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In the development of bioinspired nanomaterials for therapeutic applications, it

is very important to validate the design of nanomaterials in the disease models.

Therefore, it is desirable to visualize the change of the cells in the diseased site at

the nanoscale. Heart diseases often start with structural, morphological, and

functional alterations of cardiomyocyte components at the subcellular level.

Here, we developed straightforward technique for long-term real-time

intravital imaging of contracting hearts without the need of cardiac pacing

and complex post processing images to understand the subcellular structural

and dynamic changes in the myocardial infarction model. A two-photon

microscope synchronized with electrocardiogram signals was used for long-

term in vivo imaging of a contracting heart with subcellular resolution.We found

that the structural and dynamic behaviors of organelles in cardiomyocytes

closely correlated with heart function. In the myocardial infarction model,

sarcomere shortening decreased from ~15% (healthy) to ~8% (diseased) as a

result of impaired cardiac function, whereas the distances between sarcomeres

increased by 100 nm (from 2.11 to 2.21 μm) in the diastolic state. In addition,

T-tubule system regularity analysis revealed that T-tubule structures that were

initially highly organized underwent significant remodeling. Morphological

remodeling and changes in dynamic activity at the subcellular level are

essential to maintain heart function after infarction in a heart disease model.
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Introduction

Cardiac disorders remain a common cause of death worldwide and are likely to

exhibit an increasing trend in the coming decades (Pittet and Weissleder, 2011). The

cardiac function appears to be tightly regulated by the complex, tiered connection that

arises from the molecular-level dynamics associated with force generation in

cardiomyocytes and the geometry, stiffness, and contractility of the whole tissue; a
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small amount of interference in one of the processes may result in

heart function failure (Sonnenblick, 1968; Kobirumaki-

Shimozawa et al., 2016; van der Velden and Stienen, 2018;

Yamada et al., 2020; Tobacman, 2021). For instance, errors in

contractile features can lead to an overload in volume or pressure

in the heart, which is commonly seen in ischemia/reperfusion (I/

R) injury and myocardial infarction (MI) (van der Velden and

Stienen, 2018). Additionally, impairment of one of the contractile

networks may interfere with not only force generation but also

the signaling processes that transmit information to cellular

systems to control gene expression, protein synthesis, and

protein degradation, all of which are closely related to the

activities in the nucleus (Gautel, 2008; Chahine et al., 2015).

Thus, an accurate measurement of the cardiac contractile system

improves our present understanding of the mechanism of heart

diseases.

In general, the assessment of structural and functional

cardiac damage post-MI can be achieved using

electrocardiogram (ECG), echocardiography, endoscopy,

magnetic resonance imaging, positron emission tomography,

single-photon emission computed tomography/X-ray

computed tomography, or fluorescence reflectance imaging. In

these approaches, spatial resolution is limited to ~100 µm (Jung

et al., 2013; Kobirumaki-Shimozawa et al., 2016). More detailed

studies at the (sub) cellular level are often conducted in vitro

using X-ray, atomic force microscopy, transmission electron

microscopy, or optical microscopy (Moss and Fitzsimons,

2002). However, these in vitro experiments do not allow for

the study of cardiomyocytes under physiological conditions.

With recent advances in fast and sensitive detectors, high-

power lasers, and high computational power, it is now possible to

obtain in vivo images of hearts with very high spatiotemporal

resolution using two-photon microscopy. The development of

two-photon intravital microscopy combined with various

window chambers for organ imaging has proven valuable in

studies of biological processes in vivo due to the ability to

visualize deep into tissues at high resolution with low

phototoxicity (Denk et al., 1990; Rubart, 2004; Kuo et al.,

2019). However, due to the rapid motion of respiration and

the contracting myocardium, in which the heartbeat rate of mice

is approximately 6–8 Hz, it is very challenging to capture

dynamic subcellular events in beating hearts (Li et al., 2013;

Matsuura et al., 2018). In addition, the left ventricular (LV)

position, which is located below the rib cage and sternum, cannot

be easily reached by an objective lens. Consequently, cardiac

studies have relied mainly on noncontracting in vitro

preparations, or Langendorff heart preparations (Matsumoto-

Ida et al., 2006; Bub et al., 2010; Botcherby et al., 2013) and

heterotopic heart transplantations (Li et al., 2012), which do not

represent physiological conditions.

