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Motor control deficits are very common in stroke survivors and often lead to disability.
Current clinical measures for profiling motor control impairments are largely subjective and
lack precise interpretation in a “control” perspective. This study aims to provide an
accurate interpretation and assessment of the underlying “motor control” deficits
caused by stroke, using a recently developed novel technique, i.e., the functional brain
controllability analysis. The electroencephalography (EEG) and functional near-infrared
spectroscopy (fNIRS) were simultaneously recorded from 16 stroke patients and 11
healthy subjects during a hand-clenching task. A high spatiotemporal resolution fNIRS-
informed EEG source imaging approach was then employed to estimate the cortical
activity and construct the functional brain network. Subsequently, network control theory
was applied to evaluate the modal controllability of some key motor regions, including
primary motor cortex (M1), premotor cortex (PMC), and supplementary motor cortex
(SMA), and also the executive control network (ECN). Results indicated that the modal
controllability of ECN in stroke patients was significantly lower than healthy subjects (p =
0.03). Besides, the modal controllability of SMA in stroke patients was also significant
smaller than healthy subjects (p = 0.02). Finally, the baselinemodal controllability of M1was
found to be significantly correlated with the baseline FM-UL clinical scores (r = 0.58, p =
0.01). In conclusion, our results provide a new perspective to better understand the motor
control deficits caused by stroke. We expect such an analytical methodology can be
extended to investigate the other neurological or psychiatric diseases caused by cognitive
control or motor control impairment.
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INTRODUCTION

Stroke is the major cause of motor impairment, leading to motor control deficits at acute stage
(Langhorne et al., 2011). More than 1.1 million people in the United States report difficulty with
functional limitations in daily lives following stroke (Inman et al., 2012). Accurate interpretation and
identification of motor impairment after stroke are of cardinal importance for the patient, clinician,
and healthcare system (Bonkhoff et al., 2020). Over the past decades, effort has been taken to
understand the underlying neural control mechanisms related to motor impairment following stroke
to enhance the treatment efficacy of stroke rehabilitation interventions (Collin and Wade, 1990;
Mani et al., 2013; Vliet et al., 2020). Emerging evidences have shown that various brain regions are
specialized for different aspects of motor control (Mani et al., 2013), indicating it is critical to
precisely define and evaluate the controllability of different brain regions that contribute to specific
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motor control deficits caused by stroke. Unfortunately, such a
precise evaluation of motor control deficits of stroke, in which
both high resolution brain imaging strategy and accurate
description of “controllability” are needed, is not currently
available.

Recently, advanced neuroimaging techniques, including
functional magnetic resonance imaging (fMRI), functional near-
infrared spectroscopy (fNIRS), and electroencephalography (EEG),
have been widely employed to investigate the dynamic alteration of
cortical excitability and network connectivity following stroke, and
shown great potential to understand the relationship between the
dysfunctional brain network and motor control deficits (Grefkes
et al., 2008a; Bajaj et al., 2014; Snyder et al., 2021). For example,
previous fMRI study illustrated that the motor control deficits of
stroke patients were associated with pathological intra- and inter-
hemispheric interactions among key motor regions such as primary
motor cortex (M1), premotor cortex (PMC), and supplementary
motor cortex (SMA), and executive control network (ECN) (Grefkes
et al., 2008a; Zhao et al., 2018). A recent study employing EEG to
investigate the resting-state networks under different frequency
bands in stroke showed that reduced cortical activity and
connectivity in alpha and beta bands in stroke patients might
explain the motor impairment caused by stroke (Snyder et al.,
2021). Similarly, a previous fNIRS study applying the spectral
interdependency methods demonstrated the bi- and uni-
directional connectivity between motor brain regions were
associated with specific movement suppression and motor control
execution, and could provide promising biomarkers to characterize
motor control impairment in stroke patients (Bajaj et al., 2014).

