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Most visual saliency computing methods build models based on the content of

an image without considering the colorized effects. Biologically, human

attention can be significantly influenced by color. This study firstly

investigates the sole contribution of colors in visual saliency and then

proposes a bio-driven saliency detection method with a color factor. To

study the color saliency despite the contents, an eye-tracking dataset

containing color images and gray-scale images of the same content is

proposed, collected from 18 subjects. The CIELab color space was selected

to conduct extensive analysis to identify the contribution of colors in guiding

visual attention. Based on the observations that some particular colors and

combinations of color blocks can attract much attention than others, the

influence of colors on visual saliency is represented computationally.

Incorporating the color factor, a novel saliency detection model is proposed

to model the human color perception prioritization, and a deep neural network

model is proposed for eye fixation prediction. Experiments validate that the

proposed bio-driven saliency detection models make substantial

improvements in finding informative content, and they benefit the detection

of salient objects which are close to human visual attention in natural scenes.
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1 Introduction

When viewing a visual scene, the human visual system can quickly focus on some

unique vision areas. An understanding of human biological mechanisms in visual saliency

detection is essential to many applications, including video segmentation (Ren et al.,

2021), target detection Chong et al. (2020), image enhancement Sun et al. (2022), and

activity recognition Jiang et al. (2019), Chen et al. (2021).

Saliency in a visual scene can arise from a spectrum of stimuli, both low-level image

properties and semantic-level information Rosenholtz et al. (2011). In human visual

system, color, besides contrast, intensity, and motion, is considered one of the primary

features in computing bottom-up saliency. As we can see from the example in Figure 1, the

guiding powers of color stimuli and grayscale stimuli are vastly different for visual

attention. By comparing the eye fixation maps in both color images and gray-scale images

of the same content, it is clear that color has its sole contribution to visual saliency.
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However, many existing attention models usually neglect the

colorized effects and predict the same results for images

containing the same content. The saliency based solely on

color has not been well studied. One reason is the lack of eye

tracking datasets including color images and gray-scale images of

the same content.

However, previous visual saliency models considering color

attributes address a problem that is relatively ill-posed. Classical

saliencymodels Gelasca et al. (2005), Choi and Suk (2015) evaluate

which colors attract more attention based on a subjective

experiment, considering only a few colors, and the results of

these studies cannot be extended to natural visual scenes.

Moreover, these studies did not consider the effects of content

information (e.g., position/order) rather than color. Researchers

have not yet attempted to computationally model the relationship

between visual attention and color, despite its contents.

In this paper, we claim that the computational model should

consider the saliency of the image separately in color and gray-

scale scenes and propose a new Color-Gray eye-tracking dataset

(CGed) focusing on image color and human attention. Statistical

analysis on CGed is conducted to investigate how colors

influence human attention when viewing natural scene, how

much the colors attract human attention, and how to model the

factor of colors in visual saliency computing. Analytical results

indicate that certain colors attract human visual attention

strongly, and the color component b of the CIELab color

space is closely related to visual attention more closely than

the others—which we refer to as the color prioritization effect.

Based on these discoveries, we propose a salient object

detection model RNCw (Region contrast based on Non-

uniform quantification and Channel-weighted color distance)

by incorporating the color prioritization effect into the previous

method proposed by Cheng et al. (2015). We further apply our

discovery in eye fixation prediction and design a color weighted

DNN (APNet—Not Adaptive color weighting priori attention

weighting Network) model. Experiments demonstrate the

superior performance of the models we proposed, especially

when color-eliciting objects stand out in a scene. Our

contributions can be summarized as follows:

1) We propose a new image dataset (CGed) featuring visual

attention. To the best of our knowledge, this is the first dataset

that contains both color images and grayscale images of the

same content. It is designed for research on visual saliency,

especially with regard to the effect of image color on saliency

despite image content.

2) We evaluate how colors attract human attention

computationally. We observe that some particular colors

attract our attention more than others, and that certain

combinations of color blocks can enhance attention.

