIA for the detection of neutrophil gelatinase-
associated lipocalin (NGAL) in urine samples (Yin et al.,
2022). Also, by using europium functionalized carbon dots
(CD), a new point-of-care POC device for the detection of
dipicolinic acid (DPA), has been developed (Wang et al.,
2020). DPA is an anthrax specific biomarker (Li et al.,
2017). The synthetized CD contained COOH and NH2

groups and were obtained using a previously reported
method. Citric acid monohydrate and urea were dissolved
in water and the solution was heated for 3–4 min, until the
water was evaporated and a dark powder was obtained. The
resulting product was purified by chromatography using a
mixture of solvents, methanol and methylene chloride, which
were later removed under vacuum. The CDs (0.6 mg ml−1)
were added to a 0.1 M solution of EuCl3 and mixed for about
3 h. After dialysis for 2 days, the particles were separated by
centrifugation and the resulting supernatant was lyophilized.
The resulting probes were resuspended in water at the
concentration of 1 mg ml−1 (Wang et al., 2020).

3.7 Up Conversion Nanoparticles (UCNPs)
A series of functionalization methods have been developed in
order to overcome the instability of UCNPs in aqueous solutions
and to introduce functional groups on their surface, for the
binding of different biomolecules. The main strategies are:
ligand modification; layer-by-layer assembly; ligand attraction;
and polymerization (Gee and Xu, 2018).

Some of the most efficient and easy methods involve
growing a silica shell, which facilitates the functionalization
by silanization or the decoration of the UCNPs with gold or
silver nanoparticles, followed by the addition of thiol
containing molecules (Sedlmeier and Gorris, 2015. Another
approach is to use silica coating and then add PEG and obtain
the functionalization using hydrothermal treatment. This
protocol involves adding ethanol to a UCNP with silica
coating solution, 4 ml of deionized water and ammonium
hydroxide. This mixture is then stirred for 5 min,
whereupon PEG-SilaneMw500 and APTES are added. After
stirring overnight, the solution was degassed and purged with
N2 and heated to 70°C, 100°C and 200°C for 2 days
(Wahyuningtyas et al., 2015).

UCNPs were also hydrophilized and functional groups were
added to the surface, after direct oxidation of oleic acid ligands,
which were converted to azelaic acid ligands (HOOC(CH2)
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7COOH). This oxidation process has no negative impact on the
morphology, composition or luminescence of the nanoparticles
(Zhou et al., 2009).

Lanthanide-doped KGdF4 nanocrystals were
functionalized using polyethyleneimine and biotin was
bound through its carboxyl group to the amine on the
particle surface. The prepared KGdF4:Ln

3+ NCs were used
to detect trace amounts of avidin, down to a nanomolar scale
(Ju et al., 2012).

4 CONJUGATION TECHNIQUES

The conjugation methods can be divided into two kinds
depending on their reversible/irreversible nature and those are
noncovalent and covalent binding. Because each have their
advantages and also some flaws, the choice depends on the
desired application (Numata et al., 2019).

4.1 Non-Covalent Binding
For LFIA applications usually the method of choice is physical
adsorption, which implies the immobilization of the detection
molecules (antibodies, proteins, peptides, etc.) on the surface of
noble metals by hydrophobic, electrostatic interactions, hydrogen
bonds and van der Waals forces (Razo et al., 2021). Usually, the
optimization of this type of conjugation process can be done by
testing different pH values near the isoelectric point of the
binding molecule (Oliveira et al., 2019). However, conjugation
by physical absorption can lead to unreliable results, due to
erroneous orientation of the detection molecules (Figure 2),
which triggers the blocking of the binding sites and the lack of
control on the quantity of absorbed molecules is translated into
poor reproducibility (Jazayeri et al., 2016). The orientation of the

antibodies can however be controlled, by carefully adjusting the
pH between 7.5 and 8.5, which changes the surface charge of the
glycoprotein and determines good binding to citrate stabilized
GNP (Ruiz et al., 2019). Also, a widely applied method is the
biotinylating of antibodies, which will react with streptavidin
coated nanoparticles (You et al., 2020).