While unimodal fMRI, fNIRS, and EEG studies have provided
critical insight into the brain network alteration associated with
stroke, their limitations have prevented in-depth study to
simultaneously extract the spatial and temporal information
of the brain activity in a good precision. Specifically, EEG
offers high temporal accuracy to unveil the dynamics of neural
activity but suffers from the volume conduction problem,
which may make the estimation of brain connectivity

unreliable (Winter et al., 2007). FMRI and fNIRS show
higher spatial resolution to locate the brain activity than
EEG (spatial resolution: fMRI > fNIRS > EEG), however,
these two neuroimaging techniques are incapable of
recovering accurate time course of cortical activity and the
accuracy of hemodynamic-based connectivity network is
questionable (Roebroeck et al., 2011). To overcome these
limitations, a recently developed, spatiotemporal specific
method, dynamic brain transition network (DBTN), for
EEG and fNIRS (or fMRI) integration analysis was applied
to reconstruct highly specific patterns of cortical activity,
which were then used to recover the general and
conditionally-specific brain networks that support stimulus
response (Nguyen et al., 2019; Fang et al., 2020). Previous
study has utilized the DBTN source imaging approach to
identify biomarkers associated with motor function recovery
and document the post-stroke motor reorganization (Li et al.,
2020). The results showed that the functional brain
connectivity of PMC, M1, and SMA were potential
biomarkers to assess the motor function recovery of stroke,
and the DBTN source imaging strategy was potentially useful
for monitoring and predicting post-stroke motor recovery (Li
et al., 2020).

Even though previous studies have reported potential
biomarkers to assess the motor control deficits of stroke, all
these biomarkers themselves are not directly associated with the
“control” assessment of the brain. As such, a specific
understanding of the “motor control” deficits caused by stroke,
which may lead to advanced interpretation of the physiological
symptom observed in stroke patients, is remains lacking.
Recently, network control theory has been applied to
interpret brain state transitions (Gu et al., 2015).
Conventional graph-based measures show the local
properties of varied brain regions and their important roles
in their network architectures (Sporns, 2018). Differently,
control theory-based network measures describe one brain
region’s capability to change the brain behavior from one state

TABLE 1 | Participants demographics and clinical characteristics.

Patients ID Age (years) Sex (F/M) Affective side Days after stroke Lesion location FM-UL

Pre Post

01 55 Male R 45 Left basal ganglia 12 \
02 66 Female R 89 Left pons 18 33
03 36 Male R 75 Left basal ganglia 30 \
04 46 Male R 40 Left thalamus 53 \
05 37 Male R 84 Left coronal radiate 32 \
06 55 Female R 32 Left pons 56 \
07 61 Female R 42 Left basal ganglia 14 \
08 47 Male R 72 Left basal ganglia 20 \
09 36 Male R 99 Left basal ganglia 17 \
10 43 Male R 101 Left basal ganglia 18 20
11 63 Female R 52 Left pons 16 \
12 40 Male R 56 Left basal ganglia 61 \
13 56 Male L 62 Right basal ganglia 56 60
14 51 Female L 44 Right basal ganglia 43 49
15 50 Male L 32 Right basal ganglia 11 13
16 43 Male L 110 Right basal ganglia 22 27
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to another state (Gu et al., 2015). For example, modal
controllability diagnostic describes the ability of one brain
region to steer the brain networked system into difficult-to-
reach state (Gu et al., 2015). Previous study has employed the
brain controllability analysis to assess the cognitive control
deficit in neurological and psychiatric diseases such as
depression and dementia (Fang et al., 2021). However, no
study has ever utilized brain controllability measure to assess
the motor control deficit of stroke, to specifically describe the
“motor control” deficit with a specific “controllability”
measurement.

In this study, we integrated our recently developed DBTN-
based fNIRS-informed EEG source imaging approach, and
functional brain controllability analysis to assess “motor
control” deficits caused by stroke. We hypothesized that the
modal controllability of the key motor brain regions (M1,
PMC, and SMA) and the ECN would decrease among stroke
patients compared to healthy subjects. To the best of our
knowledge, this study represents the first effort to employ the
brain network “controllability” diagnostic to specifically interpret
the “motor control” deficits caused by stroke. Additionally, this
study is also the first study to apply the brain controllability
analysis based on the non-invasive, portal, and costless
neuroimaging tools with a high spatiotemporal fNIRS-
informed EEG source imaging approach.