FIGURE 1
Visual comparisons of color images and gray-scale images of the same content. In the images in color mode, objects (lotus and sun) exhibit a
pop-out effect due to their distinguishable color, while in gray-scale mode, the guiding power of these objects is almost the same as the rest of the
surroundings, and this information has little effect on visual attention.
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3) We proposed two novel saliency computational models

incorporating the color factor: RNCw model, which is

compliant with human perception to improve the

performance in detecting salient objects; and APNet model

that encodes relative importance of objects in an image to

achieve predictions more coinciding with human visual

attention. The proposed models achieve state-of-the-art

performance on benchmark datasets.

2 Related works

2.1 Color and visual saliency model

Since color information plays an important role in visual

attention biologically, it has been used in saliency computation in

previous works. Osberger Pappas (2001) suggested that some

particular colors (e.g., red) attract our attentionmore than others,

or induce a higher amount of masking. However, saliency

researchers have not yet investigated what color attracts

human attention despite its content when viewing natural

scenes. One major reason could be the lack of a proper

dataset with both color images and gray-scale images of the

same content.

Achanta et al. (2008), Achanta and Süsstrunk (2010) use the

color and luminance features to detect salient objects. They

calculated the contrast between the local image region and its

surroundings. The saliency map can be obtained by calculating

the average color vector difference. Borji and Itti (2012) propose a

prediction model to reflect the saliency discrimination towards

eye tracking data. The model measures the scarcity of each block

in both RGB and LAB color space, and then combines the local

and global saliency of each color space to generate the saliency

map. As stated above, many saliency models compute image

saliency primarily bymeasuring the color feature. However, these

models did not clearly consider the sole contribution of colors,

excluding the image content factor.

In the past decade, substantial research has been done on visual

attention computational models to predict saliency. Traditional

attention models mainly rely on various cues to detect salient

objects, including local contrast Klein and Frintrop (2011), global

contrast Cheng et al. (2011) and background prior Yang et al.

(2013). Subsequent behavioral and computational studies started

to predict fixation with saliency maps to understand human visual

attention and verify saliency models. A large gain in saliency

prediction has resulted from the recent resurgence of

convolutional neural networks (CNNs). Specifically, several

methods such as Liu et al. (2015) used CNN to extract features

from multiple images region with varying contexts, and then

combined these contextual features to infer saliency. Some

other models, such as Li and Yu (2016), adopt fully

convolutional networks (FCNs) for feature representation at

each image location and generate saliency maps in a

convolutional way. Recent developed visual representation

models such as the visual transformer have also been applied to

salient object detection Liu et al. (2021), and they achieved high

performance on previous datasets.

Along with these advances, attention models can effectively

extract visual features and compute feature maps to quantify

saliency. However, existing methods did not consider the unique

influence of colors in saliency computing models, while human

visual attention order is sensitive to different colors in a natural

scene. By weighting the contribution of color to attention, our

work effectively addresses the color prioritization effect on

attention allocation in an image.

2.2 Eye-tracking datasets

Several datasets have been introduced to further challenge the

eye fixation prediction model. Two widely-used image datasets are

the MIT dataset Judd et al. (2010), which contains 1,003 natural

images free-viewed by 15 subjects each, and the NUSEF dataset

Ramanathan et al. (2010), which includes 758 (emotion evoking)

images free-viewed by 25 subjects each. There are other datasets

focusing on specific domains: OSIE Xu et al. (2014) features multiple

dominant objects in each image, and CAT2000’s training set

contains 2,000 images of diverse scenes, such as affective images

and cartoons. However, there are few eye-tracking datasets suitable

for research regarding the saliency of color despite its content. In this

paper, we present the first eye-tracking dataset to include both color

images and grayscale images of the same content.