To investigate beating hearts in mouse models, several tissue

stabilization techniques for intravital imaging have been

developed to reduce the considerable movement that occurs

when a heart contract (Chilian and Layne, 1990; Dumont

et al., 2001; Li et al., 2012; Matsuura et al., 2018). However,

the required temporal or spatial resolution for subcellular

imaging of cardiomyocytes has yet to be attained. Recently,

cardiac pacing was introduced in the intravital microscopy

system to achieve prospective cardiac gating (Lee et al., 2012;

Vinegoni et al., 2013; Vinegoni et al., 2015). With image

processing algorithms, such as sequential average segmented

microscopy, it is possible to image individual cardiomyocytes

at the cellular level (Jones et al., 2018). However, this approach

requires pacing at speeds higher than that of a regular heartbeat;

at these higher speeds, the heart no longer beats on its own, thus

preventing long-term observation. Therefore, there is a clear

need to develop long-term in vivo imaging techniques for beating

hearts with subcellular resolutions.

In our previous experiment (Huang et al., 2021), we have

shown that real-time intravital imaging could be used to visualize

the lipid nanoparticle loaded monocytes in the heart disease

model. By mimicking the natural recruitment of monocytes to

the ischemic tissues, immune cells were used to deliver

nanotherapeutics to the heart disease sites, which was

validated in vivo by intravital imaging. However, only the

movement of the monocytes were monitored. We were not

sure that intravital imaging could be used to reveal the

structural changes of diseased cells with subcellular resolution,

which is important for the evaluation of the design of targeted

nanotherapeutics. Many experiments have been carried out to

investigate the morphology of organelles within cardiomyocytes

in the myocardium in vitro or ex vivo, to a lesser extent, in

motionless tissue, and in healthy beating hearts (Guo and Song,

2014; Kobirumaki-Shimozawa et al., 2016; Tsukamoto et al.,

2016; Li et al., 2018). To the best of our knowledge, none of

these experiments established systematic studies that showed a

correlation between the structural and dynamic changes of these

organelles in a disease state in animal models due to the weak

condition of the diseased animals. Therefore, little is known

about the ability of the myocardium to generate force throughout

these pathological conditions (Wei et al., 2010).

In this study, we demonstrate that long-term cardiac imaging

of beating hearts inmousemodels at subcellular resolution can be

achieved using a two-photon microscope equipped with a high-

speed resonance scanner and synchronized with ECG signals in

combination with a tissue stabilizer. Even though the acquisition

strategy of sequence segmentation has been implemented in

several imaging techniques (Lee et al., 2012; Vinegoni et al.,

2013; Aguirre et al., 2014; Kuo et al., 2019), the primary

difference in our system is the synchronization approach. For

instance, in Weissleder’s system (Aguirre et al., 2014), the

synchronization source came from the scanner, where the

image acquisition rate was relatively slower than the mouse

heartbeat rate. The signal generated by the scanner was

recorded, processed, and used to pace the heartbeat at 8 Hz,

which then allowed their recording system to capture the image.
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In other words, the heart was no longer beating on its own. Our

system was developed to solve the abovementioned problem.

Since the image acquisition speed in our system was four to five

times faster than the mouse heartbeat, heartbeats were used to

trigger the resonance scanner to capture the images. In this case,

the heartbeat was regular, allowing long-term imaging of

dynamic events at sufficient resolution, which is suitable even

for disease models with conditions that make the heart weaker

than those of healthy models. Thus, our technique offers several

advantages over previously reported methods, including fast

acquisitions, high-resolution images, and easy handling while

allowing the animal to maintain a regular heartbeat (Lee et al.,

2012; Vinegoni et al., 2015). Using this system, we successfully

imaged the structural and dynamic activity of the contractile

machinery, including T-tubulin, sarcomeres, and nuclei, of

cardiomyocytes in vivo with sufficient spatiotemporal

resolution together with clinical measures of heart function

(ECG and echocardiography in both healthy and diseased

mouse models.

Materials and methods

Imaging system setup and real-time data
processing

The heart imaging system consists of an upright FVMPE-RS

multimode multiphoton scanning microscope (Olympus) and a

tunable mode-locked Ti: Sapphire femtosecond laser

(Chameleon Vision II, Coherent) with a low-magnification air

objective (XL Fluor ×5 with 0.14 numerical apertures (NA),

Olympus) and a high-NA water-immersion objective (XLPlan

NW MP 25 × 1.05 NA 2 mmWD, Olympus) (Tang et al., 2019;

Chen et al., 2021; Huang et al., 2021).

Two personal computers (PCs) were used in this system: one

was utilized to record all physiological and timing data from the

ECG, while the other was used to control the microscope and

acquire images. An Ethernet crossover cable was used to

communicate between these two PCs. The ECG signal was

acquired from a set of ECG leads, which passed through a

low-noise differential amplifier (PCI-6229; National

Instruments) and recorded by a DAQ (PCI-6229) at a 10-kHz

sampling rate. We followed previous works in ECG denoising

strategies, using discrete wavelet transformation (DWT) to

remove spurious signals and trends (Mali et al., 2011).

