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The emerging chimeric antigen receptor (CAR) T cell revolutionized the clinic treatment of
hematological cancers, but meet its Waterloo in solid tumor therapy. Although there exist
many reasons for this limitation, one of the largest challenges is the scarcity of recognition
for tumor cells, resulting in the undesirable side effects and the subsequent ineffectiveness.
To overcome it, a lung-cancer-cell-targeting peptide termed A1 was used in this work to
reform the scFv domain of CAR by genetic manipulation. As a result, this modified *'CAR T
exhibited the optimized cancer-cell targeting and cytotoxicity in vitro and in vivo. More
importantly, by tuning the sensitivity of CAR to antigen, peptide-based “'CAR T cells could
distinguish tumors from normal tissue, thereby eliminating the off-tumor toxicity in healthy
organs. Collectively, we herein constructed a genetic peptide-engineered CAR T cells by
inserting A1 peptide into the scFv domain. Profitted from the optimized recognition pattern
and sensitivity, “'CAR T cells showed the ascendancy in solid tumor treatment. Our
findings demonstrate that peptide-based CAR T holds great potential in solid tumor
therapy due to an excellent targeting ability towards tumor cells.

Keywords: chimeric antigen receptor, off-tumor effect, peptide, anti-cancer therapy, affinity

INTRODUCTION

In 2020, 10 million of the 19.3 million people diagnosed with cancer have died of cancer. (Sung et al.,
2021). The high fatality rate highlights the urgent requirement to develop effective anti-cancer
treatments. Towards this end, Immunotherapy is a rapidly growing area that utilizes the immune
system’s potential to eliminate tumors, and chimeric antigen receptor T cells (CARs) have powerful
anticancer efficacy. (Grupp et al,, 2013; Gun et al., 2019). CAR is a fusion protein composed of an
antigen recognition moiety (e.g., antibody single chain variable fragments, scFv) and T cell self-
activation signaling moiety (Maher et al., 2002; Sadelain et al., 2013; 2016). The FDA has approved
five CARs products to treat hematologic malignancies. (Schuster et al., 2017; DiNofia and Maude,
2019). Selecting tumor specific antigen (TSA) as targets provides a way forward to significantly
reform the security of CARs (Sadelain et al., 2013; Huang et al., 2020). Nonetheless, cancers barely
show unique antigenic markers (Yong et al., 2017; Qu et al., 2021; Xiao et al., 2021; Chen et al., 2022).
Most antigens are expressed in possibly vital organ tissues, which are called tumor associated
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antigens (TAA), such as MUC1 (mucoprotein 1), EGFR
(epidermal growth factor receptor), ErbB2 (HER2, CD340),
GD2 (disialoganglioside), and PSMA (prostate-specific
membrane antigen) (MacKay et al, 2020). The specific
targeting of these antigens by CARs is limited by normal
tissue toxicity (Parkhurst et al, 2011; Brudno and
Kochenderfer, 2019). To be sure, ErbB2-based designated
CARs therapy intended to treating malignant colon cancer
were demonstrated deadly to patient, largely because
expression of TAA on lung epithelial cells (Morgan et al,
2010). The basical expression levels of EGFR in skin tissue
prompts dose-limiting skin harmfulness (Lamers et al., 2013).
Therefore, CARs targeting to TAA would induce the on-target,
off-tumor toxicity to human organs (Chmielewski et al., 2004;
Morgan et al., 2010; Corse et al.,, 2011; Parkhurst et al., 2011;
Hudecek et al, 2013; Lamers et al, 2013; Brudno and
Kochenderfer, 2019). Targeting molecules with low affinity to
TAA may provide a way forward for design of CARs in treating
malignant solid tumors.