MATERIALS AND METHODS

Study Design
Sixteen stroke patients with hemiparesis (5 females and 11 males;
age 49.1 ± 9.4 years) were recruited from Guangdong Provincial
Work Injury Rehabilitation Center, and 11 age-matched, healthy
subjects (3 females and 8 males; age 41.2 ± 15.8 years) were
recruited as the control group. All participants are right-handed.
The experimental protocol was approved by the ethics committee

of the Guangdong Provincial Work Injury Rehabilitation Center
(AF/SC-07/2016.30). Participants gave written informed consent
according to the Declaration of Helsinki.

The inclusion criteria for stroke patients were as follows: 1)
stroke that occurred 1–6 months prior to the first assessment, 2)
age between 18 and 70 years, and 3) able to follow instructions
and to consent (Mini Mental State Examination score >27). The
exclusion criteria were as follows: 1) deficits in communication or
attention that would interfere with the experiment participation,
2) contraindication to MRI scanning, and 3) other diseases that
would substantially affect the function of upper extremity.

All patients underwent a 4-weeks conventional rehabilitation
intervention in the hospital. The intervention included standard
physical training (walking, sitting, standing balance, and
movement switching), occupational therapy (eating, drinking,
swallowing, dressing, bathing, cooking, reading and writing, and
using the restroom), andmassage for 6 h per day, 5 days per week.
Prior to the beginning of intervention, all patients underwent a
baseline assessment of upper extremity function by Fugl-Meyer
Assessment rating scale (FM-UL, normal = 66) and participated
in a concurrent EEG-fNIRS recording (pre-intervention)
(Gladstone et al., 2002). Ten patients were not able to
complete the entire rehabilitation intervention and thus, were
ineligible to participate in the post-intervention EEG-fNIRS
recording and clinical assessment. Therefore, only six patients
participated in the concurrent EEG-fNIRS recording and clinical
assessment of motor function in the post-intervention session. All
motor function assessments were performed by an experienced
therapist from the Department of Rehabilitation Medicine in the
hospital.

Experimental Paradigm
During the experiment, participants received visual instruction
through a monitor placed in front of them. A motor executive
(ME) paradigm consisted of 40 randomized trials of left- and
right-hand clench tasks (20 trials for each hand) was employed.

FIGURE 1 | Experimental design. (A) The experimental motor executive task used in the study. The “ME” represents motor execution. (B) The EEG and fNIRS
channel locations.
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Each trial started with an 8-s ME task, indicated by a “+” symbol
in a black background (Figure 1A). During the ME period,
subjects were asked to naturally squeeze a sponge ball with the
corresponding hand shown on the monitor. Patients were
required to try their best to squeeze the sponge ball using
their affected hands without causing any shaking of their
bodies. In this study, the whole-hand clenching task was
applied since previous studies reported that the whole-hand
clenching evoked stronger brain cortical activations than
classic motor task such as finger tapping (Grefkes et al.,
2008b). Meanwhile, the whole-hand clenching task is
relatively easier to be executed by stroke patients who have
motor deficits.

Data Acquisition
A concurrent EEG and fNIRS recording paradigm was employed
to collect the EEG signal and hemodynamic response signal
(Figure 1B). Specifically, 32 active EEG electrodes were placed

on the scalp, and the EEG signals were measured using an EEG
recording system (Brain Products GmbH, Germany) with 500 Hz
sampling rate. Meanwhile, a total of 40 fNIRS channels were
positioned over the main brain regions, including the motor
cortex, frontal cortex, temporal cortex, and occipital cortex.
FNIRS signals were recorded simultaneously using a
continuous-wave NIRS imaging system (NIRScout, NIRx
Medizintechnik GmbH) with 3.91 Hz sampling rate.