Wavelet decomposition was performed in a specified rolling

window of 1,000 data points (equivalent to 100 ms) by

decomposing the signal using db02 (Daubechies family)

wavelets and the threshold using minimax (Donoho and

Johnstone, 1998). When the QRS complex appeared in the

window, the processed signal peaked around the R-wave.

When the R-wave was identified, the program yielded a

trigger request to the digital output, which later generated a

pulse (pulse train frequency 25 Hz, duty cycle 25%) along the

trigger line at a specified delay, prompting the microscope system

to acquire a scan line; thus, the acquisition was completed at a

given phase of the contraction cycle. The DWT was used to

define the location of the QRS complexes and the start of the R

waves. The timing signals were recorded using a program written

in LabVIEW (National Instruments).

Tissue staining

Membrane-specific fluorescent dye di-2-anepeq and nuclear

dye Hoechst 33,342 were used to label the cardiomyocytes (all

were acquired from Invitrogen). Thirty microliters of di-2-

anepeq stock solution (5 mM) and 30 µl of Hoechst were

administered via the tail vein 5–10 min before imaging.

Surgical preparation for imaging

All experimental animal protocols and procedures were

approved by the Institutional Animal Care and Use

Committee of the Academia Sinica (Protocol number 19-

06–1,325). Following the thoracotomy incision in the fourth

left intercostal space, retractors, sutures, or hemostatic clamps

were inserted in the upper and lower ribs of the incision area;

then, the mediastinal window was gently opened to expose the

anterior and lateral aspects of the LV. The mouse was covered

with a surgical blanket that only left the mediastinal window

open. Then, the mouse was transferred to the microscope stage

for tissue stabilizer installation and subsequent imaging.

Following the procedure, the stabilizer was positioned close to

the heart surface by adjusting the position of the stabilizer arm. A

drop of buffer saline was applied on the surface of the heart to

prevent the tissue from drying. The stabilizer was gently placed in

contact with the beating heart and carefully adjusted by

controlling the custom-made micromanipulator.

Image acquisition

During the acquisition process, the images were recorded in

FLUOVIEW FVMPE-RS (Olympus software), and the timing

waveforms were obtained by a LabVIEW program as described

earlier. After the stabilizer was positioned on the heart, images

were first captured with low magnification to examine the broad

view of the heart. To observe the sarcomere and nucleus, di-2-

anepeq and Hoechst were excited at a 980-nm wavelength, and

fluorescence was detected using a bandpass optical filter between

410–455 nm and 575–645 nm for Hoechst and di-2-anepeq,

respectively. Then, images were acquired to determine regions

of interest (ROIs). For high-speed imaging, the microscope was

operated in resonance mode at 30 Hz with a scanning size of
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512 × 512 pixels or at 100 Hz with a scanning size of 512 ×

140 pixels, with a spatial resolution of 0.198 µm/pixel. When the

ROI was determined, the R-peak of the ECG signal was used as

the source of synchronization to ensure that each image was

recorded during the same phase of contraction cycles. Images

were processed using Imaris software (Oxford Instruments).

Quantification and statistical analysis

All image data were first processed with Imaris software,

where the brightness and contrast were linearly adjusted. To

quantitatively measure the sarcomere length (SL), the lines across

the sarcomere structures were drawn. The distance between two

sarcomeres (SL) was determined by dividing the entire structure

length by the sarcomere number. The SL shortening (ΔSL) and
SL shortening percentage were calculated by the following

equation.

ΔSL � SLdiastole − SLsystole (1)
% ΔSL � SLdiastole − SLsystole

SLdiastole
x100% (2)

Moreover, a plugin in ImageJ, TTorg (T-tubule system

regularity analysis) was used to quantitatively analyze the

T-tubule structures. The algorithms used to calculate the

transverse organization level of a TT network are based on

calculating the peak amplitude in the Fourier spectrum of the

image at the TT frequency. The transverse organization

indicator, TTpower value, was determined; a higher value

indicates a uniformly transverse organized structure. Results

were reported as mean ± stdv. Statistical analysis of the data

was performed using one-way ANOVA Tukey post hoc test

provided by Origin 2018. Statistical significance was set at

p < 0.05.

Results and discussion

Strategy for imaging a beating heart in a
mouse model

Among the major organs, the imaging of a beating heart

remains challenging. Typically, the heartbeat rate of mice is

approximately 400–500 times per minute or 6–8 Hz.