3 Construction of the CGed dataset

The saliency of images considering content has been

extensively explored, but the saliency based solely on color

has not received much attention, probably due to the lack of

eye-tracking datasets including color images and gray-scale

images of the same content. To address the problem, we

constructed CGed, a new dataset containing both color images

and gray-scale images of the same content, with eye-tracking

data. It is designed for research on visual saliency, especially with

regard to the saliency of color, despite its content.

3.1 Image collection

CGed images were collected partially from theMIT1003 dataset

and partially from an online image search engine. It contains a total

of 500 brightly colored images with various semantic concepts

ranging from rural to urban environments. These 500 images of

natural scenes are rich in color. All color images were then

converted to grayscale, so that the CGed dataset includes a total

of 1,000 images, with 500 grayscale images.We collected the images
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to make the dataset more diverse regarding how observers’

attention is attracted.

3.2 Eye tracking

Eighteen subjects freely observe all CGed images on a 22-inch

LCDmonitor for 5 s. Nine of the subjects are male and the others

are female, and their ages are distributed in the range of 22 to 29.

These subjects can focus their attention on given images and

yield precise annotation. The screen resolution of an LCD

monitor is 1,680, ×, 1,050. The visual angle of the stimuli is

about 42.48° × 27.31°. Eye movements of the subjects are

recorded using the SensoMotoric Instruments (SMI) iView X

RED system. Eye position is recorded with an eye tracker

operating at a 250 Hz sample rate.

4 Computational studies of color
factor on visual saliency

In this section, we study the contribution of colors despite

content to attention when viewing natural scenes. We first

explain our analytical methods and then report observations

with supporting analyses.

A necessary prerequisite for showing an influence the color on

attention is the difference in attention score between the color image

and the corresponding grayscale image. Comparing attention scores

between color images and gray-scale images of the same content

reveals a general influence of color on visual attention since all other

image features remain the same. We first study the contribution of

color to attention. Based on the finding of salient colors, we study the

influence of combination of color blocks to attention.

4.1 Definitions and methods

For the study on CGed, we used a common method in

saliency research Le meur and Baccino (2013). Specifically, for

each image, we compute a fixation map by placing at each

fixation location a Gaussian distribution with sigma equal to

one degree of visual angle, and then normalizing the map to

maximum 1. We define the attention score of an image pixel as

the fixation-map value at this pixel. The attention score of each

pixel thus ranges between 0 and 1. In order to study the effect of

color on attention, we compute the difference in attention score

(DAS) by subtracting the attention score of the color image from

the attention score of the gray-scale image.

We use theMaximal Information Coefficient (MIC) David et al.

(2011) to analyze the correlation between color and attention. MIC

is a correlation statistic that measures the association strength of

linear and non-linear relationships between paired variables.

MIC � max I x, y( )/log2min nx, ny{ }{ }, where
I x, y( ) � H x( ) +H y( ) −H x, y( )

� ∑nx
i�1

p xi( )log2
1

p xi( ) +∑ny
j�1

p yj( )log2
1

p yi( )
−∑nx

i�1
∑ny
j�1

p xi, yi( )log2
1

p xi, yj( ) , (1)

nx · ny < B(n), where B(n) = n0.6 is the search-grid size. In

calculating MIC for vectors x and y, n is the number of data

points, and nx, ny is the number of bin of partition of the x − and

y − axis, respectively. H(x) and H(y) represent the entropy

associated with x and y, respectively. And the join entropy of

a pair of random variables x and y is represented as H (x, y).

4.2 Statistical results

Which color space is closely related to visual saliency: The

color spaces, including RGB, CIELab, and HSI, have been widely

adopted by previous studies; the color space has a significant

influence on the algorithm performance. In our study, we

determined the color space used for data analysis by comparing

the correlation between color and saliency in different color spaces.