The decision of single chain spacer (Milone et al., 2009),
extracellular and costimulatory domains in the design of CAR
plasmid significantly affect CARs capacity and performance. Be
that as it may, little is had some significant awareness of the
impact of CAR binding affinity. It has been reported that
increasing affinity between receptor and antigen beyond a
certain point may adversely affect T cell responses (Schmid
et al, 2010; Tan et al,, 2015; Richman et al.,, 2018). T cell’s
activation may require the accumulated stimulation from a few
high-affinity or large number of low-affinity TCRs (Thomas et al.,
2011; Tran et al, 2013; Brudno and Kochenderfer, 2019).
Previous work from Chmielewski etc. (Thomas et al., 2011;
Tran et al.,, 2013; Brudno and Kochenderfer, 2019; Ghorashian
et al, 2019) proposed that high-affinity CARs showed less
separation between target cells with high or low antigen
expression levels. By increasing the KD (reduced affinity) 2- to
3-log of scFv used in CARs, a significant enhancement was
accomplished within the restorative list for ErbB2 and EGFR
CARs (Caruso et al, 2015; Liu et al, 2015). Additionally,
Pameijer, C. R. ]J. et al. discovered that the scFv could be
substituted with peptide ligand in CARs therapy (Pameijer
et al., 2007; Whilding et al,, 2017; Wang et al., 2020). With
the lower affinity antigen receptor than scFv, peptide-based CARs
would be activated only when they were docked with
overexpressed TAA on tumor cells but not with low, baseline
TAA expression on normal cells (Arcangeli et al., 2017; Drent
et al., 2017; Walker et al., 2017; Drent et al., 2019; Di Roberto
et al., 2020).

The CAR’s scFv can be substituted with a peptide ligand that
interacts with tumor-overexpressed receptors. Chimeric NKG2D
receptors (Zhang et al., 2006; Deng et al., 2019; Frazao et al,
2019), IL-13-cytokine CARs for IL-13R2-expressing tumor cells
(Kahlon et al., 2004; Sengupta et al., 2014; Brown et al., 2016),
integrin v6-binding peptides (Pameijer et al., 2007; Whilding
et al, 2017), and heregulin-chimaeras are all presently in
preclinical and early clinical trials. Such peptide-based
chimeric antigen receptors are proved less immunogenic than
traditional scFvs, since they are human protein and are hence

Peptide-Based CAR T Cells

liable to be perceived as self-proteins. Peptides with good binding
ability have low molecular weights and it is feasible to link
peptides in tandem repeats in one molecule. To evaluate
performance of peptides in a CAR format, we designed a
peptide-based CAR using peptide A1 (WFCSWYGGDTCVQ).
Peptide A1 was discovered and identified to specifically bind to
the human lung carcinoma A549 cells (Dong et al., 2013). We
integrated the peptide in CAR designs and surveyed the
antitumor capacity of CARs. In vitro and in vivo, we
demonstrated that the peptide CARs did not compromise the
anti-tumor efficacy and improved their immunotherapeutic
potential.

MATERIALS AND METHODS

Peptide-CAR Lentiviral Design and

Construction

The CAR constructs are contained in a Lentiviral vector under
control of hEF1-a promoter, the Lentiviral vector, which was a
gift from the Icartab Biomed of Suzhou. Cloning was done in Stbl
3 E. coli cells. To produce virus, HEK 293T cells (the human
embryo kidney cells) are dealt with PEI (sigma) with the second
generation Lentiviral CAR vector, a pSPAX2 and a pMD 2.0 G
packaging vector.

The sequence of Al-CAR is as follows: Al peptide
(WFCSWYGGDTCVQ), linker (GGSGGQ), c-Myc tag
(CAE84874, aa 1-11), CD8 (transmembrane and cytosolic,
NP_001759, aa 167-235), 4-1BB costimulatory signal
(AAA53133, aa 214-255) and CD3-{ (cytosolic, NP_932170.1,
aa 52-164). Scramble-CAR sequence is identical to A1-CAR, with
the exception of the scramble peptide (DCQYFWSCGGWVT).
Cetux-CAR sequence: the cetuximab light chain (PDB:1YY9_C,
aa 1-213), Whitlow linker (AAE377080.1, aa 1-18), and
cetuximab heavy chain (PDB:1YY9_D, aa 1-221).