EEG fNIRS Preprocessing
The analytical pipeline is shown in Figure 2. The raw EEG signals
were first filtered by a notch filter at 50 Hz to remove powerline
noise and then a fourth-order Butterworth bandpass filter
(0.5–45 Hz). Eye movement artifact was then removed using
independent component analysis (ICA) strategy. The common
average method was utilized to re-reference the EEG signals
(Ludwig et al., 2009). After that, EEG signals were segmented
into multiple trails that began 2000 ms before the task onset and

FIGURE 2 | Schematic of Methods. (A) EEG analysis using a sliding window scheme. FNIRS activation map is then extracted to form spatial priors; (B) Source
localization analysis of cortical source activity; (C) Functional brain network construction; (D) Estimation of brain network dynamic process and the brain controllability
analysis; (E) Calculate the modal controllability of each single brain region.
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ended 8000 ms after the task onset, and baseline correction was
performed for each trial. Finally, we manually inspected and
excluded any trial with large artifact.

For the fNIRS signals, a fourth-order Butterworth band pass
filter (0.01–0.5 Hz) was applied first to eliminate artifacts such as
cardiac interference (0.8 Hz). Following this, motion artifacts
were removed from the fNIRS signals using a wavelet-based
method (Molavi and Dumont, 2012). The concentration
changes of the HbO and HbR were then computed utilizing
the modified Beer-Lambert Law (Ferrari and Quaresima, 2012).
The obtained signals were manually inspected for every channel,
wherein trials with apparent spikes and discontinuous segments
were deemed as noisy trials and excluded from further analysis
(usually signal changes with amplitude >0.4 au and exceeding a
threshold of 100 in change of standard deviation within 0.3 s)
(Delgado Reyes et al., 2018). Finally, the general linear model
(GLM) was employed to obtain the activated channels that
significantly induced by each hand movement, which would be
used as spatial priors for the EEG source imaging.

fNIRS-Informed EEG Source Localization
Forward Calculation
In this study, theMNI 305 templatewas used as commonbrainmodel
for all subjects (Fonov et al., 2011). The high-density cortical layer and
the brain-skull-scalp layers were generated on the brain model using
the Freesurfer analysis suite (Fischl, 2012). The boundary element
method (BEM) was then employed to construct the 3-layer brain
model (Fuchs et al., 2002). A lead-field matrix G was then computed
based on the cortical source space, the 3-layer brainmodel, and the 32
EEG channels via forward calculation (Hallez et al., 2007).

Inverse Calculation
Our recently developed high spatiotemporal fNIRS-constrained
EEG source imaging approach, DBTN, was employed to perform
source analysis (Nguyen et al., 2016; Nguyen et al., 2018; Li et al.,
2020). Following this method, electrical activity within the source
space is reconstructed based on multimodal, sliding-window
calculations, which makes the algorithm spatially precise and
resilient to depth bias and noise from volume conduction

(Nguyen et al., 2016; Nguyen et al., 2018; Li et al., 2020). Briefly,
the calculation of the current density J can be formulated as:

J � RGT(GRGT + λC)
−1
Y (1)

where Y represents the EEG signals and J indicates the unknown
source activity.C and R represent the noise and source covariance
matrices, respectively. The regularization parameter λ
represents a trade-off between the model accuracy and
complexity that is traditionally determined through the L-
curve method. Within this construction, the source covariance
matrix, R, represents prior knowledge about the distribution of
J. Under the framework of the high spatiotemporal fNIRS-
constrained EEG source imaging (DBTN), however, R is
constructed as a weighted sum of the active spatial priors,
where each individual prior is a sub-map of the fNIRS
activation pattern, as mentioned above:

R � ∑N

i�1λ
R
i Qi (2)

Following this equation, R is defined by the sum of N covariance
components Q = (Q1, . . . , QN), weighted by an unknown
hyperparameter λR. Each individual covariance component, Qi, is
formed from a subset of the fNIRS map. The hyperparameters λR

were estimated for each EEG window using a Restricted Maximum
Likelihood algorithm (Nguyen et al., 2016), and the corresponding
current densities were calculated. The DKT40 atlas was then
employed to form 62 regions of interest (ROIs) (Klein and
Tourville, 2012). More details about the DBTN methodology can
refer to (Nguyen et al., 2016; Nguyen et al., 2018; Li et al., 2020).