According to the Nyquist-Shannon sampling theorem in

bandwidth signals, a minimum image acquisition time should

be at least twice as fast as the beating rate to avoid distortion and

blurring and to restore the original signal if the motion is

reproducible (Li et al., 2018; Ravanshad and Rezaee-Dehsorkh,

2020). However, the heart images recorded in a mouse by a

conventional two-photon microscope are blurry due to rapid and

nonuniform heart motion (Supplementary Movie S1), of which

movement occurs at speeds up to 19.9 mm/s under physiological

conditions and increases to 47.8 mm/s when animals are on

ventilation (Stohr et al., 2018; Kavanagh and Kalia, 2019). To

overcome motion-induced artifacts, a strategy combining

synchronization, stabilization, and cardiac surgery was

introduced to suppress artifacts in imaging contracting hearts

in this experiment, as shown in Figure 1A.

To improve the imaging quality, we used a custom-made

tissue stabilizer consisting of a flat polymer ring with a glass

coverslip (d = 1 cm) at the bottom attached to a 3 cm long

rigorous metal rod (Supplementary Figure S1). This tissue

stabilizer was mounted on a micromanipulator stage, where

the stabilizer could be moved in the x, y, and z directions.

Throughout the entire acquisition period, the cover glass ring

kept the lens immersed in a saline solution that matched the

refraction index of the imaging objective. Our setup prevented

the objective lens from directly touching the heart. Thus, it

allowed the heart to return to its original position over time

in a reproducible manner. The only remaining pressure came

from the heart itself when it contracted toward the ring, similar to

the heart beating toward the chest wall. As a result, blood flow

was normal, with minimal perturbations. In contrast to other

stabilizing techniques involving bonding the heart with

mechanical stabilizers, such as sutures, restraining coverslips,

or suction-based devices, (Li et al., 2012; Matsuura et al., 2018),

which suppress excessive motion in its entirety as much as

possible, the purpose of using a mechanical tissue stabilizer

was to reduce excessive motion artifacts. A stabilizer can

sufficiently reduce the displacement of the heart up to a few

micrometers and allow the heart to return to its original position

over time, therefore improving the motion reproducibility across

the cardiac phase. This strategy is sufficient to enable the

acquisition of an image of a beating heart with low resolution,

including aspects of the heart such as vasculature,

microvasculature, blood flow, and cell recruitment (Jones

et al., 2018).

In this experiment, two-photon microscopy equipped

with a resonance scanner was used, which allowed

cardiomyocytes to be imaged at a frame rate of 30 Hz with

512 × 512 pixels (Supplementary Movie S2A). Even though

the imaging acquisition rate using a resonance scanner was

sufficient to capture cardiomyocytes without any distortion

when using a tissue stabilizer, the relative positions of the

cells carried over from one frame to the next. Therefore,

image alignment is necessary to reduce motion-induced

artifacts. Moreover, the heartbeats not only in the lateral

direction but also in the axial direction. As a result, an image

sequence at a fixed objective lens position contained severe

motion-induced blurriness or did not allow proper

acquisition of selected cells, therefore restricting the

ability to capture sequential heartbeat dynamics (Taylor,

2014). The imaging speed can be further increased to

100 Hz by reducing the scanning area to 512 × 140 pixels

(Supplementary Movie S2B). At 100 Hz, we could capture the
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periodic variations in sarcomeres. However, the reduced

dwell time at this high speed can severely degrade the

quality of the image, leading to rapid bleaching of the

dyes; these occurrences result in lower total image signal-

to-noise ratios, which is not suitable for acquiring long-term

measurements (Kobirumaki-Shimozawa et al., 2016).

To reduce motion-induced blur, we synchronized the

contraction cycle with the scanner of a two-photon

microscope, where an ECG system feeds live signals from the

cardiac cycle to provide proper triggers for data acquisition

(Figure 1A). The timing diagrams presented in Figure 1B,

Supplementary Figure S2 show the synchronization process of

our imaging system. The R waves from the mice’s ECG signal

(black) triggered image acquisition in the system (blue), while the

red color represents the imaging acquisition window. The R peak

was used as the source of synchronization to ensure that each

image was recorded at the same phase of the contraction cycle. In

this way, the heart position would have the same focal point

within the imaged organ at different time points so that the image

frame would have high quality. This setup also ensures that a

high-quality frame is acquired at the accurate phase in the heart’s

cycle rather than requiring continuous high-frame-rate

acquisition to assure that one of the frames recorded is at

approximately the correct position of the heart’s cycle.

Reconstructing images at several different phases provides

cellular and dynamic information about the entire heartbeat

cycle.

