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Problems such as redundancy of detection model parameters make it difficult to apply to
factory embedded device applications. This paper focuses on the analysis of different
existing deep learning model compression algorithms and proposes a model pruning
algorithm based on geometric median filtering for structured pruning and compression of
defect segmentation detection networks on the basis of structured pruning. Through
experimental comparisons and optimizations, the proposed optimization algorithm can
greatly reduce the network parameters and computational effort to achieve effective
pruning of the defect detection algorithm for steel plate surfaces.
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1 INTRODUCTION

Applying defect detection segmentation algorithms to real industrial production scenarios, hardware
resources are a challenge that must be faced (Tang et al., 2017; Liu H. et al., 2020; Hao et al., 2021).
Complex models often mean better detection capabilities, but the high memory space footprint and
huge consumption of computational resources doom it to ineffective application in resource-limited
hardware platforms (Sun H. et al., 2020, Sun et al., 2022c; Tao et al., 2022; Wu et al., 2022; Zhao et al.,
2022). Therefore, compression of redundant neural network models is essential.

Model pruning is a fast and effective way to compress neural networks by cutting out unimportant
neurons or filters to obtain a small network model with small storage capacity and fast inference.
Model pruning can inherit the weights of the network before pruning, so the model can be pruned to
achieve better optimization results.

Model pruning is a fast and effective way to compress neural networks by cutting out unimportant
neurons or filters to obtain a network model with small storage capacity and fast inference. Model
pruning inherits the weights of the network before pruning, so model pruning allows for better
mobile deployment and better optimization.

For real-time applications such as surface EMG signal processing (Li et al., 2019b, Li et al., 2020;
Sun et al., 2020a; Qi et al., 2020; Yang et al., 2021), gesture recognition (Duan et al., 2021, Liu X. et al.,
2022, Liu et al., 2022a, Liu et al., 2022b, Luo et al., 2020, Jiang et al., 2019a, b, Xu et al., 2022, Sun et al.,
2022a) and quality inspection (Chen et al., 2021a, Chen et al., 2021b, Huang L. et al., 2021, Jiang et al.,
2021a, Jiang et al., 2021b, Sun et al., 2021b, Chen et al., 2022a, Chen et al., 2022b, Chen et al., 2022c,
Huang et al., 2022, Sun et al., 2022b, Yun et al., 2022b, Zhang et al., 2022), model compression
effectively reduces the memory and computational power consumed by the original large neural
network, and improves the training and inference speed. Moreover, the compressed models are
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conducive to deployment and timely updates on embedded and
mobile devices with limited storage space, facilitating the
development of smart factories (Li et al., 2019a; Li et al.,
2019c; Yun et al., 2022a).

The key contributions of this work are:

1) A model pruning method based on improved geometric
median filter pruning is proposed on the basis of
structured pruning.

2) The pruning method and pruning process are improved by
performing model acceleration and fine-tuning in the
structured pruning process, and determining whether the
pruning end condition is satisfied by the evaluation
function to improve the pruning compression efficiency.

3) After experimental comparison, the improved geometric
median filter model-based pruning method proposed in
this paper outperforms other classical pruning methods.
And the pruning algorithm has better detection
performance and pruning efficiency in steel plate surface
defect segmentation detection.

The rest of this paper is organized as follows: Section 2
discusses related work on model compression in recent years.
Section 3 analyses model pruning methods and clarifies in detail
the advantages and disadvantages of unstructured pruning and
structured pruning methods; and as a basis, proposes a structured
model pruning method based on geometric median filtering for
pruning and compressing steel plate surface defect models. After
a brief introduction of the open source steel plate surface defect
dataset and the configuration of the experimental environment,
Section 4 presents an experimental comparison of the proposed
pruning algorithm with other pruning algorithms to demonstrate
the effectiveness of the structured pruning algorithm. Section 5
concludes the paper with a prospect.

2 RELATED WORK

In recent years, in order to perform more complex information
processing tasks, deep learning-based neural network models
have become deeper and deeper, also making them
increasingly computationally intensive, making it difficult to
deploy neural networks on devices with scarce computational
resources or with strict latency requirements (Liu H. et al., 2022).