The optimum quantity of antibody to be added, in order to
avoid antigen binding sites blockage or steric hindrance can be
determined by the flocculation test, but the final decision should
be made after confirming it by testing the selected conjugates on
the LFIA strip (Zhang L. et al., 2020).

Reports show that even single domain antibodies, also called
nanobodies have been successfully immobilized on GNPs via
physical adsorption and they found that a pH range of 7.0–9.0 is
optimum (Hattori et al., 2012; Goossens et al., 2017).

Physical adsorption was also used for the immobilization of
antibodies on nano strings shaped carbon nanoparticles, for the
development of a LFIA rapid test for the detection of Influenza A
and the results show demonstrated the ability to detect the virus
in complex samples, such as allantoic fluid and the cell-associated
format (Wiriyachaiporn et al., 2017).

4.2 Covalent Binding
There are a series of options for the covalent binding of the
detection molecules to the labeling probes, but most often various
functional groups (-COOH, -NH2, -OH) are generated on the
surface of the labeling probes by the process of functionalization
(Figure 3). Carboxyl or amine covered surfaces can easily be
coupled to different proteins through the formation of the amide
bond, mediated by EDC and NHS or S-NHS (Oliveira et al.,
2019). For the -OH group covered surfaces, the most widely used
crosslinking agent is glutaraldehyde, which due to its terminal
C-OH groups, can also react with NH2 (Kasoju et al., 2018).

FIGURE 2 | Physical adsorption of antibodies to the surface of citrate stabilized GNP, according to pH (Created with BioRender.com).
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Oxide surfaces can also be further prepared for the attachment of
different biomolecules by covalent bounding with silanes, amines,
alkyne and alkene, carboxylates, etc. (Pujari et al., 2014).

Another approach is to modify the detection molecule (antibody,
protein, etc.), by adding a functional group which will react with the

surface of the labeling probe (Figure 4). Such an example is the
thiolation of proteins and antibodies for the covalent binding on gold
surfaces, through the Au-S bond (Sivaram et al., 2017). The Au-S
covalent bond is key for obtaining robust and stable conjugates
between gold surfaces and thiol modified molecules and for this

FIGURE 3 | Schematic representation of the conjugation process mediated by the functional groups on the surface of the nanoparticle: (A) EDC/NHS mediated
coupling of -COOH covered nanoparticle with antibody; (B) EDC/NHS mediated coupling of NH2 covered nanoparticle with antibody; (C) glutaraldehyde coupling of
-OH covered nanoparticle to antibody (Created with BioRender.com).

FIGURE4 | Schematic representation of the conjugation process using chemically modified antibodies: (A) Thiol modified antibody coupling with gold nanoparticle;
(B) EDC/NHS mediated coupling of antibody -COOH with NH2 covered nanoparticle (Created with BioRender.com).
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reasonmany studies have focused on determining the strength of this
interaction and found that it largely depends on the chemical
environment (Wei et al., 2015). The generation of sulfhydryl
groups from the amino groups, present in the structure of
immunoglobulins G (IgG), can be performed using 2-
iminothiolane, by a ring-opening reaction (BenHaddada et al., 2017).

In an attempt to further improve the stability of the conjugates
and to obtain highly reproducible results, methods employing
both detection molecules and labeling probes modification have
been studied (Figure 5). One such example is the coupling of -SH
modified antibodies with maleimide functionalized GNP through
the Michael reaction (Rayner and Stephenson, 1997). Another
innovative method for the covalent binding of antibodies to the
surface of GNPs, was developed by modifying the antibody with
azido-PEG8-NHS, to generate azido groups and covering the
nanoparticles with a thin layer of polydimethylacrylamide
(DMA), previously functionalized with an alkyne monomer.
The antibody and the GNP were then coupled by Cu(I)-
catalyzed azide/alkyne 1,3-dipolar cycloaddition (Finetti et al.,
2016).