Reagents and Cell Culture
Human recombinant protein IL-2 (cat. #11848-HNAY1) were
purchased from BD Biosciences. Human T cell-activated CD3/
CD28 beads (cat. #11130D) and FITC-labeled human EGFR
protein (cat. No. EGR-HF2H5) were purchased from ACRO
Biosystems. FBS (cat. #SV30087.02), RPMI1640 medium (cat.
#SN30809.06), and penicillin-streptomycin  solution (cat.
#RF67729.18) were obtained from HyClone. Anti-IFN-y (cat.
#BS9841) was purchased from BOSTER. Human Interleukin-13
ELISA Kit (EK1162) were purchased from sabbiotech. Anti-
GZMB (granzyme B) (cat. #24699-2-SO) was purchased from
Proteintech. Antihuman CD3 (cat. #17-9930-60) was purchased
from eBioscience. D-Luciferin potassium salt (cat. #M8873) was
bought from AbMole. Anti-CD31 (cat. #ab37167-050) and IFN-y
ELISA Kit (cat. #70-EK1802) was obtained from Multisciences.
CD37CD28 Dynabeads were purchased from Life Technologies.
The human renal carcinoma cell line ACHN, 786-0 and the
non-small human lung cancer cell A549 cell line, and MCF-7 cell
line were purchased from the Chinese Academy of Sciences cell
bank, which were verified by short pair rehash composing
strategy. The MDB-MB-231 and HEK-293T was a gift from
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Prof. Guangli Suo (Chinese Academy of Sciences). All tumor cells
are growing in5% CO2 at 37°C in the Thermo CO, incubator.

T Cell Isolation, Activation and CAR

Transduction and Generation

1.5 x 10 7 peripheral blood mononuclear cells (PBMC) were
segregated from the human blood according to the producer’s
guidelines. To generate CARs, T cells were segregated from
PBMC by flow cytometry (BD Aria II)following anti-CD3
labeled. Lymphocytes were transduced with lentivirus relating
to different second generation CARs develops. Briefly, the human
T cells were enacted on day 0 with against human CD3/CD28
Dynabeads and cultured in T cell culture medium with 10% FBS
and 20 IU ml™" recombinant protein human IL-2. The activated
human T cells were transduced using the Lentivirus generated
from 293 T cells with the Lentiviral CAR vector, a pSPAX2 and a
pMD 2.0 G packaging vector with PEI (1 mg/ml) on day 3. The
activated human T cells were spined at 2000 g with the Lentivirus
and polybrene (7.5 ng/ml) mixture. After two spin-fections, cells
were allowed to grow until day 10 and along these lines moved to
capacity in fluid nitrogen before functional assays. For every
practical examine, all kinds of CARs were obtained from the one
human. They were all under the same conditions to expansion. In
specific analyses CARs were sorted on BD FACS Aria to acquire a
pure population of transduced, c-Myc positive T cells on day 10.
The number of CARs was calculated using absolute counter tube
by flow cytometry based on beads.

Characterization of Peptide Surface Display
and Binding Assays

The positive rate of the CARs was portrayed utilizing a flow
cytometry based assay. For most CARs, the positive rate was
stained with c-Myc antibody to evaluate binding to effectively
transduced cells. Briefly, this experiment was carried out at 4°C
and cells were prepared in PBS buffer. The CARs was incubated
with c-Myc antibody at 4°C for 15 min. Then the binding capacity
of CARs was estimated with anti-c-Myc antibody.

In Vitro Cytotoxicity and Activation Assays
CARS’s cytotoxicity was appeared utilizing different CARs with
target cells co-culture measures. For cytotoxicity, cocultured the
CARs with A549-luc cells overnight and supernatants were
gathered and utilized for IL-2 and IFN-y ELISA estimations.
The A549-1uc cells (human lung cancer cells with stable luciferase
express) expressed EGFR naturally. A549-luc cells were cultured
with RPMI 1640, and A1-CARs were included with the A549-luc
cells for 18 h hatching. Then add D-Luciferin potassium (15 mg/
ml) into the supernatants and the number of lived A549 cells were
measured with Cytation 3. Results were analyzed based on
luciferase activity: % killing = [RLU (relative light units) of
control group - RLU of test group]/(RLU of control group) x
100. Supernatants of verious group were gathered to be utilized of
IFN-y estimations (Multisciences). For proliferation assays,
PBMCs and CARs were expanded and then sorted on c-Myc-
positive CARs.

Peptide-Based CAR T Cells

In Vivo Studies
Female nude mice (Cavens) aged 5 weeks were raised in good

environmental conditions, which is specific pathogen-free (SPF)
conditions. The ethical approval number for all animal
experiments is SINANO/EC/2019-013 approved by the local
Ethical Committee for Animal Experiments.