Functional Brain Network Controllability
Analysis
Functional Network Construction
DBTN-based source localization formed a basis multivariate time-
series for subsequent functional connectivity analysis using a
measure of weighted phase lag index (wPLI) (Vinck et al., 2011).
The wPLI method is a data-driven technique based on the weighted
phase differences between two time-series signals. The functional

FIGURE 3 | Relationship between the z-scored modal controllability and the z-scored node strength in (A) Healthy subjects and (B) Stroke patients.
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brain network was then constructed by the wPLI values and utilized
for the following brain network controllability analysis.

Brain Controllability Analysis
One of the critical steps in applying network control theory to the
human brain is to define a model for the dynamics of neural
processes (Gu et al., 2015; Karrer et al., 2020). In this study, a
simplified, noise-free, linear, and time-invariant model was
employed to build the brain network dynamic model (Gu
et al., 2015). The model equation can be formulated as follows:

x(t + 1) � Ax(t) + Bu(t) (3)
where x describes the state (that is, the magnitude of
neurophysiological activity) of brain regions over time, and A
is the functional connectivity matrix constructed by the wPLI
method. The input matrix B specifies the control nodes and the
input u denotes the external stimulation. In this study, the
external stimulation of u can be considered as the
experimental paradigm shown on the screen that elicited the
preceding of motor behaviors in the brain.

Themodal controllability was then utilized to evaluate the control
capability of various regions in steering the network system into
different ease level of states (Medaglia et al., 2017).The modal
controllability reflects the ease of a node to push the brain
network system into many different difficult-to-reach states
(Medaglia et al., 2017). Mathematically, it was defined as:

ϕi � ∑N

j�1(1 − λ2j(A))v2ij (4)

vij is the element of the eigenvectors matrix of A and λj is the jth
eigenvalue.

From a cognitive perspective, the brain areas with high modal
controllability may be important in switching the brain between
many cognitive functions that require significant cognitive effort
(Gu et al., 2015). If control energy can be likened to cognitive
effort and if brain states can be likened to cognitive functions,
then the difficult-to-reach state refers to the brain state that
requires significant cognitive effort to reach from the initial
brain cognitive state such as from a resting brain state to a
motor performance state that is cognitively demanding. In this
study, we calculated the modal controllability of the three main
motor brain regions, M1, PMC, and SMA, from the contralateral
sides, and also the psychological brain system of ECN for both
stroke patients and healthy subjects. In this study, the ECN was
extracted from the ROIs located in the prefrontal cortex including
the ventromedial prefrontal cortex and dorsolateral prefrontal
cortex, parietal cortex, and anterior cingulate cortex (Callejas
et al., 2005; Duncan, 2013; Dong et al., 2015).

Statistical Analysis
Linear regression analysis was first performed to investigate the
relationship between themodal controllability and the node strength
(Montgomery et al., 2021). The modal controllability of three
different motor brain regions, M1, PMC, and SMA, were
computed and compared, respectively, between stroke patients
and healthy controls using non-parametric statistical test, Mann
Whitney U test (Nachar, 2008). The modal controllability of ECN
was also compared between stroke patients and healthy controls
using Mann Whitney U test. The baseline modal controllability of
M1, PMC, SMA, and ECN were correlated with the baseline clinical
scores, FM-UL, using linear regression model. Meanwhile, the
changes of modal controllability of the three motor-related
regions and the ECN were also correlated with the changes of
baseline clinical scores from pre- and post-intervention using linear
regression model. False discovery rate (FDR) method was employed
for correction of multiple comparisons (Genovese et al., 2002).