5 CONJUGATION PROTOCOLS

5.1 Gold Nanoparticles Conjugation With
Antibodies
Parolo et al. (2020) describe the conjugation protocol using 1.5 ml
of 20 nm GNPssolution, pH 9 (corrected with 100 mM borate
buffer) with the optimized amount of antibody of 2.5 μg/ml. The
antibody-GNP mixture was incubated at 650 rpm for 20 min at
room temperature using a thermoshaker, then 100 μl of 1 mg/ml
BSA solution was added in order to prevent nonspecific
absorption for an additional 20 min. After the incubation
period, the mixture was centrifuged at 14,000 rpm (30,053 g)
for 20 min at 4°C to ensure that unbound antibodies were
removed. The antibody-GNP pellet was resuspended in a
conjugate pad solution of PBS buffer containing 5% (w/v)
sucrose, 1% (w/v) BSA and 0.5% (v/v) Tween-20 and stored at
4°C (Parolo et al., 2020).

To obtain an optimal conjugate, different antibody
concentrations are added to the GNPs. If the conjugate
aggregates on contact with sodium chloride (NaCl), there is
not enough antibody conjugated in the mixture and the color
of the GNPs solution changes from red to blue. Panraksa et al.
(2020) tested different concentrations of anti-human CRP
monoclonal antibody from 0, 10, 50,75, 100, 150, 175–200 μg/
ml. Each antibody concentration was homogenized with 200 μl
GNPs at pH 8.0 for 30 min, and the yield of the conjugation
reaction was tested by adding 80 μl of 10% (w/v) NaCl. After the
optimal antibody concentration was reached, 1 ml of GNPs, pH
8.0 was incubated with 100 μl of CRP antibody for 30 min with
constant stirring at room temperature, followed by the addition of
the blocking solution consisting of 3% (w/v) BSA. The conjugate
was centrifuged at 10,000 rpm for 60 min at 4°C, then the
supernatant was discarded and 100 μl 3% (w/v) BSA
containing 10% (w/v) sucrose was added (Panraksa et al., 2020).

The next GNPs conjugation protocol was obtained by
Rodríguez et al., 2016. They developed a protocol to amplify
the colloidal gold signal by immobilizing silver salt in a separate
pad for a rapid prostate-specific antigen assay. Two types of
conjugates were prepared, one consisting of 40 nm GNPs with
anti-PSA and the other with 20 nm GNPs and neutravidin. For
the first variant, 100 μl 150 μg/ml anti-PSA was added to 1.5 ml
GNP solution and mixed for 1 h, then 100 μl biotin-conjugated
BSA (40% v/v) was added in the roll of blocking solution. The
mixture was centrifuged at 10,000 rpm for 20 min after 20 min of
reaction, then the supernatant was discarded and the pellet was
resuspended in 100 μl of PBS solution containing 10% sucrose
and 1% BSA. The second conjugate was prepared according to the
same protocol, with 20 nm GNPs conjugated to neutravidin. The
conjugates were stored at 4°C until use (Rodríguez et al., 2016).

A physical adsorption conjugation method was used by
Preechakasedkit et al. (2018), in which a hybrid
nanocomposite consisting of an GNPs core and a europium
(III) chelate fluorophore-doped silica shell (GNPs@SiO2 -Eu

3+)
was used as a detection label for human thyroid stimulating
hormone (hTSH) assay. First, 1 ml of the nanocomposite
suspended in 0.025 M carbonate buffer (pH 9.5) was mixed

FIGURE 5 | Schematic representation of the conjugation process using chemically modified detection molecule and labeling probe (Created with BioRender.com).
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with 80 µg/ml anti-hTSH antibody for 12 h at 4°C, then 100 µl of a
blocking solution containing 0.01 M PBS (pH 7.4), 2% (w/v) BSA
and 4% (w/v) sucrose was added and stirred for 6 h at 4°C. The
GNPs@SiO2 -Eu3+-anti-hTSG conjugate was obtained after
centrifugation at 8,000 g for 10 min and resuspension of the
pellets in 100 µl of 0.01 M PBS (pH 7.4) containing 2% (w/v)
BSA, 4% (w/v) sucrose and 0.05% (v/v) Tween 20
(Preechakasedkit et al., 2018).

A new and highly sensitive (LOD 10−12 g ml−1) LFIA for the
detection of sugarcane mosaic viruses was developed using
cysteamine modified GNPs. The authors specified that no
standard protocols have been reported in regards of
cysteamine functionalized gold cationic nanoparticles for use
in LFIA applications. Therefore, the protocol developed by
them was modified to better suit this application. In the first
step, before conjugation, the glycerol was eliminated from the
antibody solution, using a 10 kDa centrifugal filter, then 50 µg/ml
antibody were added to a 1 ml cysteamine-GNPs solution (OD
1.8). This suspension was mixed for 1 h at room temperature,
after which BSA and sucrose were added at concentrations of
0.2% and 2% (w/v) and stirred for a half an hour more
(Thangavelu et al., 2022).