As a result, compression of neural network models is becoming
increasingly important. For applications such as steel plate
surface defect detection, where real-time requirements are
particularly stringent, it is even more important to reduce the
computational cost and storage requirements and to speed up the
computation. Currently, there are five main neural network
model compression methods that are widely used (Gao et al.,
2021): Low rank decomposition, structural design, knowledge
distillation, parameter quantization and model pruning, and the
relevant short descriptions are shown in Table 1.

Liu M. et al. (2020) proposed a joint optimization model of
low-rank matrix bi-factor decomposition and structured sparse
matrix decomposition, and applied it to saliency target detection
with low time complexity. Zhang and Chen (2019) modelled the
detection of defects on the track surface as a low-rank matrix
decomposition problem, and calculated the row accumulation of
the sparse matrix obtained from the decomposition, and searched
for the maximum connected region to determine the defect
location, realizing automatic detection and localization of
defects. Wang et al. (2018) used multiple independent and
complementary information in the multi-view feature space to
outperform single information, and proposed that by
decomposing the potential low-dimensional data cluster
representations to present structured low-rank representations
and improve clustering performance by exploring multi-view
consensus structures beyond low-rank with an efficient
alternating minimization strategy function. Ouyang (2021)
proposed an improved autoencoder architecture based on an
extreme learning machine that uses low-rank matrix
decomposition to learn optimal low-dimensional features. The
representational and non-linear capabilities of the features are
enhanced. However, due to the large arithmetic size of matrix
decomposition, it inherently takes longer training time and
requires more hardware resources.

DenseNet (Huang et al., 2017) is a densely connected neural
network, with connections between any two layers of the network,
combining information from all previous layers as input features
for the next layer and introducing a feature channel scaling factor
and a resolution scaling factor into the network, further reducing
the computational effort of the network. Inception (Szegedy et al.,
2016), on the other hand, uses mainly 1 × 1 filters instead of 3 × 3
filters, saving the number of parameters in the network. To
randomly disrupt the feature channels, ShuffleNet (Xin et al.,
2021) divides the feature channels into multiple groups and

TABLE 1 | Model compression methods.

Methods Method description Advantages and disadvantages

Low-rank
decomposition

Low-rank decomposition of parameter matrices Parameter matrix decomposition is more difficult and requires larger hardware resources

Structural design Designing special convolution kernels Constructing new modules, trained from 0
Knowledge distillation Train to optimise your network with a large model as

a guide
Training from 0, model performance is more sensitive to network structure is more sensitive

Parameter
quantification

Replacing high-precision weighting parameters with
low precision

The quantified parameters are often not derivable and the actual update may deviate from the
original gradient direction

Model pruning Crop parameters that are not important to the final
accuracy

The pruned model has some robustness and can achieve better optimization
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convolves them to increase the information exchange between
different feature channels. MobileNet (Sun et al., 2021a) designs a
deeply separable convolution module and fuses the information
of different feature channels by 1 × 1 convolution. In addition,
researchers often introduce 1 × 1 filters between 3 × 3 filters to
reduce the number of input and output channels of the feature
map. Although lightweight networks are effective in reducing the
computational complexity of the network, there is still a large
amount of redundancy in the network and the design
requirements are high.

Huang J. et al. (2021) replaced the traditional static
convolution by constructing a dynamic convolution module
incorporating an attention mechanism to transfer dynamic
feature knowledge from the teacher network back to the
student network, thus achieving high accuracy recognition of
defects while significantly reducing model inference time. Liu
et al. (2021) proposed a neural network compression algorithm
based on knowledge distillation and adversarial learning, and
allowed the teacher network and student network to learn from
each other in the second half of training, enabling the student
network to explore its own optimal solution space. Park and Yong
(2020) proposed to apply channel and spatial correlation loss
functions and adaptive cross-entropy loss functions to train the
light network and use the heavy network for semantic
segmentation. Knowledge distillation from the heavy network

as the teacher to the light network as the student can be used as a
way to improve the performance of the student network. Zhang
et al. (2021) proposed a novel two-branch network that took three
pairs of original transformed images as input and incorporated a
class activation graph to drive the network to mine the most
relevant class-specific regions. This strategy ensured that the
network generated differentiated embeddings and a round of
self-knowledge distillation was set up to prevent overfitting and
improve performance. However, compared to other compression
methods (Sarakon et al., 2021), the whole training process of
knowledge distillation takes longer and is only applicable to
neural networks with softmax layers.

