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Transition metal dichalcogenides (TMDCs) are widely used in biosensing applications due
to their excellent physical and chemical properties. Due to the properties of biomaterial
targets, the biggest challenge that biosensors face now is how to improve the sensitivity
and stability. A lot of materials had been used to enhance the target signal. Among them,
TMDCs show excellent performance in enhancing biosensing signals because of their
metallic and semi-conducting electrical capabilities, tunable band gap, large specific
surface area and so on. Here, we review different functionalization methods and
research progress of TMDCs-based biosensors. The modification methods of TMDCs
for biosensor fabrication mainly include two strategies: non-covalent and covalent
interaction. The article summarizes the advantages and disadvantages of different
modification strategies and their effects on biosensing performance. The authors
present the challenges and issues that TMDCs need to be addressed in biosensor
applications. Finally, the review expresses the positive application prospects of
TMDCs-based biosensors in the future.

Keywords: transition metal dichalcogenides (TMDCs), biosensor, non-covalent, covalent interaction, modification
methods

1 INTRODUCTION

Nanomaterials can be divided into four categories according to their dimensionality, including zero-
dimensional materials, one-dimensional materials, two-dimensional materials (2DMs) and three-
dimensional materials (Liu et al., 2016; Chen et al., 2021). In biomedicine field, 2DMs have broad
application prospects (Kurapati et al., 2016). Transition metal dichalcogenides (TMDCs), as an
emerging 2DMs, have attracted great interest due to its excellent physical and chemical properties. As
shown in the chemical structure in Figure 1, TMDCs are a sandwich structure with chalcogen atoms
separated by a plane of metal atoms in two hexagonal planes. The atoms in these layers are firmly
bonded together by covalent bonds, while each thin layer is connected by relatively weak van der
Waals forces (Wang et al., 2017; Wang et al., 2020a; Rahman et al.,, 2021).

The atomic layers of TMDCs can be easily separated from each other to form atomic-level sheets
because they are held by weakly bonded van der Waals forces (Monga et al., 2021). Several methods
have been used to prepare single- or few-layer 2D-TMDCs nanosheets, which can broadly be divided
into top-down and bottom-up approaches. Top-down methods (Wang et al, 2017) aim at
transforming bulk crystals and layered compounds into single- and few-layer 2D-TMDCs
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FIGURE 1 | The three-dimensional structure of TMDCs where M is
transition metal element and X is chalcogen element.

including mechanical exfoliation and liquid exfoliation. The
mechanical exfoliation refers to peel off single layer or a few
layers of flakes from bulk TMDCs by scotch tape. This method is
cheap, simple to operate, and high in quality (Zhao et al., 2020).
However, the TMDC:s flakes fabricated by this method are limited
to scientific research applications due to the uncontrolled shape,
size, and thickness (Zhu et al, 2019). The liquid exfoliation
methods refer to sonication in aqueous solution or addition of
surfactant to exfoliate TMDCs (Rohaizad et al.,, 2021). This
method is suitable for large-scale production (Vega-Mayoral
et al, 2016), but rarely produces monolayer of TMDCs
nanosheets (Zhou et al., 2020). Bottom-up approaches refer to
the growth of layered nanomaterials under special conditions
with atoms or molecules as precursors (Zhao et al., 2020). As a
typical example, chemical vapor deposition (CVD) is a more
promising method for preparing large-scale, continuous, and
uniform single- or few-layer TMDCs films (Xiong et al., 2020;
Liu et al., 2020a). However, the performance of TMDCs prepared
by this way still need to be improved. For example, amorphous
precursors will be used in the exfoliation process. This will result
in the obtained TMDCs films being mostly polycrystalline with
small grain size, and the grain boundaries in these polycrystalline
films will greatly reduce the electrical properties of TMDCs (Li
et al.,, 2021b; Kim et al., 2021a). Therefore, it is still a challenge to
achieve the large-scale preparation of high-performance, low-
defect monolayer and few-layer TMDCs nanosheets (Hu et al.,
2019).