In our study, only the colors corresponding to a DAS greater

than 0.1 are considered salient colors, and the relationship between

these colors and attention is studied.We first get a series of colors on

the color stimuli, which corresponds to a DAS greater than 0.1. We

decomposed the colors in the RGB, CIELab, and HSI color spaces

separately into three components for statistical analysis. Since the

range of values of color components in the RGB, CIELab, and HSI

color spaces are different, we normalized each component. The

statistical results are reported in Figure 2. The larger the value of the

MIC, the stronger the correlation. The larger total MIC of three

color components in CIELab color space over the total MIC of

three color components in other color spaces (1.89 vs. 1.35 vs. 1.16)

suggests that saliency is more relevant to CIELab color space than

both RGB and HSI color spaces. Subsequent analysis of what color

attracts attention, was performed in CIELab color space.

How colors contribute to attention: We focus on the role of

colors in visual attention and try to understandwhat colors influence

more visual attention.We uniformly quantize the value of each color

component in the CIELab color space to a range of 0–15, for 16 ×

16 × 16 = 4096. The quantized CIELab color space is called the L’a’b’

color space. To see what colors attract attention more intuitively, we

encode each color in the L’a’b’ color space. We can see a series of

colors and their corresponding attention scores in Figure 3. We also

counted ten of the most attractive colors in the CIELAB space. It is

noticed that some specific colors have much more saliency. By

calculating the difference in the attention score of the color block

combination corresponding to the color image and the same content

gray-scale image, we also discovered that certain color block

combinations often appear with high DAS.
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FIGURE 2
A statistic of the attention score of each color component of the RGB, CIELab, and HSI color spaces for colors corresponding to a DAS greater
than 0.1. In the three color spaces, each component of color is normalized to [0,1]. And the MIC between each component and the ADS is calculated
(MIC (R,DAS) = 0.57, MIC (G,DAS) = 0.42, andMIC (B,DAS) = 0.36;MIC (L,DAS) = 0.61, MIC (a,DAS) = 0.52, andMIC (b,DAS) = 0.76); MIC (H,DAS) = 0.37,
MIC (S,DAS) = 0.41, and MIC (I,DAS) = 0.38).
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5 Proposed color-aware saliency
models

In this section, we design our saliency computational

models guided by the psychophysics findings in the

previous section. On one hand, we propose a salient object

detection model RNCw (Region contrast based on Non-

uniform quantification and Channel-weighted color

distance) to detect salient object/regions. This salient object

detection method is an improvement on the RC method

Cheng et al. (2015). On the other hand, we designed a

color-weighted DNN (APNet—Not Adaptive color

weighting priori attention weighting network) for fixation

prediction.

FIGURE 3
Statistics on the colors that affect attention. Coded colors and the DAS. In CIELab color space, we let L’ = 2.55 *L, a’ = a +127, b’ = b + 127, and
code L’a’b’ = 16 * 16 *L’ +16 * a’ + b’.

FIGURE 4
The architecture of the proposed APNet. Two-stream consists of two VGG-16 models which operate on coarse and fine-grained scales of an
images. To capture the relative importance of the semantic features of a particular image, a channel-weighted subnetwork (inside the dashed red
rectangle) was designed to compute a set of 1024-dimensional features for each image. The priori attention weighting subnetwork (the blue dashed
rectangle) directly weights the prediction saliency map output by the DNN, which weights the combines the human eye’s perception sensitivity
to color, and can achieve a saliency prediction closer to human visual attention.
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5.1 RNCw method

The proposed RNCw considers the visual sensitivity of

human eyes to different colors in a natural scene, which is a

variant of the RCmethod. The RCmethod mainly consists of two

stages. In the RC method, the input image is first segmented into

regions using a graphics-based image segmentation method

Felzenszwalb and Huttenlocher (2004), then the color contrast

is computed at the region level. The saliency for each region is

defined as the weighted sum of the region’s contrast to all other

regions in the image. Unlike the RC method, we consider the

psychopysics findings in Section 4 in both phases.