RESULTS

Demographic and Clinical Behavior Data
Table 1 summarizes the demographic information of the stroke
patients including age, gender, site of the lesion, time of stroke, and
clinical assessment scores. Statistical analysis showed that there were
no significant differences between stroke patients and healthy
subjects in terms of age (p > 0.05, t test) and gender (p > 0.05,
chi-square test) (Satorra and Bentler, 2001; De Winter, 2013).

Controllability of Psychological Brain
Network and Motor Brain Regions
InFigure 3, the relationship between themodal controllability and the
node strength was investigated. The results showed that the z-scored
modal controllability was significantly correlated with the z-scored
node strength in both healthy subjects (r = −0.96, p = 1.62e-38) and

FIGURE 4 | (A) Comparison of modal controllability in M1, PMC, and
SMA between stroke patients and healthy subjects. (B) Comparison of modal
controllability in executive control network (ECN) between stroke patients and
healthy subjects. Asterisk represents significant difference (p < 0.05)
after multiple comparison correction.
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stroke patients (r = −0.87, p = 5.21e-22). The negative correlation
between themodal controllability and the node strength are consistent
with previous studies (Gu et al., 2015; Wiles et al., 2017).

Then, the modal controllability of ECN was computed and
statistically compared between the two groups. As shown in
Figure 4B, the modal controllability of ECN in healthy
subjects was significantly larger than the modal
controllability of ECN in stroke patients (p = 0.03).
Following this, the modal controllability of three key motor
regions, M1, PMC, and SMA, were calculated and statistically
compared. In Figure 4A, the modal controllability of SMA in
healthy subjects was significantly higher than the modal
controllability of SMA in stroke patients (p = 0.02, FDR-
corrected). The modal controllability of PMC was
significantly larger in healthy subjects than stroke patients
before multiple correction (p < 0.05, uncorrected), but
insignificant after multiple correction (p = 0.06, FDR-
corrected). No significant difference of modal controllability
in M1 was observed between stroke patients and healthy
subjects (p = 0.46, FDR-corrected).

Correlation Between Baseline
Controllability and Clinical Scores
The relationship between the baseline modal controllability and
the baseline clinical scores (FM-UL) was then explored in stroke

patients. The z-scored baseline modal controllability and FM-UL
scores were computed and correlated using linear regression
model. As shown in Figure 5A, the baseline modal
controllability of M1 was significantly correlated with the
baseline FM-UL scores (r = 0.58, p = 0.01). No significant
correlation was observed between the FM-UL scores and the
modal controllability of PMC, SMA, and ECN.

In order to identify biomarkers to predict the recovery rate of
stroke patients, the changes of modal controllability and the
changes of FM-UL scores at pre- and post-intervention
recordings were calculated and correlated by the linear regression
modal. In Figure 5B, the results showed that no significant
correlation was observed between the changes of modal
controllability and the changes of FM-UL scores based on six
stroke patients’ data, even though very high correlation existed.

DISCUSSION

While current neuroimaging studies have proposed potential
network-level biomarkers to assess the motor control
impairment and better understand the underlying neural
mechanisms on stroke patients (Grefkes et al., 2008a; Bajaj
et al., 2014; Snyder et al., 2021), none of the biomarkers could
provide a “control” concept to specifically describe the “motor
control” deficits. Therefore, the primary goal of this study is to

FIGURE 5 | (A) Relationship between the baseline FM-UL scores and the baseline modal controllability in M1, PMC, SMA, and ECN. (B) Relationship between the
changes of FM-UL scores and the changes of modal controllability at pre- and post-intervention among the 6 stroke patients.
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assess the “motor control” deficits of stroke patients by
performing a high spatiotemporal resolution source imaging
analysis, and employing a specific “control” diagnostic, which
is the modal controllability (Gu et al., 2015). The main findings in
this study are that the modal controllability of SMA and ECN are
significantly lower in stroke patients than healthy subjects. In
addition, the baseline modal controllability of M1 is found to be
significantly correlated with the baseline clinical scores of stroke
patients. To the best of our knowledge, this study represents the
first attempt to apply the measure of “controllability” to
specifically assess the “motor control” deficits caused by
stroke. Besides, this is also the first study to employ the brain
network controllability analysis based on the non-invasive, portable,
and costless neuroimaging modalities associated with a high
spatiotemporal fNIRS-informed EEG source localization approach
(Nguyen et al., 2018). The methodologies utilized in this study may
provide a new perspective to better understand the cognitive control
or motor control impairment of different neurological or psychiatric
diseases, and promote the development of neuromodulation
strategies in an experimentally friendly manner.