Rao et al. (2019) proposed a deep neural network compression
method based on dynamic quantization coding, in which the
quantization codebook is updated simultaneously during the
training of the model, so that the codebook minimizes the
error caused by quantization of larger weight parameters. Sun
H. et al. (2020) proposed a lightweight image compression neural
network based on parameter quantization, quantizing the model
parameters from 32-bit floating-point to 8-bit integer, saving 73%
of storage space compared to the original model. Chen et al.
(2019) proposed an efficient convolutional neural network-based
fast decision method for quantization parameter selection for
video coding by comparing the rate distortion cost to calculate the
optimal quantization parameters, saving the encoding time of the
video. Feature extraction is important for steganalysis of content-
adaptive JPEG steganography, Xu et al. (2018) proposed a scale
covariance matrix feature based on a two-dimensional Gabor
filter and used diverse quantization of filter residuals to improve
detection performance.

Jin et al. (2018) proposed a hybrid pruning method combining
weight pruning and convolutional kernel pruning; the
convolutional kernels that contribute less to the overall
accuracy of the convolutional neural network are pruned first,
and then the pruned model is weight pruned to achieve further
model compression. Wei et al. (2021) obtained a deep
convolutional neural network model with sparse parameters
by training the convolutional neural network model with
sparse regularization, and combined the sparsity of the
convolutional and batch regression layers to perform

FIGURE 1 | Unstructured pruning diagram.

FIGURE 2 | Structured pruning diagram.
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structured pruning to remove redundant filters. Ziani et al. (2018)
proposed a vertical partition pruning method based on the
maximum frequent item set, which effectively prunes the
potential search space to search for optimal solutions. Zhang
H. et al. (2020) performed model compression by enforcing
channel-level sparsity pruning in a YOLOv3 network, and
tested the effect of different gradient optimizers on model
pruning before finally using the Adam optimizer to
optimize the model. Jia et al. (2021) proposed a novel
solution for minutely significant target object detection,
which evaluates the parameters in the training model based
on significant energy levels as a way to distinguish between
background parameters in the model as a way to distinguish
between background and salient objects.

The above-mentioned deep learning-based model
compression methods still have problems such as requiring
large hardware resources for acceleration, high redundancy,
the stability and robustness of the network after model
compression is difficult to be guaranteed in complex
environments, and the network model has insufficient self-
adaptability.

3 IMPROVED GEOMETRIC MEDIAN FILTER
BASED PRUNING ALGORITHM

3.1 Model Pruning Methods
There are two main types of model pruning methods:
unstructured pruning and structured pruning.
Unstructured pruning prunes the neuron or connection
weights, which means that some non-0 elements in the
network calculation are set to 0, or the dense connections
of the network are turned into sparse connections, turning
the original dense matrix operation into a sparse matrix
operation, as shown in Figure 1. In Figure 1, the dashed
box is a pruning of the neurons to 0, and the dashed
connection is a pruning of the dense connections to sparse
connections, i.e. pruning weights.

Structured pruning is a type of pruning at the filter level,
which focuses on pruning the filters with smaller
contributions in each layer of the network. When the
filter van value (the filter’s impact factor) is less than a set
range, the network is structured to prune redundant filters
according to the van value, as shown in Figure 2. In the
figure, the jth convolutional layer is the i + 1th convolutional
layer. Thus, structured pruning can effectively reduce the
network model size without destroying the convolutional
structure.

Since the convolution kernel obtained after pruning is sparse,
and most GPUs today do not provide additional acceleration for
sparse matrix operations, this results in a pruned network that is
not accelerated in any way compared to the original network, but
may be slower.

Therefore, structured pruning is now a more general
approach, and is relatively more efficient than
unstructured pruning methods. For the use of the pruned

network does not require the support of specific hardware
platforms, computational libraries, effectively avoiding the
drawbacks of unstructured pruning and enabling direct
deployment on the mainstream deep learning frameworks
nowadays (Liu et al., 2017).

3.2 Geometric Median Filtering Based
Detection Model Pruning Algorithm
Model-structured pruning requires a criterion to select the
filter to be pruned, i.e. the filter’s magnitude value. The most
common pruning criterion is that the filter’s parametric value
is compared to some threshold value and if it is below the
threshold, the filter is set to zero, i.e., the filter is pruned and
pruned.

He et al. (2019) proposed a new filter pruning method for
pruning models by geometric median filter pruning, which is a
type of structured pruning.