In the first phase, different from the RC method, we use the

weighted color distance to measure the similarity between pixels

in CIELab color space and obtain a segmentation graph. The

weighted color distance between the pixels i and j in an image can

be computed as follows:




































WL Li − Lj( )2 +Wa ai − aj( )2 +Wb bi − bj( )2√

(2)

where Li, ai, and bi respectively represent the value of pixel Ii in

CIELab channels, and Lj, aj, and bj respectively represent the

value of pixel Ij in CIELab channels. TheWL,Wa, andWb denote

the weights of L, a, and b channels in CIELab color space,

respectively. The weights WL, Wa, and Wb are determined by

correlation coefficient values between attention with the L

component, the a component, and the b component in

CIELab color space, respectively. Guided by our

psychophysics findings, we set WL = 0.61/1.89 = 0.32, Wa =

0.52/1.89 = 0.28, and Wb = 0.76/1.89 = 0.40. There is no

difference in other steps. For more details, refer to

Felzenszwalb and Huttenlocher (2004).

In the second phase, we incorporate channel-weighted color

distance into the contrast to compute saliency. For a region rx, we

compute its saliency value as

S rx( ) � ∑
ry≠rx

w rx( )DWr rx, ry( ) , (3)

wherew(rx) is theweight of region rx, and themeaning is the number

of pixels in the rx region. DWr(rx, ry) is the channel-weighted color

distance metric between two regions and can be expressed as

DWr rx, ry( ) � ∑n1
i�1

∑n2
j�1

f cx, I( )f cy, j( )DW cx,i, cy,j( ) , (4)

where f(cx,i) represents the occurrence frequency of the ith color
in region rx, and DW(cx,i, cy,j) is defined as

DW cx,i, cy,j( ) �





























WL Lx,i − Ly,j( )2 +Wa ax,i − ay,j( )2

+Wb bx,i − by,j( )2
√√

, (5)

where Li,j, ai,j, and bi,j denote the value in L, a, and b channels of

the jth in region ri, respectively. The WL, Wa, and Wb denote the

weights of L, a, and b channels in CIELab color space,

respectively, whose values are equal to the values in the first

phase.

Similar to the approach suggested in the RCmethod to increase

the effects of closer regions and decrease the effects of farther

regions, we also incorporate the spatial weighting in terms

of Rutishauser et al. (2004). Thus, for any region rx, the saliency is

FIGURE 5
Visual comparisons of results generated by our saliency model with state-of-art methods. Our model (APNet) outperforms others in both
location and order, by taking into consideration color prioritization effects in attention allocation within an image.
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S rx( ) � ws rx( ) ∑
rx≠ry

e
−Ds rx,ry( )

σ2s w ry( )DWr rx, ry( ), (6)

wherews(ry) denotes the weight of region ry which is the number

of pixels in region ry, and Ds(rx, ry) denotes the spatial distance
between the regions rx and ry. The σs controls the strength of spatial

distance weighting. As with the RC method, we use σ2s � 0.4 with

pixel coordinates normalized to [0,1].

5.2 APNet model

We proposed a DNN architecture (APNet—Adaptive color

weighting and priori attention weighting Network) is shown in

Figure 4. To address color prioritization, we designed a channel

weighting subnetwork and a priori attention weighting

subnetwork. The channel weighting subnetwork (the red

dashed rectangle) encodes contextual information, enabling

the network to highlight color-eliciting objects from the

surroundings. The priori attention weighting subnetwork (the

blue dashed rectangle) directly weights the prediction saliency

map output by the DNN, which weights the combines the human

eye’s perception sensitivity to color, and can achieve a saliency

prediction closer to human visual attention. Also, since selective

attention may happen at different resolutions, we incorporate

information at multiple-scales. The two-stream network design is

based on SALICON Huang et al. (2015) and is used to extract

deep features from coarse-scale images and fine-scale images.