Supplementary Movies S3A–D show the dynamic images

at different delay times, which correspond to different phases

of the cardiac cycle. Figure 1C shows representative heart

images captured at four consecutive contraction cycles (label

as time points) at the same phase with respect to the R-wave of

ECG signals. Each image is stable from one frame to the other

without distortion, blur, and significant shifting of sarcomere

structures. Thus, the sarcomere length (SL) from these

captured images could be reliably measured at each delay

time (Figure 1D, Supplementary Figure S3). Even though the

tissue stabilizer alone was able to confine the movement of the

heart, the residual motion artifacts still strongly affected the

reconstructed images (Supplementary Figure S4A). In

contrast, when the scanner was synchronized with the

R-wave of the ECG signal, those motion-induced artifacts

could be removed from the images (Supplementary Figure

S4B), preventing the loss of image resolution from the motion

artifact. With the synchronization approach, high-resolution

images could be obtained.

FIGURE 1
(A) Schematic intravital cardiac imaging system. The R waves of ECG signals from the animal are used to trigger the two-photon microscope
allowing imaging of the heart at a specific phase during each contraction cycle. (B) The timing diagram used for ECG synchronization of image
acquisition—black: ECG signal from the mouse, blue: trigger prompting image acquisition, red: acquisition time window. By tuning the delay time
between the R-wave and image acquisition, different phases during the contraction cycle can be imaged. (C) Two-photon images of
cardiomyocytes in the beating heart synchronized with the ECG signal at the same phase of four consecutive contraction cycles (label as time
points). The variation in each image is very small indicating that the system is capable of recording clear and stable images on a beating heart without
image reconstruction. Scale bar: 20 µm. (D) The SL was measured from the images of cardiomyocytes taken at a specific phase in different
contraction cycles.
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Nanometric imaging of sarcomeres in the
beating hearts of healthy mice

The capability to record structural changes within a cell in the

beating heart is crucial to the understanding of functional

changes in physiological and pathological conditions. To

visualize the dynamic behavior of cardiomyocytes, the

lipophilic potentiometric dyes di-2-anepeq and Hoechst were

intravenously injected into mice. The rapid transient response of

di-2-anepeq to membrane potential changes allows effective

staining of the membranes, including the external membranes

of cardiomyocytes and transverse tubules (Bub et al., 2010). The

array of transverse-axial tubules (T-tubules) can be visualized

using high magnification at different states within a contraction

cycle, as shown in Figure 2A. The distance space between

T-tubules, which is parallel to the z-disk, was measured and

defined as the SL. From the recorded time-lapse images of the

cardiomyocytes in a beating heart, we observed synchronized

movement between regularly repeated sarcomere shortening and

myocyte movement in a beating heart. The SL measured from

individual cardiomyocyte contraction and relaxation was highly

reproducible for different mice in multiple heartbeats

(Figure 2B). Our results indicate that the maximum SL is

approximately 2.08 µm in diastole and contracts to

approximately 1.81 µm in systole (Figure 2C). The overall

changes in SL (ΔSL) in the cardiomyocytes of a healthy mice

beating heart during the contraction cycle are less than 300 nm.

Moreover, since hemodynamic parameters (i.e., ECG) of the

FIGURE 2
(A) Two-photon images of the same cardiomyocyte at a different phase of the contraction cycle. (B) Variation in sarcomere length (SL) over time
in several contraction cycles. (C) The original and normalized SLs at different phases in the contraction cycle. The SLs are measured at a given phase
(at a delay time with respect to R-wave) in a contraction cycle and averaged over several contraction cycles. (D) The shortening percentage (%ΔSL)
and normalized SL variations were measured at different heartbeat rates. (E) The correlation between SL (left Y axis) and shortening velocity
(right Y axis) in one cardiac cycle (N = 3, mean ± standard deviation). A positive velocity represents sarcomere lengthening whereas negative velocity
indicates sarcomere shortening.
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heartbeat were simultaneously recorded with real-time

sarcomere dynamics, it allowed us to investigate the

relationship between SL and its variations during contraction

cycles at different heart rates (Figure 2D, Supplementary Figure

S5). We observed slightly decreases of shortening percentage

(%ΔSL) at a heart rate between 420 and 240 bpm (Kobirumaki-

Shimozawa et al., 2016). However, %ΔSL decreased linearly over

a slower heart rate of less than 240 bpm (Hanft et al., 2008;

Serizawa et al., 2011).

Figure 2E shows the correlation between the time-dependent

changes of SL and velocity during one cardiac cycle. The positive

and negative velocities (blue curve in Figure 2E, right Y-axis)

indicate that sarcomeres undergo either lengthening or

shortening, respectively. Thus, velocity relates to the

association and dissociation of thin and thick filaments on

force-generating cross-bridge formation (Hanft et al., 2008).