As the film thickness decreases, TMDCs can exhibit different
properties (Ambrosi et al, 2015). 2D-TMDCs exhibite the
transition of an indirect bandgap to a direct bandgap when
bulk materials are scaled down to monolayers, accompanied
by unique electrical and optical properties (Choi et al., 2017).
A material with direct bandgap have better light utilization and
can produce unique optical and electrical properties, making
them ideal for a variety of optoelectronic devices (Monga et al.,
2021). It had been demonstrated that a single layer of MoS, can
provide an on/off ratio of >10® when applied to field effect
transistor configurations, a value that is very favorable for
establishing biosensors (Kalantar-zadeh and Ou, 2015). With
the excellent electrical properties of MoS,, a MoS, field-effect
transistor sensor array was constructed to detect two bladder
cancer markers, nuclear matrix protein 22 (NMP22) and
cytokeratin 8 (CK8) simultaneously, with ultra-low detection
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limits of 0.027 and 0.019aM achieved, respectively (Yang
et al, 2020); A biosensor based on bilayer MoS, back-gate
field-effect transistor can detect glucose solution with high
sensitivity, with a lower detection limit of 300 nM achieved
(Shan et al., 2018).

The high flexibility of ultrathin TMDCs nanomaterials
enabled them to be easily deposited onto flexible substrates. At
the same time, the mechanical strength of TMDCs enabled them
to be adapted well to the human body. These characteristics made
it promising for wearable and implantable biosensor devices
(Sarkar et al.,, 2014; Choi et al., 2019). An e-skin compatible
humidity sensor was synthesized by metal sulfurization based on
a large-area polycrystalline few layers WS, film. The sensor can
withstand tensile strain loads of up to 40% and still show a
repeatable humidity response under tensile loading states (Guo
etal, 2017). A prebent MoS, structures were prepared on flexible
substrates using a sacrificial structure-assisted nanofabrication
method. This method was able to precisely control the bending
curvature and position of the prebent MoS, structures. The
sensor was able to detect interleukin-13 (IL-1f) successfully as
low as 10 fM (Ryu et al., 2017).

As discussed above, TMDCs have been successfully applied in
biosensors due to their unique properties. Biosensor is a device
that is sensitive to biological substances and can convert their
concentrations into electrical signals for detection (Hong et al.,
2022). It mainly consists of two parts: molecular recognition
element and transducer (Aydin et al., 2018). Biosensors are widely
used in the research of life and health due to their sensitivity and
specificity. However, the biggest challenge for biosensors is still to
further improve the sensitivity to meet the needs of ultra-low
target concentration in practical applications (Mani et al., 2021).
A lot of materials such as silicon nanowires (Li et al., 2021a),
graphene oxide (Verma and Singh, 2019), TMDCs (Li et al., 2019)
have been used to enhance the target signal. Among them, due to
their good metallic and semi-conducting electrical capabilities
(Kim et al., 2020a), tunable bandgap (Zhang et al., 2019a) and the
large specific surface area, TMDCs show excellent performance in
enhancing biosensing signals.

The functionalization of TMDCs is a critical step for the
fabrication of TMDCs-based biosensors. Although the lack of
dangling bonds on the surface of TMDCs brings difficulties to the
fabrication of TMDCs-based biosensors, other properties of
TMDCs play a key role in its surface modification. For
example, the van der Waals forces of their surface, or some
defects (Li et al., 2022a) of their own, such as sulfur vacancies
(Chou et al,, 2013); or the addition of surfactants to aqueous
solution (Backes et al., 2016). What’s more, we could cover the
surface of TMDCs with a layer of intermediates, such as hafnium
oxide (HfO,) (Masurkar et al., 2021) or alumina (Al,O3) (Park
etal., 2017), which can be easily modified with silanes. Therefore,
it can provide abundant aldehyde groups for sensor fabrication.
All the above properties can be used for the TMDCs surface
modification to realize the fabrication of TMDCs-based
biosensors.

This review summarizes the surface modification methods of
TMDCs represented by MoS, and WS, and the research progress
of TMDCs-based biosensors (Figure 2). The advantages and
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FIGURE 2 | Summary of the surface modification methods and biosensor applications of TMDCs.
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disadvantages of biosensors based on different TMDCs
modification methods are discussed. Authors also present the
challenges and issues that need to be addressed. Finally, the
review expresses the positive applications prospects of
TMDCs-based biosensors in the future.

2 BIOSENSORS BASED ON
NON-COVALENT INTERACTIONS ON THE
SURFACE OF TRANSITION METAL
DICHALCOGENIDES

The special sandwich-like structure of TMDCs allows effective
adsorption of various molecules through non-covalent
interactions. = Among the non-covalent interactions,
hydrophobic interaction, van der Waals force, and hydrogen
bonding are well studied (Kumar et al., 2021). For example,
TMDCs can directly adsorb antibodies via hydrophobic
interaction (Das et al, 2020) and single-stranded DNA
molecules (Kumar et al., 2022), gas molecules (Bharathi et al,
2022), and silane coupling agent through van der Waals force.
TMDCs can also be linked with surfactants (Jung et al., 2018;
Parra-Alfambra et al., 2018) such as dextran through hydrogen

bonding, enabling simultaneous exfoliation and surface

functionalization of multilayer nanosheets.