In general, most stroke patients suffer from various degrees of
motor deficits, which has been associated with the functional
impairment across different motor control areas such as M1,
PMC, and SMA (Zhao et al., 2018). The PMC and SMA brain
regions are appear to be higher level areas that encode complex
patterns of motor output and select appropriate motor plans to
achieve desired end results, while M1 appears to be relatively
lower hierarchy and decomposes movement into simple
components in a body map, and these simple movement
components are then communicated to the spinal cord for
execution (Graziano, 2006). Previous study has employed
brain connectivity analysis to assess the relationship between
cortical disconnection and motor performance, demonstrating
that the cortical disconnection of M1 and SMA are associated
with the upper/lower extremity motor control performance of
stroke patients (Peters et al., 2018). The results further show that
the SMA is important in the temporal organization of movement
and becomesmore significant in the control of simple motor tasks
if theM1 is injured (Peters et al., 2018), indicating that the SMA is
more involved in performing difficult tasks than M1. However,
the “dis/connection” itself does not have any implication of the
“control” capability, to precisely describe the motor control
deficits and the ability of various brain regions in guiding the
brain into easy or difficult states in response to the tasks.
Therefore, in this study, we employed a novel “controllability”
measure to specifically describe the “control” ability loss of the
above motor regions in stroke patients.

Network control theory is an innovative and leading subfield of
dynamic network theory that offers powerful engineering-based
concepts to examine functional signaling in the networked systems
(Gu et al., 2015). Traditional graph-basedmeasurements such as node
degree, betweenness centrality, and clustering coefficient, describe the
local properties of the network architecture (Bullmore and Sporns,
2009). However, these locally static graphmeasures themselves do not
have any implication to describe the “control” ability of the regions in
controlling the brain state transition (Fang et al., 2021). Differently,
controllability diagnostics are systematic-level measures that describe

the capability of different brain regions in affecting the network
dynamics and steering the brain into various easy or difficult to
reach states (Betzel et al., 2016). For example, themodal controllability
indicates the capability of a specific brain region in controlling the
brain network system into difficult-to-reach states (Gu et al., 2015). In
a control perspective, our results demonstrated that the modal
controllability of SMA in stroke patients was significantly lower
than healthy controls (Figure 4A), indicating the SMA showed
less control ability to guide the brain network system into hard-to-
reach states in stroke patients. Physiologically, as mentioned above,
the SMA ismore involved in performing cognitively demanding tasks
and the disconnection of SMA is associated with motor control
deficits of stroke patients (Peters et al., 2018). Instead of interpreting
the lost capability of motor control performance based on the static
graph measures (dis/connection), our results interpreted the specific
“motor control” deficits of stroke patients with a particular systematic
measure, “controllability”, to precisely describe the “motor control”
ability loss in stroke patients. Specifically, our results indicated that the
motor control deficits caused by stroke may due to the lost capability
of SMA in steering the brain network system into cognitively
demanding states. Prior study reported that a subject’s cognitive
processing and set-shifting speed appears to be coded, to some
degree, in the connectivity strength of bilateral intraparietal sulcus
nodes of the ECN (Seeley et al., 2007). From a control point of view,
our results showed that the capability of ECN to control the brain to
enter some difficult states was lost in stroke patients (Figure 4B). This
may explain the motor impairment of stroke patients in performing
some control-demanding tasks that require higher level cognitive
processing provided by ECN to complete the difficult tasks.