The A549 cells were screened by adding with puromycin
(I mg/ml) and sorted by flow cytometry after transfect with
the plvx-puro/luciferase lentiviral vector.

For xenograft tumor studies, nude mice were given s. c. injection
with A549 cells (1x10°) suspended in PBS. For CARs treatment,
mice were given i. p. injection with 200 mg/kg cyclophosphamide
for depleting circulating lymphocytes on the fourth day (Li et al,
2017). After 6 days, 5 x 10° of scEv-T cells or peptide-based CARs
were given i. v. injection on days 10 and 17.

The size of the tumor volume was measured through the
bioluminescence by photoing with the IVIS Lumina II system
(PerkinElmer). A total of five measurements over a 51-day period,
one every 6 days. Before all the mice were sacrificed on day 51,
collecting various organs and all tumor tissues. The dimensions of
tumor were measured with calipers, and the volume of tumor was
figured: V = 1/2 ab®, where a and b represented the tumor length
and width, respectively.

Immunohistochemistry

The articulation human IFN-y and GZMB in cancer tissues of
each not set in stone by IHC with comparing antibodies.
Advanced images were taken by a Zeiss Scope Al, and the
stained region of immuno-positive level was surveyed by the
computerized picture breaking down programming Image].

Statistical Analysis

All the data were expressed as means + SD. Histograms and line
charts were generated by GraphPad Prism 5.0. T tests were
utilized to decide the p values. *p < 0.05, **p < 0.01, **p <
0.001, ****p < 0.0001.

RESULTS

Design and Characteristics of

Peptide-Based CARs

In this study, peptide-based CARs were developed following the
main design of single-chain antibody CARs, in which the peptide
replaced the scFv as the recognition module. Peptides are much
shorter than scFvs and it is feasible to link peptides in tandem
repeats in one molecule. For the construction of these CARs, we
employed the Al peptide (WFCSWYGGDTCVQ) specific for
A549 cells (Dong et al, 2013; Liu et al, 2019). For most
experiments, a scramble peptide (DCQYFWSCGGWVT) was
designed and served as the negative (nonspecific) control (Li
et al,, 2018), and Cetuximab scFv was chosen as the positive
control. We named them A1-CAR, scramble-CAR and scFv-
CAR, respectively. (Figure 1A). We tested the recognition ability
of the peptide CAR by developing CAR-Jurkat (Figure 1B).
Before developed CARs with Lentivirus, T cells sorted from
human PBMC were activated with CD3/CD28 Dynabeads for

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org

June 2022 | Volume 10 | Article 928169


https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

Liu et al.

Peptide-Based CAR T Cells

A Al-peptide

|

EF-1alpha promoter

Scramble peptide

|

EF-1alpha promoter

scfv-EGFR

'

EF-1alpha promoter

B

c-Myc

c-Myc -

c-Myc

CD8 Hinge CD8 Tra... ' 4-1BB intracellular ~ CD3 Zeta

CD8 Hinge CD8 Tra... | 4-1BB intracellular CD3 Zeta

CD8 Hinge CDS8 Tra... ' 4-1BB intracellular CD3 Zeta

>
>

Negative 0.082% || A1-CAR

95.0%

Scramble-CAR 87.2%1 scFv-CAR 93.2%

10M 7

SSC-H

FL2-AZAT-A

Negative control
A1-CAR-T 57.2%
Scramble-CAR-T 56.3%

scFv-CAR-T 52.0%

FIGURE 1 | Design and characteristics of peptide-based CARs. (A) Lentiviral constructs of peptide-based A1-CAR, Scramble-CAR and EGFR-scFv-CAR. (B)
Surface expression of the CAR on Jurkat cells at the end of the primary expansion on day 3 detected by binding to c-Myc antibody. Representative of three donors. (C)
Surface expression of the CAR on the human T cells at the end of the primary expansion on day 3 detected by binding to c-Myc antibody. Representative of three donors.

3 days. T cells were successfully transduced, and the positive rate
of peptide-based CARs was almost comparable to or lightly
higher than scFv-CARs (c-Myc-positive, typically 40-80%
transduced) (Figure 1C). As can be seen from a FACS-based
assay, the Al-peptide CAR successfully transduced into T cells.
These results reveal that peptide is easily displayed as CAR
recognition modules on human T cells.