5.2 Bioconjugation of Quantum Dots With
Antibodies
The preparation of conjugates with quantum dots (QDs) is
performed in a dark environment to ensure that the QDs do
not quench fluorescence in the presence of light.

Foubert et al. (2016) have developed three types of
conjugates depending on the functionalization of quantum
dots. They hydrophilized the QDs by two methods: with an
amphiphilic polymer and with a silica coating. The polymer-
coated QDs (250 µl of 2 nmol/ml) were first activated with
25 µl of EDC/sulfo-NHS solution (molar ratio of QD/EDC/
sulfo-NHS was 1/200/200) by stirring at room temperature for
3 h. The antibody was added for another 5 h of stirring and
incubated overnight at 4°C. Subsequently, different molar
ratios of the deoxynivalenol antibody (1/2, 1/5, 1/10, 1/20,
and 30) were added per 50 µl of the activated QD solution and
centrifuged to separate the unreacted antibody. Carboxyl-
functionalized silica coated QDs (carboxyl-QDs@SiO2) and
epoxy-functionalized silica coated QDs (epoxy-QDs@SiO2)
were conjugated in the same manner: firstly, activated using
EDC/sulfo-NHS solution for 45 min at RT and shaken
overnight at 4°C, then different molar ratios of antibody
was added to 10 µl of carboxyl-QDs@SiO2, respectively
40 µl of epoxy-QDs@SiO2 under stirring for 3 h at RT and
afterwards stored at 4°C (Foubert et al., 2016).

For the diagnosis and prognosis of lung cancer Chen et al.
(2017) have developed a LFIA rapid test based on quantum dot-
doped carboxylate functionalized polystyrene nanoparticles, with
a detection limit between 0.16 and 0.35 ng/ml. The bioconjugates
with the functionalized QDs-doped polystyrene nanoparticles
were prepared in two steps. The first consisted of activating
1 ml of QDs suspended in 0.4 ml of MES buffer (pH 6.1) with
a solution consisting of 10 µl of EDC solution (10 mg/ml) and

90 µl of sulfo-NHS solution (10 mg/ml). After 30 min of
incubation at room temperature, the activated QDs solution
was washed 3 times with phosphate buffer (25 mM, pH 7.0)
and centrifuged at 8,000× g for 5 min. In the second step, the
centrifuged quantum dots were resuspended in 0.4 ml of
phosphate buffer and 0.1 ml of the antibody solution (1 mg/
ml) was added, with gentle stirring for 2 h. Subsequently,
1.3 µl of ethanolamine was added to the reaction mixture for
30 min. The obtained conjugates were stored at 4°C (Chen et al.,
2017).

5.3 Latex Microparticles (LMPs)
Conjugation With Antibodies
The conjugation protocol performed by Raysyan and Schneider
(2021) using carboxy latex beads was as follows: In 1 ml of MES
buffer (50 mM, pH 6), 100 µl of blue LMP (diameter
0.276–0.325 µm) was added with stirring, followed by the
addition of the activation solution containing 24 µl of 200 mM
EDC and 240 µl of 200 mM sulfo-NHS, and stirred for 30 min.
The obtained solution was centrifuged at 14,000 rpm and 10°C for
7 min and the LMP pellet was resuspended in 1 ml of 50 mM
MES buffer (pH 6). In contrast to the conjugation protocol of Shi
et al. (2021), the authors sonicated the activated latex particles for
2 min to achieve uniform dispersion. After addition of an optimal
amount of antibody stock solution (7 mg/ml in 0.01 M PBS, pH
7.4, 1% BSA, 1% glycerol, 0.02% azide), the solution was
incubated for 2.5 h at room temperature. After addition of
30 µl ethanolamine to stop the conjugation reaction, the
solution was incubated for another 30 min, then centrifuged at
14,000 rpm and 10°C for 7 min and resuspended in a blocking
buffer containing 50 mMTris with 0.5% BSA (pH 8.0). The LMP-
IgG conjugated was used in the development of a LFIA for
determination of the endocrine disruptor bisphenol A
(Raysyan and Schneider, 2021).