In this study, we also correlated the controllability values with
the clinical scores (FM-UL). In our results, the baseline modal
controllability of M1 showed significantly positive correlation
with the baseline FM-UL scores (Figure 5A). Even though most
studies hypothesized the M1 controlled movement at a simple
level, some researches also demonstrated that the M1 may serve
some complex function than originally hypothesized (Graziano,
2006). Our results further illustrated that the capability of M1 to
steer the brain network system into some complex brain states
that require a lot of cognitive effort may account for the motor
reservation of stroke, and be utilized as biomarkers to predict the
reservation of motor performance in stroke patients at baseline.
Unfortunately, due to the limited sample size of patients who
have both pre- and post-intervention EEG-fNIRS recordings, the
changes of modal controllability could not significantly predict
the changes of clinical scores, although high correlations were
observed (Figure 5B). This will be improved as the immediate
next step once we have more patients with the post-intervention.

In this study, we quantified the contribution of topological
factor (node strength) to the variability in controllability in stroke
patients and healthy subjects, respectively. As reported in previous
study (Jeganathan et al., 2018), lower correlation between the node
strength and the controllability measure indicated that other
network features or factors may influence the nodes’
controllability. In our results, we showed that the correlation
between node strength and controllability in stroke patients was
lower than that of health subjects (Figure 3). Thismay indicate that
the network alterations caused by stroke may break the underlying
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neural control patterns by increasing the effects of other network
features in contributing to the normal control patterns.

While the current investigation provides a new perspective to
interpret the specific motor control deficits in stroke patients, some
limitations and drawbacksmust be acknowledged. First and foremost,
the sample size is relatively small in this study. Meanwhile, the clinical
characteristics of patients are rather heterogeneous, such as lesion size,
location, initial motor impairment (11–61), stroke phase (acute/
subacute) and stroke subtype (cortical/subcortical). These variables
could have certain effects on characterizing the behavioral and
neurological outcomes. Besides, even though a high spatiotemporal
resolution brain imaging approach was employed to reconstruct the
source activities, the brain model utilized for each subject was from a
common brain model, which may induce mild bias when estimating
the cortical activities. The immediate next step will be collected the
magnetic resonance imaging (MRI) data from those participants to
construct the patient-specific brain model, to further increase the
fNIRS-informed EEG source localization accuracy. Moreover, in this
study, we only considered the EEG sources located in the cortical areas
due to the shallow penetration depth of fNIRS (around 1–3 cm) in the
cortex (Liu et al., 2015), but will be improved with the development of
advanced neuroimaging techniques and algorithms. Additionally, the
current study employed a simple linear network dynamic model,
which remains to be improved to account for the nonlinear effect in
future. Finally, as our experimental paradigm asked the subjects to
performmotor control behaviors from a resting state, we assumed this
is a difficult-to-reach process (compared to the brain states transition
between resting to sleeping or resting to resting) that requires
significant cognitive effort from the resting state (especially for
stroke patients), which is consistent with the definition of
modal controllability. In future studies, we may employ other
brain controllability measurements such as average
controllability and global controllability to investigate the
control properties of the brain in stroke and other diseases.

CONCLUSION

This study represents the first attempt to employ the network
“controllability” diagnostic to specifically interpret the “motor

control” deficits caused by stroke. In addition, the current study is
also the first study to apply the brain controllability analysis based
on the non-invasive, portal, and costless neuroimaging tools with
a high spatiotemporal fNIRS-informed EEG source imaging
strategy. The results demonstrated that the modal
controllability of SMA and ECN were significantly decreased
in stroke patients compared to healthy subjects, and the baseline
modal controllability of M1 could be utilized to predict the
clinical scores at baseline for stroke patients. The
methodologies proposed in this study may be extended to
investigate the cognitive/motor control deficits caused by other
neurological or psychiatric diseases, and design neuromodulation
strategies by employing the network control theory in an
experimentally friendly manner.
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