When ejection begins, the sliding rate of myosin in actin

filaments and the number of cross-bridges dictate the degree

of shortening (ΔSL). In the first 10 ms (Figure 2E, X-axis) after

the diastolic phase, sarcomere shortening occurs at a maximum

velocity of ~8 µm/s (Figure 2E). As the sarcomere shortens to less

than 2 µm (Figure 2E, left Y-axis), its velocity gradually decreases

(i.e., duration 55–100 ms) until the sarcomere reaches ~1.81 µm

which is relatively constant for another 20 ms (systolic phase).

This may be because thin filaments sliding into the opposite half

of the sarcomere may interfere with one filament or disrupt bond

formation in the opposite half of the sarcomere, thus reducing

force development and shortening velocity (Gordon et al., 2000).

Additionally, at this point, the filaments shift farther apart

laterally, reducing the chances of force-generating bridge

reforms along the filament. Sarcomere shortening is then

followed by the relaxation phase, which initially involves a

relatively slow increase in length (in the first 30 ms),

cooccurring with fast stretching (~11 µm/s), and a return to

slow increase in length when reaching the diastolic peak. The first

slow phase attested to the change in force in non-force-generated

cross-bridge states (Stehle et al., 2002; Pasqualin et al., 2015).

Shortly after that, the rapid lengthening indicates its mechanical

relaxation. Overall, the average velocity between lengthening and

shortening is relatively the same (Gordon et al., 2000; Stehle et al.,

2002; Moss et al., 2004). Since the lengths of the thick filaments

(approximately 1.5 µm) and thin filaments (1.0 µm) are constant,

the I-band, which contains the titin spring and connects the thick

filament to the z-band, elongates and shortens to ~0.15 µm

during the contraction cycle. This extensible region plays a

prominent role in passive resistance over the working range of

cardiac sarcomeres (Tonino et al., 2017; Freundt and Linke,

2019). Through a repetitive association and dissociation of

cross-bridge formation, force is produced. At a heart rate of

420 bpm, sarcomeres contract more than 200 nm from their

diastolic length; this contraction approximately equals

3–5 units of calcium-binding troponin (each unit ~38.5 nm)

in each thin filament (Hanft et al., 2008; Yamada et al., 2020).

Revealing the subcellular structure
changes in the MI model

In mouse models of heart diseases, such as MI or I/R models,

heart function is impaired. Therefore, a gentler technique is

required for long-term in vivo imaging. As mentioned above,

synchronization between physiological signals and data

acquisition allows imaging to be performed at a specific phase

during the contraction cycle with minimized motion-dependent

artifacts and photodamage; therefore, this approach is suitable

for long-term observation even for the MI mouse model. The

effects of MI were studied 1 day after the induction of infarction

of the LV wall via left anterior descending (LAD) ligation. For a

control experiment, a sham model was also prepared (Lindsey

et al., 2018). The heart function of the mice (both control and MI

model) was examined using ultrasound imaging in M-mode

(Supplementary Figure S6A). The echo data showed that the

ejection fraction (EF, %) and the fraction shortening (FS, %) of

the heart significantly decreased at 1-day post-MI, from 72.01 ±

6.29% to 43.26 ± 3.85% and from 35.93 ± 4.96% to 18.03 ± 1.99%,

respectively, corresponding to reduced heart function. Two-

photon imaging with ECG synchronization was performed to

observe changes in cellular morphology when heart function was

compromised. ECG signals also provided real-time heart

function data for both groups of mice during the imaging

process (Supplementary Figure S6B). In contrast to sham

mice, post-MI ECG signals showed the development of

pathological Q waves, decreased R-wave amplitude, and

repolarization abnormalities, which was indicated by the

depression of the JT/T segment described in previous reports

(Merentie et al., 2015). Moreover, the R-amplitude, which

represents depolarization during ventricular action potentials

(Kaese and Verheule, 2012), decreased (up to 0.3 mV) with a

reduction in the heart’s pumping functions.

In this experiment, the R-wave from the ECG signal was used

to trigger the resonance scanner at various delays to access

different phases of the cardiac cycles. With this approach, we

FIGURE 3
Comparison of SL variations during the contraction cycle
between (A) sham mice and (B) mice with MI (N = 3, mean ±
standard deviation). The variation of SL is larger in sham mice than
in mice with MI.
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were able to measure the ΔSL in the cardiomyocytes of the

control (sham) and MI mice. Figure 3 depicts the average

distance between the sarcomeres at different time delays with

respect to the peak of the R-wave, where a time delay with an

increment of 30 ms was used to probe different phases in the

cardiac cycles (Supplementary Figure S6C). In the sham model,

the SL was shortened from ~2.11 to ~1.83 μm (Figure 3A), which

TABLE 1 Correlation between the sarcomere shortening percentage
(% ΔSL) and heart function (EF and FS).