2.1 Hydrophobic Interaction
Hydrophobic interactions are mediated by water (Garde, 2015; Jia
et al,, 2022). The mutual repulsion of the hydrophobic segments
and water led to the proximity of the hydrophobic parts of the
system to each other (Mozo-Villarias et al., 2021). All types of
proteins such as antibodies inevitably contain a large number of
hydrophobic segments (Zhou et al., 2022). Therefore, the presence
of “hydrophobic interactions” in the “aqueous’systems makes it
easier for antibodies containing hydrophobic segments to adhere to
the surface of hydrophobic substrates. Therefore, the hydrophobic
interface is more conducive to direct physical adsorption of
antibodies. This is important for the construction of biosensors,
because the additional complexity involved in chemical treatment
can be avoided (Dzupponova and Zoldak, 2021).

Hydrophobicity is mainly characterized by the surface contact
angle of the substance. The MoS, surface has a relatively high
contact angle of ~75.77° with good hydrophobicity (Gaur et al.,
2014), allowing a higher affinity for biomolecules such as
antibodies.

Based on the hydrophobic interaction, Lee et al. (2014) studied
a MoS,-FET biosensor to detect prostate specific antigen (PSA) in

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org

June 2022 | Volume 10 | Article 941135


https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

Sun et al.

Antibody Antigen

FIGURE 3 | Schematic diagram of MoS, biosensor for PSA detection
(Lee et al., 2014).

a highly sensitive and label-free manner. In the construction of
the sensor, MoS, nanosheets prepared by mechanical exfoliation
were transferred to a highly p-doped Si substrate and used as a
substrate for the biosensor. Then metal contacts of Ti/Au were
subsequently deposited by electron beam evaporation, which was
served as the source (S) and drain (D) of the MoS,-FET. The
specific structure was shown in Figure 3. The PSA antibody (anti-
PSA) was directly immobilized on the MoS, surface by the
hydrophobicity of MoS,. Then, introduction of PSA into the
anti-PSA immobilized sensor surface resulted in a current change
within the MoS,-FET channel. The PSA can be detected by
detecting the conduction current between the MoS,-FET
sensor S and D. And the detection limit of this immunosensor
for PSA was 1 pg/ml.

Yoo et al. (2016) designed an epidermal skin-based point of
care (POC) device that can monitor PSA in real time. It integrated
a MoS,-FET biosensor, a readout circuit, and a light-emitting
diode (LED) as an indicator into a system. PSA antibodies can be
physically adsorbed onto MoS, channels via hydrophobic
interactions without the need for prior surface chemical
treatment. At the same time, when the PSA bound to the
antibody, the channel conductivity of the MoS,-FET changes
accordingly. Therefore, high-sensitivity detection of PSA can be
achieved by the change of current in the MoS, channel. And its
detection limit (1 pg/ml) was much less than the clinical cut-off.

Similarly, Kaushik et al. (2019) developed a MoS, nanosheets
interfaced fiber optic surface plasmon resonance (SPR) sensor for the
quantitative analysis of Escherichia coli bacteria. The experimental
strategy was based on immobilizing the E. coli monoclonal
antibodies on the MoS, nanosheets via hydrophobic interactions.
It was demonstrated that the sensing platform can sensitively detect
E. coli as low as 94 CFU/ml. The target analyte (E. coli) has been
selectively detected by the developed immunosensor even in the
presence of interfering bacteria.

2.2 Van Der Waals Force

Van der Waals force is a type of intermolecular force arising from
electrostatic interactions between molecules or atoms. Gas
molecules, silane coupling agent and single-stranded DNA
molecules could be adsorbed on the surface of TMDCs by van
der Waals force.

2.2.1 Gas Molecules
The detection principle of gas molecules by TMDCs films can be
summarized as the charge transfer mechanism (Zhang et al,

Transition Metal Dichalcogenides-Based Biosensors

2020; Rahman et al., 2021): according to the different oxidation-
reduction characteristics of gas molecules adsorbed on the surface
of the films, different charge transfers (including electron
donation and electron deprivation) occur on the surface of the
TMDC:s films. Thereby the conductive properties of the TMDCs
films will be changed. TMDCs have a large specific surface area,
which allow more atoms to be exposed to the gas; and the
semiconducting properties of TMDCs are expected to address
the sensitivity, selectivity, and stability issues often encountered
in gas sensitive materials (Jeong et al., 2019).