5.4 Conjugation of Magnetic Nanoparticles
(MNPs) With Antibodies
Smith et al. (2011) synthesized carboxyl-modified iron oxide
MNPs, which they conjugated to fluorescently labeled
antibodies (Alexa647-chicken IgG) using the following
protocol: 250 µl of a stock MNPs solution of 4 mg/ml was
washed three times with the same volume of MES buffer at
pH 5.0, then 50 µl of a 20-mg/ml EDC solution was added and
incubated for 15 min. An amount 100 µg of Alexa647–chicken
IgG was added over the activated MNPs solution and incubated
for 2 h, vertexing every 15–30 min. The conjugated magnetic
nanoparticles were magnetically extracted, washed and
concentrated in a 500 µl PBS buffer solution (10 mM)
containing 30 mM hydroxylamine and 1% bovine serum
albumin and incubated for 30 min. The last step of the
conjugation protocol was washing the
Alexa647–chicken–MNPs three times with 500 µl aliquots of
10 mM PBS containing 0.05% Tween 20 and 0.1% BSA.
Working concentrations ranged from 0.01 to 0.4 mg/ml (Smith
et al., 2011).
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5.5 Conjugation of Carbon Nanoparticles
With Antibodies
Polyclonal goat antimouse IgGFcg fragment specific
immunoglobulins (GAM) were conjugated on carbon
nanoparticles by Suárez-Pantaleón et al. (2013) according to the
following conjugation protocol. The first step was sonication of 1%
(w/v) carbon nanoparticles prepared in demineralized water, followed
by the addition of 100 µl of the GAM solution (175 µg) over 500 µl of
a 5-fold dilution of carbon (0.2%, w/v) in 5mM sodium borate buffer
(pH 8.8). The conjugate solution was incubated overnight at 4°C with
gentle agitation and then washed four times with 5mM sodium
borate buffer (pH 8.8) containing 1% (w/v) BSA and 0.02% (w/v)
NaN3 by centrifugation (15min at 13600 g). The resulting pellets were
resuspended in 100mM sodium borate buffer (pH 8.8) with 1% (w/v)
BSA and 0.02% (w/v) NaN3. The carbon NPs-GAM conjugate was
sonicated for 10 s before use (Suárez-Pantaleón et al., 2013).

The bioconjugation protocol by physical adsorption is simpler
and does not require an activation phase of the functional groups.
Zhang X. et al. (2020) obtained carbon nanoparticle-based
conjugates by sonicating 1 mg of carbon NPs suspended in
1 ml of 0.01 M borate buffer for 10 min, then adding 16 µg of
antibody and incubating for 30 min with slow stirring. 40 µl of
blocking buffer containing 20% BSA was added under stirring for
30 min, followed by centrifugation at 8,000 g for 10 min. The final

step was to resuspend the precipitate in 1 ml of 0.01 M PBS
solution containing 2% BSA and 20% glycerol and stored at 4°C
until use (Zhang X. et al., 2020).

5.6 Silica Nanoparticles Conjugation
Protocol
Carboxyl-functionalized silver-coated silica nanoparticles (SiO2@
Ag@SiO2 NPs) obtained by Kim et al. (2021) were conjugated with
mouse monoclonal anti-prostate specific antigen (PSA Ab) by
activating the carboxyl group with EDC (2mg) and sulfo-NHS
(2mg) with stirring for 2 h at room temperature. The mixture was
centrifuged and the precipitate dispersed in 50mM MES. NH2-
PEG600-COOH (1.6 mM)was then added and stirred at 25°C for 2 h.
The surface of the dispersed silica-coated silver nanoparticles was
blocked by adding 3.2 µl ethanolamine with continuous stirring for
30 min. After the centrifugation at 15,928 rcf for 10 min and
redispersion of the precipitate in 50 mM MES buffer, EDC
(2mg) and sulfo-NHS (2 mg) were added and mixed for 30 min.
Therefore, SiO2@Ag@SiO2 NP–SNs–PEG-COOH centrifugated
and dispersed in MES was added under stirring to anti-PSA Ab
and incubated for 2 h at 25°C. Ethanolamine (3.2 µl) was added and
stirred for 30 min, then the conjugate was washed several times with
0.5% bovine serum albumin by centrifugation at 15,928 rcf for
10 min and redispersed in 0.5% BSA (Kim et al., 2021).