Unlike the previous methods, geometric median filter-
based pruning compresses the convolutional neural network
model by removing redundant filters. Geometric median
filtering works by calculating the geometric median of the
filters within the same layer and, depending on the
properties of the geometric median, filters near the
geometric median can be represented by the remaining
filters. Therefore, pruning the geometric median filter

FIGURE 3 | Structured pruning flow chart.
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does not have a substantial negative impact on the model
performance.

In d-dimensional space, given any set of n points:
a(1), .., a(n), and a(i) ∈ Rd, there exists a point xp such that
the sum of the Euclidean distances (Euclidean distances) to
each point is minimized, and the point xp is referred to as the
Geometric Median (GM) point and is calculated as:

xp � argmin
x∈Rd

f(x) (1)

f(x) �def ∑
i∈[1,n]

����x − a(i)
����2 (2)

In which,
xp ∈ Rd, and xp is referred to as the geometric median point;
argmin denotes the value of the variable at which the objective

function f(x) is made to take its minimum valu;
[1, n] = {1, . . ., n}; def means that the f(x) function is defined

as ∑
i∈[1,n]

‖x − a(i)‖2.

The geometric median is a classical robust estimator of data
centeredness in Euclidean space and is used when pruning the
model to obtain common information about all filters within a
single layer i as the geometric median for that layer FGM

i .

FGM
i � argmin

x∈RNi × Hi × Wi

g(x) (3)

g(x) �def ∑
j′∈[1,Ni+1]

�����x − Fi,j′
�����2 (4)

In which, g(x) denotes the sum of the Euclidean distances of
all filters within tensor x to layer i.x ∈ RNi×Hi×Wi denotes that x
exists within input tensor Ni × Hi × Wi, and Ni, Hi and Wi

denote the number of channels, height and width of the input
tensor within layer i, respectively.Ni+1 indicates that the output is
Ni+1 when the input is Ni.

The core idea of geometric median filtering is that if there are
filters within layer i that are close to geometric median FGM

i , then
these filters are redundant and clipping these redundant filters
will not have a large impact on network performance. In layer i,
these redundant filters are:

Fi,jp � argmin
j′∈[1,Ni+1]

�����Fi,j′ − FGM
i

�����2 (5)

And these redundant filters are close to the geometric
median FGM

i .

����Fi,jp − FGM
i

����2 � 0 (6)

FIGURE 4 | Surface defect data for Severstal plates. (A) Pit defects, (B) Edge crack defects, (C) Scratch and scrape defects, (D) Rolled-in scale defects and (E)
Non-defect images.

TABLE 2 | Experimental environment configuration.

Project Configuration

Operating system Windows10
CPU i7-9700k
GPU RTX2080 Ti
RAM DDR5 16GB × 4
Programming language Python3.7
Deep learning framework PyTorch1.10
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That is, Eq. 5 is equivalent to

Fi,jp ~ argmin
j′,jp∈[1,Ni+1]

�����Fi,j′ − Fi,jp

�����2

� argmin
j′,jp∈[1,Ni+1]

�����x − Fi,j′
�����2

� argmin
j′,jp∈[1,Ni+1]

g(x)
(7)

In Eq. 7, x ∈ {Fi,1, ..., Fi,Ni+1}。
The geometric median is a classical robust estimator of

data-centricity in Euclidean space. This shows that the

information of the selected filter Fi,jp can be replaced by
other filters. After fine-tuning, the network can easily
recover its original performance. Therefore, the neural
network is pruned to have little impact on the final result of
the detection.

The pruning flow chart based on geometric median structured
pruning is shown in Figure 3. First, a pre-trained detection model
with the required compression is input and the pruning rate and
pruning layers are set. The pruning rate can be set to 0–1 and the
pruning layers can be set to convolutional layers, fully connected
layers, Batchnorm layers, etc.

TABLE 3 | Effect of different pruning rates on the ResNet50 model.

Pruning rate/% Calculated volume/M Number of parameters/M Calculated volume decline
rate/%

Rate of decline
in number of
parameters/%

0 335.69 25.50 0 0
10 291.82 22.17 13.07 13.06
20 249.37 18.98 25.71 25.57
30 208.96 15.98 37.75 37.33
40 171.84 13.15 48.81 48.43
50 136.86 10.50 59.23 58.82
60 105.67 8.08 68.52 68.31
70 74.70 5.72 77.75 77.57
80 42.31 3.38 87.40 86.75
90 13.79 1.29 95.89 94.94

TABLE 4 | Effect of different pruning rates on the ResNeXt50 (32 × 4d) model.