ΔSL (%) EF (%) FS (%)

Sham 15.62 ± 0.73 72.01 ± 6.29 35.93 ± 4.96

MI 8.39 ± 1.85 43.26 ± 3.85 18.03 ± 1.99

FIGURE 4
(A) Two-photon images of cardiomyocytes in a different region of the heart in an MI model. Remote area is far away from the point of ligation
where the cardiomyocytes are normal. Higher magnification image of the same remote area is provided to reveal the fine structures of sarcomeres.
Scale bar: 50 µm. (B) T-tubule system regularity analysis of the heart in sham and different regions of MI models (remote, border, and infarct). Higher
TTpower indicates ordered organization of T-tubule system, (C) Sarcomere length (SL) variation in the systolic and diastolic states of the sham
and different regions of MI models (remote, border, and infarct). (D) The sarcomere shortening percentage (% ΔSL ) of the heart in the sham and in
different regions MI models (remote, border, and infarct). (E) The nuclear area in different regions of the heart in the MI model (remote, border, and
infarct) compared to the sham model (N = 3, mean ± standard deviation).

Frontiers in Bioengineering and Biotechnology frontiersin.org08

Kuo et al. 10.3389/fbioe.2022.935415

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.935415


was a change of more than 100 nm in both directions (~15% of

the initial length). In contrast, the SL in post-MI mice (Figure 3B)

increased, but the ΔSL between diastole (~2.21 µm) and systole

(~2.07 µm) decreased to approximately 50 nm in both directions

(~8% of the initial length). Thus, our results (Table 1 and

Supplementary Figure S7) support previous studies that have

reported a positive correlation between the SL shortening ratio

and heart function (EF or FS), and indeed, this relationship is

similar to ventricular myocytes isolated from different animals

(regardless of the animal’s heart size) (Sonnenblick, 1968; Cheng

et al., 1995; Bers et al., 2003).

The heart-pumping process is associated with precise inter-

organelle communication in cardiomyocytes, such as the signal

transmission of the sarcolemma with the sarcoplasmic reticulum

during EC coupling (Bers, 2002; Yamada et al., 2020). In this process,

the transverse tubular system facilitates rapid and synchronized

transmission of the membrane action potential. Figure 4A depicts

the morphological changes in T-tubules and sarcomeres in different

regions of the heart post-MI (remote, border, and infarct areas). To

quantitatively analyze the T-tubule organization, we used a plugin in

ImageJ, TTorg (T-tubule system regularity analysis). The TTpower
that defines the organization level and the regularity of T-tubules in

cardiomyocytes were determined in the sham, and different regions

of MI mice model (Figure 4B). A highly organized T-tubule

structure is shown in sham (TTpower ~76%) and remote area

(TTpower ~64%) of MI mice model. However, due to mechanical

stress during MI, many cells undergo hypoxia and, finally, necrosis

and apoptosis; these occurrences are depicted by a blurring of

striated patterns and depletion/disorganization of the T-tubule

array in the sarcomere system which are observed in border

(TTpower ~44%) and infarct regions shown a lower value

indicated poor transverse organized structure and infarct region

(TTpower ≤ 20%) (Yue et al., 1998; Zhang et al., 2010).

Here, contractility in a different region of the heart post-MI

was observed (Figures 4C,D). To compensate for the loss of

contractile activity and to preserve contractility function,

sarcomere lengthening and reorganization in the remote

region was ~2.21 ± 0.01 µm in the diastolic state (sham =

2.11 ± 0.1 µm; border = 2.17 ± 0.02 µm) (Figure 4C) (Rusu

et al., 2019). However, continuous stress and stretching during

adaptation could alter the structural properties of titin, which

contributes to the interruption of the sarcomere-generated force

production mechanism as well as its implication in the dilated

heart (Stohr et al., 2018; Freundt and Linke, 2019). Throughout

MI progression, we observed that continuous infarct expansion

induces the deformation of cardiomyocytes in the border zone

and remote myocardium, eventually altering sarcomere

shortening (ΔSL). The percentage ΔSL at the border (3.83 ±

2.04%) was lower than that at the remote sites (8.39 ± 1.85%) and

sham group (14.76 ± 0.73%) (Figure 4D).We found that T-tubule

network organization was closely related to shortening

percentage of sarcomere (ΔSL) (Supplementary Figure S8A).