TABLE 2 | Binding types and their effect on the conjugate quality and overall sensitivity of LFIA.

Type of
interaction

Particle Effect Target LOD References

Electrostatic
interaction

Gold nanoparticle High rate of bound antibody, but
poor orientation

17β-estradiol 500 ng/ml Oliveira et al. (2019)

Covalent binding Gold nanoparticle Lower rate o bound antibody, with
good orientation

17β-estradiol 200 ng/ml

Physical adsorption Gold nanoparticle Not available Erwinia amylovora 104 CFU/ml Razo et al. (2021)
Physical adsorption Au core—Pt shell

nanoparticle
Not available Erwinia amylovora 103 CFU/ml

Covalent binding Latex nanoparticle Not available Erwinia amylovora 104 CFU/ml
Covalent binding Magnetic nanoparticle Not available Erwinia amylovora 105 CFU/ml

Streptavidin-biotin
coupling

Gold nanoparticle Increased sensitivity for the larger
particles (35–50 nm)

Escherichia coli 101 CFU/ml You et al. (2020)
Legionella
pneumophila

Physical adsorption
(nanobodies)

Gold nanoparticle Salt induced aggregation Not available Not available Goossens et al. (2017)

Physical adsorption Carbon nanoparticle Stable conjugates Influenza A 3.5 × 102 TCID50 mL−1 Wiriyachaiporn et al.
(2017)

Covalent binding Gold nanoparticle Au-S bound Staphylococcal
enterotoxin A

5 ng/ml Ben Haddada et al.
(2017)

Covalent binding Gold nanoparticle Bound between surface alkyne
and azido modified proteins

Not available Not available Finetti et al. (2016)

Physical adsorption Carbon nanoparticle Not available β–lactams 1–30 ng/ml for most antibiotics
and 100 ng/ml cephalexin

Zhang X. et al. (2020)

Covalent binding Europium III chelate
nanoparticle

The binding of the protein did not
affect the optical properties

Cystatin C 24,54 ng/ml Bian et al. (2022)

Covalent binding Latex microparticles Not available Bisphenol A 10 ng/ml Raysyan and
Schneider, (2021)
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5.7 Conjugation Protocol of Europium NPs
Chen K. et al. (2021) performed a rapid quantitative assay based on the
recombinase polymerase amplification technique in combinationwith a
lateral flow immunoassay for the detection of Listeria monocytogenes,
Vibrio parahaemolyticus, and Escherichia coli using carboxylic
Europium nanoparticles (EuNPs) as signal molecules. The
conjugation protocol of EuNPs with anti-digoxin monoclonal
antibody was as follows: activation of 2mg carboxylic EuNPs
dissolved in 800 µl 2-(N-morpholino)-ethanesulfonic acid (0.05 M,
pH 8.2) with 30 µl EDC by slow shaking for 30 min, then the solution
was centrifuged at 12,000 rpm for 25min. Subsequently, 1ml of 10 µg/
ml anti-digoxin antibody was incubated at 25°C for 2 h and the
conjugate was centrifuged for 2min at 12,000 rpm. The supernatant
was then removed and the collected precipitatewas resuspended in 1ml
of preservation solution and kept at 4°C until use (Chen K. et al., 2021).