Peptide Based CARs Could be Effectively
Activated and Showed Killing Effect on A549

Tumor Cells in Vitro

We firstly assessed the function of Al peptide on the CARs. As
higher expression of CAR is known to upgrade the proliferation
and lysis target cell properties of CARs (Sadelain et al., 2013; 2016),
the absolute number of cell divisions was evaluated. Multiple
rounds stimulation by co-culturing with mitomycin-C-treated
A549 cells, induced persistent cellular expansion of A1-CARs.
The number was slightly higher for peptide-based CARs

compared to traditional scFv-CARs (Figure 2A). Having
appeared the authoritative specificity of peptide CARs, we
decided to investigated functional properties of peptide-based
CARs, such as targeting killing effect and the function of
cytokine release. To investigate if A1-CARs targeting A549 cells
could specifically recognize and lyse A549 cancer cells, a
bioluminescence-based cytolytic assay was settled using the
human lung carcinoma A549-luc cells. As demonstrated in
Figure 2B, The L1-CARs lysed the A549-luc cells in a dose-
dependent way. No noteworthy differences in cytotoxicity were
observed between peptide-based CARs and scFv-CARs
(Figure 2C). Meanwhile, the function of cytokine release of Al-
CARs following co-cultured with A549 lung cancer cell was
assessed. Upon incubation of A1-CARs with A549 cells, there
were great increases in IFN-y, GM-CSF and IL-3 in the culture
supernatants of A549 cells-specific CARs compared to negative
(nonspecific) control (Figures 2D-F). These results reveal that the
kill ability of the Al peptide-CARs to A549 tumor cells was
specific. Specific cytotoxicity appeared in a dose-dependent way.
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ELISA Kit (n = 4). Data represent the mean + SD. T tests were utilized to decide the p values.
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That came to the conclusion that the peptide-based CARs have
great specific cytotoxicity to tumor cells.

A1-CARs Are More Effective in Inhibiting the

Growth of Xenograft Tumors
The superior killing ability of our A1-CARs target A549 cells
prompted us to further investigate its tumor-killing properties in
vivo. The antitumor activities of A1-CARs in vivo were assessed in
the xenograft mouse model.

A549-luc is a lung cancer cell line with stable luciferase express.
We s. c. inoculated nude mice with A549-luc the human lung
carcinoma cells on day 0. Mice were burdened with tumors were

treated with 100 uL PBS or 100 pL, 200 mg/kg cyclophosphamide
(CTX) on day 4. For CARs treatment in part of cyclophosphamide
group, mice were not only injected i. p. with CTX to deplete host
lymphocyte compartments on day 4. For CARs treatment, mice
were given i p. injection with 200 mg/kg cyclophosphamide for
depleting circulating lymphocytes on the fourth day. After 6 days,
5 x 10 ® of scFv-T cells or peptide-based CARs were given i. v.
injection on days 10 and 17. (Figure 3A). For PBS group and CTX
group, mice were injected i. v. with 100 uL PBS or CTX. The
scramble-CARs was used as negative control. The positive rate of
all group CARs was greater than 38% (Figure 1C). Representative
bioluminescence images of tumor-burdened mice in each group are
shown in Figure 3B. The total brightness (P/s) of each group
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FIGURE 3| Bispecific CARs are more effective in inhibiting the growth of xenograft tumors. (A) The injection process of CARs to the mice with tumor xenografts. (B)
A1-CARs demonstrated potent antitumor activity indicated by bioluminescent imaging with the IVIS Lumina Il system (PerkinElmer) every week for a total of five times (C)
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(Figure 3C) and tumor volume (Figure 3D) were recorded. The
ability of inhibit tumor growth of A1-CARs was consistent with
what we observed in vitro. There are clear differences between these
groups. In xenograft mouse models, two doses of A1-CARs inhibited
tumor growth. Notably, one of four (25%) of the mice cells were

tumor-free after two dosages in group A1-CARs on days 51, but
neither in group scFv-CARs group nor in scramble-CARs group.
The tumor growth rate in A1-CARs group or scFv-CARs group
treated mice was 82.65% or 32.73% lower than that in control
scramble-CARs group, respectively (Figure 3C). Mice were
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euthanized once the tumor size reached 2000 mm’. The survival
curve also shows the differences in survival for all CARs groups
contrast with the PBS and CTX group were statistically significant
(p < 0.01). And A1-CARs more significantly decreased the tumor
growth contrast with Scramble-CARs or scFv-CARs (Figure 3E).