Alagh et al. (2021) reported for the first time on the facile
synthesis of 2D layered WS, nanosheets assembled on 1D WS,
nanostructures by combining the aerosol assisted chemical vapor
deposition (AA-CVD) method with H,-free atmospheric
pressure CVD. Then the WS, nanosheets was directly
integrated into a standard ceramic sensor for an ultrasensitive
detection of NO,. The detection principle is that when NO, gas
molecules are directly adsorbed on the surface of WS,, NO, gas
molecules will withdraw electrons via the valence band, resulting
in an overall decrease in the electrical resistance of the film.
Subsequently, the measured current will increase under the same
voltage and thereby the detection of NO, concentration can be
realized. The sensor had reached an unprecedented ultra-low
detection limit under 5 ppb. Besides, the response toward NHj,
H,S, H, was studied as a way to assess the potential selectivity of
the nanomaterials studied in the detection of NO,. And the
results showed that the NO, response was significantly higher
than the one recorded for any of the other species tested.
Additionally, the sensor based WS, nanomaterials had
demonstrated its ability to detect 800 ppb of NO, even when
operated at room temperature (25°C).

Unfortunately, the gas sensing properties of WS, in its pristine
form is weak. However, the heterojunction formation was a
promising technique to solve this problem. Kim et al. (2021b)
developed a flexible gas sensor that could quickly and sensitively
detect CO based on Au-SnO,-co-decorated WS,-nanosheets. The
formation of SnO,-WS, heterojunctions could increase the
modulation of electrical resistance greatly relative to pristine
sensors. At the same time, Au had good -catalytic effect
towards CO gas, it also could form schottky barrier with WS,,
leading to enhance response to CO. The flexible gas sensor
displayed the highest response and selectivity to CO gas
among the different gas sensors investigated under an optimal
applied voltage of 4.7 V.

2.2.2 Silane Coupling Agents

Supramolecular interactions, especially the van der Waals force,
can drive the formation of physically adsorbed self-assembled
monolayers of silane coupling agent onto the surface of TMDCs
(Bertolazzi et al., 2018).

Although silane coupling agents cannot react with TMDCs,
the deposition of silane on the surface of TMDCs can lead to the
physical adsorption of silane. Lee and Park (2017) confirmed that
the physical adsorption of silane coupling agents was effective for
tunable doping of TMDCs such as WS, and MoS,, which could
increase charge carrier mobility of TMDCs-FET. Among them,
the APTES-MoS, device showed noticeably high on-current and
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FIGURE 4 | Schematic diagram of MoS, biosensor for detecting DNA
(Lee et al., 2015).

conductance compared to the pristine-MoS, device (Pak et al.,
2021). Kang et al. (2015) also showed that the self-assembled
monolayer (SAM) doping of TMDCs can improve the
performance of its FET. When the MoS,-based transistor was
doped by APTES, its field-effect mobility was increased from
28.75 to 1422cm®V™'s. In the case of APTES-doped MoS,
photodetectors, the photoresponsivity and detectivity were
increased 13.8-17.6 times and 12.6-15.2 times, respectively,
compared to the undoped MoS, photodetectors. With this
doping technology, high-performance TMDCs photodetectors
could be developed.

In addition to the above, Zhang et al. (2019b) prepared gold
nanoparticle/MoS, composites (AuNPs/MoS,) by electrostatic
attraction between APTES-functionalized MoS, and citrate-
stabilized  gold nanoparticles. The  AuNPs/MoS,
nanocomposites exhibited an excellent performance toward
nitrite oxidation. Under the optimal experimental condition,
the sensor had a low detection limit of 1.67 uM.

2.2.3 Single-Stranded DNA Molecules

The affinity for DNA probe immobilization was ascribed to van
der Waals force (Lan et al., 2019) between nucleobases of single-
stranded DNA molecule (ssDNA) and the basal plane of MoS,
nanosheets. After probe being hybridized with the
complementary DNA (cDNA) to form double-stranded DNA
(dsDNA), dsDNA will fall off the basal plane of the MoS,
nanosheets due to the different affinity of MoS, for dsDNA
and ssDNA (Feng et al., 2018).