We briefly introduce our method for using DNN in fixation

prediction. We feed fine-scale images of 1,000 × 750 × 3 pixels to

its first stream for extracting relatively high-resolution deep

features, while feeding coarser-scale images of 500 × 375 × 3

pixels to its second stream for extracting relatively low-resolution

deep features. The outputs of the two network streams are

rescaled to the same spatial resolution and stacked together to

form a multi-scale depth feature of size 32 × 24 × 1024. After

applying a 2 × 2 max polling on 1,024 channels of concatenated

feature maps to reduce their dimensionality and spatial variance,

the channel weighting subnetwork computes a set of 1024-

dimensional feature weights for each image. And the weights

are applied to the input feature by a channel-wise multiplication.

We then performed a convolutional layer after a new subnet with

a 1 × 1 kernel to reduce the 1,024 channel 2D image to a single

channel 2D saliency map of size 32 × 24 pixels. Lastly, we rescale

the saliency map back to the dimension of the original image. In

the test phase, each pixel of the output saliency map is multiplied

by a weight. Specifically, each pixel in the output saliency map is

multiplied by the attention score of each pixel in the original

image in the L’a’b color space, and then the saliency map is

normalized to a maximum value that is equal to the maximum

gray value of the unweighted saliency map. Since the “saliency

color” and its attention score in the fourth section are under the

condition that the DAS is greater than 0.1, the weight of the

“non-saliency color” in the original image is set to 0.1.

6 Experiments

We evaluate our salient object detection models on the

ECSSD dataset and PASCAL-S within images from a wide-

variety of scenarios and resolutions. To demonstrate the

effectiveness of the proposed eye fixation prediction model in

predicting eye fixations, we evaluated it in CGed, CAT2000, and

OSIE datasets.

6.1 Salient object detection

6.1.1 Datasets
We test the RNCw model on the ECSSD dataset and the

PASCAL-S dataset. ECSSD contains 1,000 structurally complex

images acquired from the Internet, and the groundtruth masks

were annotated by five labelers. PASCAL-S contains 850 natural

images with both saliency segmentation groundtruth and eye

fixation groundtruth. Saliency groundtruth masks of PASCAL-S

were labeled by 12 subjects.

6.1.2 Evaluation metrics
There are a plethora of metrics available that are used to

evaluate saliency models. We use three universally agreed-upon

and standard measures for evaluating salient object detection

models in salient object detection datasets. They are MAE Borji

et al. (2015), S-measure Fan et al. (2017), and Precion-recall (PR)

curve Tong et al. (2014).

TABLE 1 The S-measure and MAE on two salient object detection
datasets.

Metric Dataset RC RNCw

MAE ECSSD 0.188 0.173

PASCAL-S 0.300 0.289

S-measure ECSSD 0.651 0.669

PASCAL-S 0.584 0.589

TABLE 2 The ROC areas on three eye-tracking datasets.

Method CGed CAT2000 OSIE

RC 0.7131 0.7233 0.7310

RNCw 0.7251 0.7294 0.7408
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6.1.3 Result
Improved model performance. Our approach makes use of

the color prioritization effect in attention in order to comply

with human perceptual characteristics, which improves the

performance of the salient object detection model. We report

results for our improved salient object detection model

(RNCw) with its base models (RC). Table 1 shows the

MAE and S-measure scores on two datasets. We can see

that the RNCw model can predict salient regions in

complex scenes and distinguish the non-salient regions in

the scene. That is, compared with the RC model, the salient

regions of our saliency maps are more prominent, and the

TABLE 3 Quantitative results on CGed dataset (color images). The best performance in each metric is highlighted in bold. For all evaluation metrics
larger values indicate performance, except smaller is better for EMD and KL.