Another important conjugation protocol of europium
nanoparticles is described by Bian et al. (2022). Europium-
chelate nanoparticles (EU-CNs) (1 mg) were resuspended in
500 µl solution consisting of 25 mmol/L MES (pH 6.1) and
1.25 mmol/L EDC and 10 mmol/L sulfo-NHS with shaking for
30 min. The activated EU-CNs were centrifuged at 18,000 rpm
for 30 min and washed twice with 25 mmol/L Tris, 0.2% Tween-
20 (v/v), 0.05% Proclin-300 (v/v) and 0.9% NaCl (w/v) (pH 7.8)
solution. The pellets were resuspended in 400 µl 25 mmol/L PBS
buffer (pH 7) and the antibody solution (25 μg of antiCys C
labeling McAb or RIgG dissolved in 100 μl of binding buffer) was
added and mixed for 2 h. The sites left free after the conjugation
process were blocked by the addition of 500 μl BSA solution (5%).
The conjugate was resuspended in 100 μl of labeling antibody
storage buffer (25 mmol/L Tris, 0.9% NaCl (w/v), 1% sucrose (w/
v), 1% Trehalose (w/v), 5% BSA (w/v), 0.05% Proclin-300 (v/v)
and 0.05% TWEEN-20 (v/v), pH 7.2) (Bian et al., 2022).

5.8 Conjugation Protocol for UCNPs
A recently described application involved using UCNPs for the
development of an LFIA for the quantitative detection of
Troponin I. They used carboxylated UCNPs to covalently bind
Mab 625. A 0.5mg UCNP solution was centrifuged at 20,000 g
for half an hour, after that the supernatant was removed and the
surface was activated by adding 135 µl of MES buffer, with 2mM
EDC and 30mM S-NHS. After 15min, the excess reagents were
removed by centrifugation at 20,000 g for 10min and the pellet was
resuspended in 20mM MES. Subsequently, they were centrifuged
again and a solution of 30 ug of antibody and 100mM NaCl was
added. The reactionmixture was incubatedwith stirring for 30min at
room temperature, and the reaction was quenched by the addition of
a 50mM glycine solution. After a further 30min incubation step, the
nanoparticles were washed by centrifugation twice and a solution of
25mM borate pH 7.8, 150mM NaCl, 0.1% NaN3, 2mMKF, 0.2%
BSA was added to the pellet (Bayoumy et al., 2021).

6 DISCUSSION

There are various particles and bioconjugation methods used for
increasing the analytical performance: a detection limit as low as
possible, a better repeatability, reproducibility and stability of the
LFIA tests.

Although green-methods are preferred and currently under intense
study, still, the classic synthesis methods provide particles with well-
defined shapes and sizes, good stability and dispersity. The green
synthesis of nanoparticles used in LFIA is more attractive because it
does not involve heating, is usually very fast, simple, cost-effective and
eco-friendly. However, there is not much data regarding their overall
effect on the performance parameters of LFIA. One study developed a
rapid qualitative LFIA for the detection of Listeriamonocytogenes, by
using salt-tolerant nanoparticles obtained via green-synthesis mediated
by an aqueous extract ofDamask rose petals. They obtained a detection
limit of 2.5 × 105 CFU/ml for pure suspension and 2.85 × 105 CFU/ml
for contaminated pork tenderloin sample (Du et al., 2020).

The easiest andmost widely usedmethod for the functionalization
of GNPs, involves the use of compounds that contain the -SH group
or to which this group has been added through the treatment with
thiolation reagents. Some of the methods for the functionalization of
latex particles described in this paper are very efficient, however, only
a few of themuse non-toxic and environmentally friendly compounds
such as dextran and glucose. According to the literature, polymers
(PEG, PEI, PPy) are the method of choice for the functionalization of
magnetic nanoparticles. Some of the compounds used for the
functionalization of QDs also enhanced their photoluminescence,
for instance: HP-EDAMA, EDA (CdTe); MPA, 1,4-BDMT (CdSe);
DHLA, DHLA-PEG (Cu:InP); DHLA-PEG (Pb) and GAM (carbon).
Silica nanoparticles can be decoratedwith amino and carboxyl groups,
using APTES andDIEA. Silica nano shells and carbon dots properties
have been enhanced after they were functionalized with europium.

The conjugation process is a very sensitive step in the
development of an LFIA test, that can affect both
reproducibility and sensitivity. Some of the most recent studies
have described various conjugation techniques, based on the
traditional physical adsorption and covalent binding methods
and have obtained acceptable detection limits, for a wide range of
nanoparticle types and analytes (Table 2). Although most studies
showed that covalent binding is preferred due to increased
stability and functionality of the conjugate, some reports
revealed that by carefully calibrating the pH according to the
isoelectric point of the detection molecule, the binding and
orientation of the molecules can be improved.
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