Lee et al. (2015) developed a MoS, bio-FET for the sensitive
detection of DNA hybridization (Figure 4). The MoS, film served
as a sensitive layer for detecting DNA hybridization and an active
channel for the solution gate FET structure. Then the DNA probe
was directly modified on the surface of MoS,-FET by van der
Waals force. Due to the van der Waals force between ssDNA
nucleobases and MoS,, the sensor does not require a gate oxide
layer such as HfO,, which could significantly improve the
coupling between the surface charges of the MoS,-FET and
the channel conductance. Subsequently, the probe DNA will
hybridize with its cDNA to form dsDNA after the target DNA
was added, resulting in that the bases were effectively shielded in
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the dense negatively charged phosphate backbone of dsDNA. The
dsDNA will fall off the surface of MoS,-FET because of the weak
interaction between dsDNA and MoS,-FET, causing changes in
the threshold voltage and leakage current of MoS,-FET. The
lower detection limit of this sensor was 10 fM.

TMDCs also have the strong fluorescence quenching ability,
which is often used as a sensing platform for DNA fluorescence
detection (Wang et al., 2015; Zhang et al., 2015; Kim et al., 2020b; Tao
et al, 2021). The ssDNA can be adsorbed on MoS, by the van der
Waals force between the nucleobases and basal plane of MoS,
nanosheets, the dye molecules labeled on the ssDNA occurred
fluorescence quenching attributed to fluorescence resonance
energy transfer (Lan et al, 2018). Then the dsDNA formed after
c¢DNA combined with the ssDNA will fall off from MoS, surface
resulting in the restoration of the fluorescence. Take advantage of this
feature, Zhou et al. (2020) established a sensitive and cost-effective
aptameric biosensor based on MoS, nanosheets and aptamer probe
for CA15-3 measurement. In this sensing platform, MoS, nanosheets
exhibited superior quenching ability to aptamer probe and possessed
strong discrimination ability toward aptamer and aptamer-CA15-3
complex, and the lower detection limit reached 3.9 x 107> U/ml.
What's more, the biosensor may have a promising application
prospects in the early diagnosis and evaluation of metastasis as
well as recurrence of breast cancer.

2.3 Hydrogen Bonding
Hydrogen bonding is a core concept for non-covalent interactions
(Wang et al.,, 2018; Bai et al., 2021). It can be formed between
TMDCs and surfactants such as dextran, which plays a crucial role
in the aqueous solution exfoliation of TMDCs nanosheets. The
common methods for obtaining two-dimensional TMDCs (2D-
TMDCs) monolayers films include mechanical exfoliation,
chemical vapor deposition (CVD), and liquid exfoliation
approach. Of these methods, 2D-TMDCs nanosheets can be
scaled up for production under mild conditions by liquid
exfoliation while achieving modification (Yim et al.,, 2018). For
example, the addition of surfactants (Li et al., 2022b) in aqueous
solution can not only reduce the surface energy of exfoliated 2D-
TMDCs nanosheets through intermolecular interactions to achieve
effective exfoliation and dispersion of 2D-TMDCs, but also
functionalize the surface of 2D-TMDCs nanosheets (Yim et al.,
2018). Therefore, this is an approach for the simultaneous
exfoliation and functionalization of TMDCs in aqueous solution.

Kang et al. (2018) added dextran to the aqueous solution to
achieve simultaneous exfoliation and functionalization of
TMDCs nanosheets through multivalent hydrogen bonding
generated between the hydroxyl group of dextran and the
chalcogens (S or Se) of TMDCs (Figure 5). The resulting
dextran/TMDCs hybrids (dex-TMDCs) exhibited a stronger
affinity to E. coli O157:H7 (E. coli) than E. coli-specific
antibodies and aptamers owing to the recognition capability of
a three-dimensional structure of dextran created on the rigid
surface of TMDCs nanosheets. The dissociation constant Kd =
11 nM, which was much lower than the reported values of
monoclonal antibodies and aptamers.

In addition to dextran, Zong et al. (2017) proved that WS, could be
exfoliated efficiently by the assistance of sodium alginate (SA). Upon
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FIGURE 5 | Schematic illustration of the exfoliation and functionalization of TMDCs via multivalent hydrogen bonding in an aqueous solution (Kang et al., 2018).
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meeting WS,, SA would bind stably to the WS, surfaces via strong
coordination between carboxyl groups and edge tungsten atoms as well
as hydrogen bond between basalplane sulfur and hydroxyl groups.
What's more, the exfoliated WS, had strong mechanical properties
superior to natural biocomposites. The discovery of exfoliation ability
of low-cost marine polysaccharides may pave a new way to expand the
application of TMDCs in biosensors.