These results confirm that A1-CARs are very effective in
suppressing tumor growth.

Peptide-Based CARs Show Better Cytokine

Release and Persistence in Vivo

On day 51, tumor masses were detached, fixed for IHC. And then,
Tumor masses were stained by IFN-y and GZMB. THC results
revealed that the secretion level of IFN-y and GZMB of A1-CARs
group was significantly higher compared to the scramble-CARs
group (Figures 3A-C). The area of IFN-y was 63.6% more in Al-
CARs treated tumors more than scFv-CARs treated, 6 times more
than the untreated tumors (Figure 5B). As shown in Figure 5C,
the area of GZMB was 110.5% more in A1-CARs treated tumors
more than scFv-CARs treated, 7 times more than the untreated
tumors.

To trigger elimination of large tumors, CARs may require
robust expansion ability and long-term functional persistence
in vivo. We evaluated the durability of peptide-based CARs in
mice burden malignancies to further verify mechanisms of Al-
CARs treatment on tumor progression. Blood was obtained
1 day and 21 days following the first CARs injection. Then, we
measured the amount of CD3" T cells. Substantial differences
were observed in different groups mice bearing tumor. Al-
CARs showed greater persistence at day 31 than scramble-
CARs or scFv-CARs. (Figures 4D,E), indicating that
small peptide is beneficial for survival of CARs contrast
with scFv.

Treatment With A1-CARs Reduced
On-Target, Off-Tumor Toxicity

We further investigated the cytotoxicity against normal organs
and tissues. As observed in H&E stained tissues, no visible side
effects were observed upon repeated administration. The lung
tissue of mice in the scFv-CARs group showed obvious fibrosis,
with fewer alveoli and denser cells, showing obvious tissue
lesions. Unlike the scFv-CARs group, immunogenicity or on-
target-off-tumor effect did not adversely affect the lung tissue in
A1-CARs group (Figure 5A).

In order to verify whether the second-generation CARs have
toxic side effects on other normal organs and tissues, H&E
staining was performed and photographed under an upright
microscope. As results shown in Figure 5B, the heart, liver,
spleen, kidney and intestine of mice showed normal, with no
group differences and no evidence of damaged lesions.

Under instant detection by bioluminescence microscopy, the
various organs (lung, heart, liver, spleen, kidney, brain and
intestine) of the mice showed no tumor metastasis and no
significant size differences (Figure 5C). As shown in
Figure 5D, the body weights of each group mice were non
significantly changing by CARs.

Peptide-Based CAR T Cells

We conclude that peptide was beneficial for generating CARs
that are effective and safe in suppressing tumor growth in
xenograft mouse model.

DISCUSSION

Our findings settle one of the governing challenges of CARs
therapy for treating solid tumors: the expression of TAA on some
organ tissues. In the results, we certified the ability of peptides-
based CARs to target the tumor cells in vitro assays and be
delivered to the interior of solid tumors in vivo assays, which
indicated that peptide-based CAR would be an alternative
treatment for relapsed and refractory solid tumor.

Compared with the great progress of CARs in the treatment of
hematological tumors, many innovations are needed for CARs to
defeat solid tumors. One of the major difficulties is the lack of unique
antigens. Most antigens recommended as CARs focuses to treat solid
tumors are selective to particular disease types, and restricted data on
antigens for most of solid tumors put numerous cancers far off for
CARs treatment (Dotti et al., 2014). To some extent, the effect of
CARs depended on the differential articulation of the objective
antigen in tumor and normal tissue. Existing information showed
that CARs with known serious on track, off-cancer poison can be
reengineered by partiality tuning, holding effect in vivo while
lessening or diminishing poisonousness. Specifically, the 4D5
CAR in view of trastuzumab had deadly poisonousness (Morgan
et al,, 2010), because of acknowledgment of physiologic degrees of
ErbB2 communicated in cardiopulmonary tissues (Gross and
Eshhar, 2016). Past work from Chmielewski and Xiaojun Liu
(Thomas et al, 2011; Tran et al, 2013; Brudno and
Kochenderfer, 2019; Ghorashian et al,, 2019) proposed that the
high partiality CARs displayed less segregation between target cells
with high or low objective articulation levels. Through lessening the
KD of scFv utilized in CARs by 2-to 3-log, a significant improvement
in the helpful record for ErbB2 and EGFR CARs. Here, compared to
the high liking scFv, we exhibited that CARs with peptides showed
similarly powerful effect against target cancers.