Pruning rate/% Calculated volume/M Number of parameters/M Calculated volume decline
rate/%

Rate of decline
in number of
parameters/%

0 347.23 24.96 0 0
10 342.73 24.75 1.3 0.84
20 336.55 24.13 3.08 3.25
30 328.34 23.21 5.44 7.01
40 310.92 21.73 10.43 12.94
50 288.07 19.81 17.04 20.63
60 251.99 16.96 27.43 32.05
70 183.47 12.63 47.16 49.40
80 112.31 8.07 67.66 67.67
90 37.06 3.04 89.33 87.82

TABLE 5 | Effect of different pruning rates on the FPN-ResNeSt50 model.

Pruning rate/% Calculated volume/M Number of parameters/M Calculated volume decline
rate/%

Rate of decline
in number of
parameters/%

0 508.19 27.98 0 0
10 464.23 25.94 8.65 7.28
20 425.51 23.25 16.27 16.91
30 372.55 20.01 26.69 28.49
40 325.04 17.56 36.04 37.23
50 268.02 14.34 47.26 48.74
60 212.93 11.31 58.10 59.59
70 152.86 8.18 69.92 70.78
80 95.13 5.24 81.28 81.29
90 31.46 2.14 93.81 92.36
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The structured pruning process in this paper includes updating the
mask, updating the indirect sparsity and updating the module. After
the pruning process, the model is accelerated and refined to optimize
the model. Finally, an evaluation score is calculated to determine
whether the end condition is met. If the end condition is met, the
pruned and compressed model is output; if not, the pruning process
continues.

Geometric median filtering algorithms can effectively improve
the compression rate of neural networks and reduce detection
model redundancy. The pruned detection model can be deployed
to portable devices for faster processing (Ran et al., 2022).

In this paper, a model pruning algorithm based on geometric
median filtering is used to compress the steel plate surface defect
detection network and implement a model pruning defect
segmentation detection algorithm based on geometric median
filtering to reduce the number of parameters and computational
effort of the detection model.

4 EXPERIMENTAL RESULTS AND
ANALYSIS
4.1 Open Source Surface Defect Dataset for
Steel Plates
The Severstal dataset was released open source on the competition
platform Kaggle. The Severstal dataset contains 12,568 images from
the training set and 1,801 images from the test set. There are
5,902 defect-free images and 6,666 defective images in the training
set. The number of defective and non-defective images in the dataset is
roughly equal, andmost of the images have no defects or contain only
one type of defect (Hao et al., 2022).

All images in the Severstal dataset have a vertical and horizontal
resolution of 256 and 1,600 respectively. There are four types of steel
surface defects in the Severstal dataset, as shown in Figure 4: A) Pit
defects, B) Edge crack defects, C) Scratch and scrape defects, D)
Rolled-in scale defects and E) Non-defect images.

The Severstal dataset contains a large variation in morphology
between different defects on the surface of steel plates, both large
defects such as scratches and scrapes, and very small defects such
as pits and edge cracks.

The extremely large span of defect scales places high
demands on the defect detection segmentation algorithm: it
has to focus on the details to achieve fine segmentation; and it
has to focus on the global picture and have sufficient sensory
field for large scale defects. These factors make feature
extraction and detection segmentation of the network
difficult and lead to the need for pruning and compression
of the defect detection model.

4.2 Experimental Environment
Configuration
The algorithm research and network training in this paper
were conducted on a laboratory server. The specific computer
systems used and the configuration of the experimental
environment are shown in Table 2.

This paper uses relevant open source libraries and toolkits
to implement the overall algorithmic procedure based on the
good ecology and scalability of the Python language and the
open source framework PyTorch (Bai et al., 2021).

These open source tools greatly save the development time of the
defect detection and segmentation procedure in this paper, thus
allowing more time and effort to be devoted to the research,
improvement and experimentation of the structuredpruning algorithm.