Functionalizing the surface of TMDCs by non-covalent
interactions such as hydrophobic interactions, van der Waals
forces, and hydrogen bonding can ensure the effective coupling
of biomolecule charges to the channel, simplify experimental
procedures, shorten detection time, and improve the sensitivity
of biosensors. However, biosensors based on non-covalent
interactions need to face the instability due to weak non-
covalent linkages. Compared with non-covalent binding, the
covalently constructed sensor can improve the stability.

3 BIOSENSORS BASED ON COVALENT
INTERACTIONS ON THE SURFACE OF
TRANSITION METAL DICHALCOGENIDES

Covalent interaction refers to the link between different
substances through chemical covalent bonds. Specifically, the
chemical modification of the surface of TMDCs is achieved by
generating covalent bonds between other reagents and TMDCs.
Covalent bonds are generally stronger than non-covalent bonds
(Kumar et al,, 2021). Due to the lack of dangling bonds on the
TMDC surface, it is difficult to functionalize the surface through
covalent interactions. At present, the covalent linkage of TMDCs
is mainly achieved through the following three ways: the gold
sulfhydryl bond, the nt-nt coordination covalent bond (Zafar et al.,
2022), and sulfur vacancies (Li et al., 2022a) on the surface of
TMDCs after pretreatment.

3.1 Gold Sulfhydryl Bonds

The metal nanoparticles can be ordered on the surface of TMDCs
by direct covalent linkage. For example, AuNPs are assembled on

the surface of TMDCs through the gold sulthydryl bond (Au-S
bonds) (Kong et al., 2020) generated between the coordinated
structure of MoS, and AuNPs (Parlak et al., 2017). Recent studies
have proved that the deposition of metal nanoparticles on TMDCs
may change the electronic, optical, and vibrational properties of the
TMDC:s layer (Abid et al., 2021). Zhang et al. (2016) demonstrated
the strain effect induced by metal nanoparticles deposited on the
MoS, layer using surface-enhanced Raman scattering (SERS).

The introduction of AuNPs to TMDCs-based biosensors can
efficiently accelerate the electron transfer and enhance the detection
signal (Huang et al, 2014; Wang et al, 2020b). A novel
photoelectrochemical immunosensor had been constructed based
on WS, nanosheets and AuNPs for the detection of methylated RNA.
The WS, nanosheets with large specific surface area were utilized as
photoactive material and AuNPs were immobilized through Au-S
bond. The AuNPs were used as the signal amplification unit and
immobilization substrate of 4-mercaptophenylboronic acid (MPBA),
followed by the specific capture of methylated RNA by anti-m°A
antibody. Finally, the signal amplification of the sensor was realized
by the action of poly(U) polymerase and hexaammonium salt (III)
chloride Ru(NHs)s>* (as a redox probe). The photoactivity of WS,
nanosheets was greatly enhanced and the sensitivity was improved by
the sensitization of Ru(NHj)s>*. Using visible light excitation and
ascorbic acid as the electron donor, the sensitive detection of
methylated RNA was achieved by monitoring the photocurrent
changes of different concentrations of methylated RNA. Under
the optimal experimental conditions, this photoelectrochemical
immunosensor showed a good linear relationship with the
concentration of methylated RNA in the range of 0.05~35nM
and the lower limit of detection was 14.5 pM.

3.2 n-n Coordination Covalent Bonds
Molecules with pyrene groups, such as 1-pyrenebutanoic acid
succinimidyl ester (PASE), could be adsorbed on the surface of
MoS, through the n-m coordination covalent bonds between the
pyrene group and TMDCs (Huang et al., 2016; Liu et al., 2020b).
Mei et al. (2018) fabricated a MoS,-FET biosensor chip based on
the m-m coordination covalent bonds to detect DNA with high
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FIGURE 6 | Schematic diagram of MoS; field effect biosensor for DNA detection (Mei et al., 2018).

sensitivity and specificity (Figure 6). The PASE was fixed on the
MoS, surface though -t coordination interaction between the MoS,
surface and the pyrene group. Then the phosphorodiamidate
morpholino oligos (PMO) probe was immobilized on the MoS,
surface through the covalently bond between the amino group on
PMO and NHS-ester group on the other end of PASE. Compared to
DNA probe, PMO enabled a low noise and high sensitivity detection
of DNA because it held a neutral backbone of morpholine rings and
made a weak impact on their hybridization behavior between PMO
and DNA. The detection limit of the sensor can reach 6 fM. And the
biosensor showed high sequence specificity capable of distinguishing
the complementary DNA from one-base mismatched DNA, three-
base mismatched DNA, and noncomplementary DNA. The
fabricated MoS,-FET biosensor was able to detect DNA in
complex sample like serum, making the method potential in
disease diagnostics, which demonstrated the advantage of n-m
coordination covalent bonds for the biosensor.