Despite the target A549 cell was used to confirm this of-idea, this
approach maybe apply in the other targets, such as antigen Her-2,
FAP and ErbB2 and so on (MacKay et al., 2020). Maybe they can
further enhance the activity of antitumor, in spite of that those targets
have serious side effects in CARs with single-chain antibodies.

As with therapies combining different checkpoint-blocked
inhibitors, combining CARs with other methods is the best
choice for solid tumors, such as antibodies, radiation, or
small-molecule drugs. The results of the EGFR-targeted and
fibrin-fibronectins-targeted CARs demonstrate that the way of
peptide-based CAR can be used in a variety of tumors. When
peptides with appropriate specificity are recognized, without any
modification, they can express by inserting into the backbone of
the CAR. The scope of syngeneic tumors that can be targeted by
CARs in mouse xenograft model is broadened by building a
platform for the production of peptide-based CARs. Due to
peptides are easy to express, as antigen recognition domains
for CARs, they are attractive (Pameijer et al., 2007; Whilding
et al,, 2017; Wang et al., 2020).
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CARs therapy are remarkable potential to treat cancers (Larson
and Maus, 2021). Keishi Adachi’s et al. reported that, in addition to
serving as direct antitumor effector cells, CARs can also serve as
cellular carriers to transfer immunomodulatory molecules into the
tumor microenvironment (Adachi and Tamada, 2018). For
improvement of the CARs therapy effect, they developed CARs
producing CCL19 and IL-7 to simulate the CARs. This strategy
could recruit DCs and T cells to tumor environment, strengthening
the treatment effects of CARs toward solid tumors. The
combination of immune-regulatory factors with CAR improved
the anti-tumor effects of CARs. In our work, the peptide-based
CARs were produced and optimized, and their functionalities
(cytotoxicity, tumor growth inhibition, efc) were verified in vitro
and in vivo. Peptide-based A1-CARs recognizing A549 cells
showed ligand specific cytotoxicity, which were efficacious in
mouse xenograft model. We plan to further modify these
peptides CARs for expression of checkpoint pathway inhibitors,
chemokines, and cytokines to enhance the CARs trafficking to
tumor tissues and evaluate their anti-tumor functions.

Mouse xenograft models still remain universal for the CARs
study (Wilkie et al., 2008; Craddock et al., 2010; Johnson et al.,
2015). Although these models enable human tumor and CARs
studies, several disadvantages are still encountered. For instance,
these models lack intact innate as well as adaptive immunity, and
are not capable of depicting the clinical immune potential.
Compared with xenograft models, immunocompetent or PDX
(patient-derived xenografts) models represent a better option for
the evaluation of safety during treatment. Therapeutic strategies
without immune depletion are in demand, and endogenous anti-
tumor immunity profile is significant in tumor surveillance (Fong
et al, 2009). Researchers should pay more attention on
combination therapies (e.g. cytokine therapies and checkpoint
blockade)for improved treatment effect of solid tumors.

Given that the human lung carcinoma is the most common
tumor type, we will determine whether peptide-based CARs
therapy could exert influence to diverse other tumor models.
Our results endow considerable importance to the clinic. On one
hand, this strategy shows capacity to enhance the safety and
clinical potential of CARs for validated targets. On the other
hand, the applicability of our design can be extended to targets
that are not druggable previously with CARs due to on-target
toxicity. Beyond doubt, CAR peptides with higher safety profile
and efficacy can be designed for various common carcinomas.

Taken together, a safe and effective peptides CAR design is
proposed here, and in vitro and in vivo, T cells treated by peptides
CAR lentivirus leads to specific and potent inhibition of the
human lung carcinoma A549 cells. These results demonstrate
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