4.3 Experiments on Surface Defect
Segmentation Detection of Steel Plates
Based on Structured Pruning
In order to verify the practical effectiveness of the proposed
defect segmentation algorithm based on geometric median
filter pruning, experiments with different pruning rates were

FIGURE 5 | Plot of test results for different pruning rates.
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conducted on different models under the same conditions to test the
effect of different pruning rates on the accuracy of the models.

Since the main network layer of the pruned model is the
convolutional layer, this paper only detects pruning on the
convolutional layer of the detection model, and does not perform
pruning experiments on the fully connected layers, Batchnorm
layers, etc.

The input size of the model only affects the computational
volume of the model and does not affect the number of model
parameters. Therefore, the input size was set to [3, 64, 64] for the
model pruning experiments, i.e., the simulated input image size
was 64 × 64 for the 3-channel image.

The ResNet50model has good performance in image recognition
and localization tasks (He et al., 2016). The ResNeXt50 model is a
grouped convolution based on the ResNet50 model, which can
greatly reduce the number of parameters and is more effective in
many visual recognition tasks (Xie et al., 2017).

The FPN-ResNeSt50 model is an improved fusion of the FPN
(Feature pyramid networks) and the ResNeSt50 model (Lin et al.,
2017; Zhang Y. et al., 2020), with powerful feature extraction and
fusion capabilities, and have good detection capability for defect
segmentation detection tasks on steel plate surfaces.

In this paper, ResNet50, ResNeXt50 and FPN-ResNeSt50 are
used as the detection models for defects on the surface of steel
plates, and pruning experiments and validation are performed
on them.

The effect of different pruning rates on the ResNet50 model is
shown in Table 3. A pruning rate of 0% indicates that no pruning is
applied to the model. For example, when the pruning rate is 40%, the
computation of the model is 171.84 × 106, which is 48.81% lower
than the computation of the original model, and the number of
parameters of the model is 13.15 × 106, which is 48.43% lower than
the number of parameters of the original model.

The effect of different pruning rates on the ResNeXt50 (32 ×
4d) model is shown in Table 4. As the pruning rate increases, the
computational volume and number of parameters of the network
decreases and the rate of decrease in computational volume and
number of parameters increases.

However, the structured pruning effect of the model was not
evident at smaller pruning rates in the early stages due to the
ResNeXt50 (32 × 4d) model having a 32-component group
convolution, resulting in a smaller pruning rate.

The effects of different pruning rates on the FPN-ResNeSt50
model are shown in Table 5.

Comparing Tables 3, 4, 5, the results of the pruning
experiments prove that the more grouped convolutions a
network model has, the lower the compression rate of its
pruning. Since grouped convolutions can greatly reduce the
number of model parameters, the more groupings exist for
grouped convolutions, the lower the pruning compression rate.

The model pruning algorithm based on geometric median
filtering prunes and compresses the steel plate surface defect
segmentation model based on depth feature fusion, and
experiments with different pruning rates were conducted on it
under the same conditions to test the effect of different pruning
rates on the accuracy of the FPN-ResNeSt50 model, and the
detection results are shown in Figure 5.

At a pruning rate of 40%, the defect detection accuracy starts to
gradually decline, so at a pruning rate greater than 40%, it will lead to
the loss of important parameters of the model, resulting in a serious
decline in accuracy. In contrast, at a pruning rate of 10%–30%, the
model accuracy is able to maintain a low loss of accuracy.

The test results show that when the pruning rate is small, pruning
brings regularization to the network and enhances the generalization
performance of the network; when the pruning rate is large, the
characterization ability of the network is severely damaged and the
performance of the model decreases significantly.

5 CONCLUSION

In order to solve the problems of large number of model
parameters and difficulty in applying the model to actual plant
equipment, this paper investigates the defect segmentation
detection algorithm based on geometric median filter pruning.
Based on the structured pruning, a model pruning algorithm
based on geometric median filtering is proposed to prune and
compress the defect segmentation detection network, which
greatly reduces the network parameters and computational
effort and improves the generalization ability of the model.
Through experimental comparisons and optimizations, the
detection accuracy of steel surface defects is improved.
Meanwhile, the parameters and computation of the detection
model are reduced. The pruning and compression algorithm
proposed in this paper has good prospects for application in
the segmentation and detection of defects on steel plate surfaces.
Good pruning algorithms can be applied to a variety of factory
embedded or portable mobile devices and can meet the demand
for real-time scene detection. In the future, there is still a long way
to go in model pruning and compression research.
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