The -7t coordination covalent bonds can also be used to develop
MoS,-FET for detecting low levels of FGF21 in complex biological
settings (Gong et al, 2019). MoS, nanosheets obtained by
mechanical exfoliation were first transferred to SiO, substrate as
the conducting channel of this FET. The PASE was immobilized on
the sensor surface using the 7m-m coordination covalent bonds
between the pyrene group at one end of the cross-linker PASE
and the MoS,. Then, anti-FGF21 was covalently immobilized onto
the terminal NHS-ester group of PASE. Subsequently, BSA was
introduced to block the unbound sites on PASE. The MoS,-FET
biosensor demonstrated high sensitivity (10 fg/ml) and specificity,
showing its great potential application in disease diagnosis of
nonalcoholic fatty liver disease (NAFLD).

Chen et al. (2020) established a MoS,/graphene hybrid
nanostructure-based  biosensor for DNA  hybridization
detection, combing the advantages of TMDCs and graphene.
The MoS,/graphene hybrid nanostructure can weaken the Debye
shielding effect and avoid the water-induced noiseto improve the
sensitivity of the biosensor. The 1-pyrenebutanoic acid
succinimidyl ester (PBASE), a molecule with pyrene group,
was used as the connector for the probe DNA and hybrid
nanostructure. The channel conductance of the MoS,-FET

would be changed when the target DNA hybrid with probe
PMO. Therefore, high sensitive detection of target DNA could
be achieved through monitoring the current changes of MoS,
channel. The detection limit of this MoS,/graphene hybrid
nanostructure-based biosensor could reach as low as 10 aM.

3.3 Sulfur Vacancies

There are various methods to prepare TMDCs film, such as
mechanical exfoliation (Liu, 2021), liquid exfoliation (Raza et al.,
2021) and chemical exfoliation (Sun et al, 2017). During the
preparation of TMDCs film, the structure of TMDCs usually
develop atomic defects due to thermal equilibrium and kinetics of
processing (Cavallini and Gentili, 2022), some sulfur atoms are
naturally separated from the TMDCs flakes, resulting in sulfur
vacancies (Trainer et al., 2022). For example, the crystal structure
of MoS, was deformed and internal edges (tears, pinholes, and
defects) are clearly visible (Wang et al., 2017; Chen et al., 2022),
producing sulfur vacancies using Li* intercalation (Yan et al,
2022; Yang et al, 2022) or ultrasonication. It had been
demonstrated that these edge positions (sulfur vacancies) have
high molecular affinity for ligand conjugation with thiolates (Kim
et al,, 2021¢; Liang et al., 2021; Osthues et al., 2021).

Based on the sulfur vacancies of MoS,, Kim et al. (2014)
proposed a highly sensitive, stable, and inexpensive MoS, bulk
film chemiresistor sensor for the detection of various volatile
organic compounds (VOCs) in the gas phase. The MoS,
dispersion was first sonicated to produce sulfur vacancies
(defects) in the peripheral edges and internal edges of the MoS,
flakes, after which the MoS, dispersion was mixed with a
mercaptoundecanoic acid (MUA) solution. Because the MoS,
sulfur vacancies had high molecular affinity with the thiol
group of the thiol ligand MUA, a carbon sulfur bond (C-S) can
be formed to realize the coupling between them. Sensitive
membranes were prepared from MoS, and MUA-conjugated
MoS, (MUA-MoS,) solutions, respectively, and both
membranes exhibited high sensitivity (down to 1ppm) and
selectivity for representative volatile organic compounds (VOC)
groups (toluene, hexane, ethanol, propionaldehyde, and acetone).
It was important to note that the responses of the two were
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different: the MoS, sensor showed a positive response to oxygen-
functionalized VOCs, while the MUA-conjugated MoS, sensor
showed a negative response to the same analytes. This study
demonstrated that the ligand conjugation successfully increased
the functionality of the MoS, matrix. Therefore, this would be a
promising approach to construct multifunctional sensor arrays, by
coupling multiple thiolated ligands on the MoS, surface.