The highly organized T-tubule network is critical for normal

electrical excitation-contraction (EC) coupling and cardiac

function (Guo et al., 2013). Thus, it allows synchronized

contraction among the many contractile units of entire

cardiomyocytes to generate highly efficient heart power

(Abhilash et al., 2014; Awasthi et al., 2016). However, the

alteration in T-tubule organization post-MI (TTpower ≤ 20%)

may disturb the communication between dihydropyridine and

ryanodine receptor channels, therefore causing changes in the

amount of Ca2+ administered to the contractile machinery and

Ca2+ handling dysfunction in cardiomyocytes, resulting in

disturbed cardiomyocyte contraction and relaxation (Guo

et al., 2013). Moreover, it is believed that T-tubule remodeling

begins much earlier in disease progression, even before it is

detectable through echocardiography or before LV systolic

dysfunction, and it undergoes gradual deterioration from

compensated hypertrophy toward the heart failure (Freundt

and Linke, 2019).

The molecular architecture of striated cardiomyocytes includes

intermediate filaments interwoven in the Z-lines of sarcomeres,

which build a mechanotransduction channel connecting the shape

of cardiomyocytes and nuclei (Bloom, 1970; Lammerding et al.,

2004; Lee et al., 2017). The alteration of cellular mechanical force

balances post-MI results in an integrated change in the cellular,

cytoskeletal, and nuclear shape dimensions (Lammerding et al.,

2004; Dahl et al., 2008; Gupta et al., 2010; Li et al., 2019). Despite the

importance of the nucleus to the function of cardiomyocytes, there

are limited studies exploring nuclear structures and their roles in

heart diseases compared to the structure and roles of other

cardiomyocyte components (Chen et al., 2012; Chahine et al.,

2015). Supplementary Movies S5A,B revealed that the nucleus

was highly aligned along with the cardiomyocyte orientation and

underwent conformational variations during the contraction-

relaxation cycle. In the diastolic state, the shape of the nucleus is

smoothly oval, but for every incremental decrease in SL, the nucleus

shape slowly compresses longitudinally until it reaches the shape

observed in the systolic state (Supplementary Movie S5C).

Moreover, in the systolic phase, wrinkling of the nuclear

envelope could be detected, indicating that intracellular forces

deformed the nucleus of spatially confined cardiomyocytes

(Bloom, 1970). The nuclei were restored to their original shapes

and size during the diastolic phase, indicating that the nucleus

possesses elasticity properties in the normal range of pressures

induced by heart contraction. However, the elasticity is no longer

preserved when a sarcomere is severely damaged, as it would be in

the infarct region (Supplementary Movies S6A,B). The

morphological changes in sarcomeres induce the remodeling of

the nuclei as well.

The dynamic morphological change of the nucleus can be

quantified by examining nuclear lengths, widths, and areas

during these contraction cycles (Figure 4E). The nuclear area of

the infarct and border regions (border = 146.98 ± 28.90 µm2;

infarct = 136.71 ± 10.52 µm2) decreased compared to that of the

sham group (sham = 229.99 ± 44.28 µm2). Indeed, the reduced area
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of the nucleus was positively correlated with irregularity and

disorganized T-tubulin array (Supplementary Figure S8B). In

contrast, we observed nuclear enlargement in a remote area of

the post-MI heart (197.25 ± 11.09 µm2) compared to the border and

infarct, whichmay indicate that changes in cellular metabolism and/

or signaling pathways are an adaptive process to accommodate the

loss of viable cardiomyocytes (Sims et al., 1992; Webster et al., 2009;

Chahine et al., 2015). These results agreed with previous in vitro

reports where nuclear membrane deformation was generated by

sarcomere shortening via mechanical connections (Houben et al.,

2007). The alteration of cellular mechanical force balances post-MI

results in an integrated change in the cellular, cytoskeletal, and

nuclear shape dimensions (Lammerding et al., 2004; Dahl et al.,

2008; Gupta et al., 2010).

Conclusion

A relatively simple design and gentle technique of two-

photon imaging can have broad applicability for real-time

study of the dynamic change in myocardial tissues in vivo and

complex disease models, such as MI, in which the condition of

the heart is weaker than that in healthy animals. Our results show

that a highly organized T-tubule structure is critical for normal

EC coupling and cardiac function. Thus, determination of SL and

changes in SL (ΔSL %) during contraction, which correlate with

the physiological condition of cardiomyocytes, are essential for

understanding the physiology of heartbeats within the whole

heart. Overall, the high synergy of geometry and the dynamic

behavior of contractile units in the same ventricular myocyte and

among millions of working ventricular myocytes allows the heart

muscle to produce maximal contraction efficiency. However, a

small interference in one of the cardiomyocyte components can

result in failure of the heart’s function. Finally, monitoring the

dynamic cellular process at subcellular resolution in vivo can

provide new insights into the design of nanomaterials for

targeting to the diseased sites of cardiac disorders.
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