Similarly, Chiu et al. (2021) treated MoS, solution using
ultrasound-assisted liquid phase exfoliation to increase the
number of sulfur vacancies on their surfaces. Subsequently,
carboxy-MoS, nanocomposites were prepared using the
mechanism that the occupation of sulfur vacancies by chlorine
atoms led to the formation of covalent bond modifications. The
carboxyl-MoS,-based biosensor was used successfully to evaluate
PAPP-A2 level for fetal Down’s syndrome screening in maternal
serum samples and the detection limit was 0.05 pg/ml.

In general, functionalization of TMDCs surface by covalent
bonds is more stable than non-covalent bonds, resulting in
stronger binding to biorecognition molecules. Therefore, the
biosensors constructed based on covalently modified TMDCs
have better performance in terms of stability and repeatability.
The stable modification of the biometric element also improves
the sensitivity of the sensor. However, compared with non-covalent
modification methods, covalent modification-based sensors increase
the complexity of experimental operation and detection time.

4 SUMMARY AND PROSPECTS

During the fabrication of biosensors, the immobilization of
sensitive elements is a critical step in determining the sensor
performance. For TMDCs-based biosensors, the surface
functionalization of TMDC:s is a significant step related to the
performance of the recognition element. This paper reviewed the
different modification methods of TMDCs for the TMDCs-based
biosensors fabrication and the biosensors’ research progress.

The surface functionalization of TMDCs mainly includes non-
covalent and covalent interactions. Non-covalent modification
methods include hydrophobic interactions, van der Waals forces
and hydrogen bonding. Covalent modification methods include gold
sulthydryl bonds, m-m coordination covalent bonds, and sulfur
vacancies on the surface of TMDCs after pretreatment. Non-
covalent interaction could avoid the additional complexity
involved in surface chemical treatment, and simplifying the
biosensor fabrication and shortening the detection time.
Compared with non-covalent bonds, covalent bonds are more
stable for the functionalization of the surface of TMDCs,
resulting in stronger binding to biorecognition molecules.
Biosensors based on covalently modified TMDCs have better
performance in terms of stability and reproducibility. The stable
modification of the biometric element also improves the sensitivity
of the sensor. However, compared with non-covalent modification
methods, covalent modification-based sensors increase the
complexity of experimental operation and detection time.

In summary, non-covalent and covalent interactions have
their own advantages and disadvantages in surface
functionalization methods for TMDCs-based biosensors. How

Transition Metal Dichalcogenides-Based Biosensors

to combine their advantages and greatly improve the sensitivity
and stability of biosensors will be an important research direction
for the development of biosensors based on TMDCs in the future.
TMDCs are an excellent material for fabricating biosensors due to
their specific physical and chemical properties. The diversity of
modification methods can undoubtedly promote the wide
application of TMDCs in biosensors, but overcoming their
inherent defects is still a challenge for scientists.

Firstly, the low conductivity of pristine TMDCs in biosensors
remains a problem that cannot be ignored. The most current solution
is to incorporate other nanomaterials (i.e., graphene, AuNPs, BP, etc.)
onto TMDC:s to enhance the sensing performance. For example, the
heterojunction formed by the combination of TMDCs and graphite
can simultaneously solve the problem of zero band gap by graphite
and low electrical conductivity of TMDCs.

Studies have demonstrated that a single layer of TMDCs can
provide a higher on/off ratio when applied to field effect transistor
configurations. But the preparation methods of high-quality
monolayer TMDCs film needs to be further studied, and the
performance of monolayer film is easily disturbed by the
external environment, which seriously hinders its application in
biosensors. Therefore, it is important to synthesize high-quality
TMDCs monolayer films and functionalize their surfaces using the
suitable modification method in order to achieve high-sensitivity
and reliable biosensor construction.

On the other hand, due to their unique nanostructures, large
specific surface area coupled with their unique semiconductor
properties with tunable band gaps, TMDCs can also be used as
an outstanding nanoenzyme material. The emergence of TMDCs
nanozymes provides an opportunity for targeted drug delivery for
precision cancer therapy. Different anticancer effects can be achieved
by self-assembly of diverse substances on the surface of TMDCs
nanozymes via non-covalent and covalent interactions. What’s more,
the broad compatibility with various substrates, strong mechanical
strength, and excellent elasticity for mechanical deformation make
TMDCs one of the popular nanomaterials for wearable biosensors. It
can be expected that the performance of the TMDCs-based sensor
will be further improved in future research. And the multifunctional
TMDCs-based biosensors will have broader application prospects
with the rapid development of TMDCs nanomaterials.
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