Metric APNet N-APNet CASNet SALICON SalGAN ML-Net BMS SROD GBVS

AUC-Judd 0.83 0.82 0.83 0.81 0.82 0.80 0.77 0.75 0.71

AUC-Borji 0.82 0.81 0.80 0.79 0.77 0.77 0.76 0.74 0.70

sAUC 0.74 0.73 0.73 0.72 0.73 0.71 0.72 0.70 0.66

NSS 1.76 1.72 1.75 1.71 1.73 1.72 1.44 1.35 1.11

IG 6.41 6.37 6.39 6.31 6.40 6.37 6.24 6.31 6.01

CC 0.74 0.72 0.74 0.73 0.73 0.72 0.54 0.52 0.40

SIM 0.62 0.58 0.62 0.57 0.58 0.58 0.53 0.52 0.44

EMD 4.12 4.17 4.15 4.12 4.17 4.23 6.31 6.33 6.57

KL 5.99 6.09 6.05 6.13 6.21 6.24 6.34 5.37 6.44

TABLE 4 Quantitative results on CAT2000 dataset. The best performance in each metric is highlighted in bold.

Metric APNet N-APNet CASNet SALICON SalGAN ML-Net BMS SROD GBVS

AUC-Judd 0.82 0.81 0.82 0.80 0.81 0.79 0.78 0.77 0.80

AUC-Borji 0.80 0.77 0.79 0.78 0.80 0.73 0.77 0.76 0.79

sAUC 0.79 0.74 0.76 0.77 0.77 0.75 0.73 0.72 0.75

NSS 1.51 1.36 1.50 1.45 1.45 1.35 1.15 1.07 1.25

IG 0.37 0.25 0.37 0.09 0.08 0.27 -0.17 -0.21 -0.25

CC 0.59 0.52 0.58 0.56 0.56 0.52 0.44 0.41 0.49

SIM 0.55 0.53 0.57 0.53 0.53 0.52 0.49 0.48 0.51

EMD 2.86 2.89 2.42 3.21 3.21 2.86 3.12 3.31 3.12

KL 5.77 5.84 5.82 6.03 6.08 6.08 6.21 6.06 6.29

TABLE 5 Quantitative results on OSIE dataset. The best performance in each metric is highlighted in bold.

Metric APNet N-APNet CASNet SALICON SalGAN ML-Net BMS SROD GBVS

AUC-Judd 0.88 0.87 0.88 0.87 0.87 0.86 0.84 0.81 0.78

AUC-Borji 0.86 0.83 0.85 0.84 0.84 0.78 0.81 0.80 0.73

sAUC 0.84 0.74 0.85 0.82 0.82 0.77 0.79 0.78 0.73

NSS 2.38 2.37 2.36 2.31 2.26 2.37 1.54 1.33 0.37

IG 2.99 2.91 2.89 2.93 2.84 2.77 2.43 2.18 2.34

CC 0.72 0.69 0.75 0.69 0.72 0.72 0.48 0.43 0.44

SIM 0.57 0.54 0.59 0.53 0.60 0.61 0.43 0.40 0.42

EMD 2.99 3.23 2.97 3.21 2.94 2.78 4.10 4.33 4.42

KL 5.80 5.83 5.82 5.90 5.91 5.91 6.30 6.48 6.44
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non-salient regions are rarely mistakenly predicted. On the

ECSSD and PASCAL datasets, we obtained the same analysis

results. Although our improved algorithm is targeted at salient

object detection, its performance on human fixed prediction

benchmarks has also improved (see Table 2). In addition, a

large number of experimental results show that the salient

object detection model (RNCw) based on priori color

perception designed in this paper can improve the performance

and efficiency of saliency detection to some extent.

6.2 Fixation prediction

6.2.1 Datasets
In addition to the CGed dataset, we tested APNet on two

other eye-tracking datasets. One is the CAT2000 training set,

which contains 2,000 images, and another is the OSIE dataset,

which contains 700 images.

6.2.2 DNN parameters
We train our APNet by first initializing the weights and

biases from the VGG-16 model on ImageNet. We use a

momentum of 0.9 and a weight decay of 0.0005. The learning

rate is 0.00005 and the batch size is 32. The entire training

procedure takes about 1 day to complete on a single NVIDIA

V100 GPU using the caffe deep learning framework Sharma et al.

(2015).

6.2.3 Evaluation metrics
We use nine metrics for comprehensive evaluation. The Area

Under the Curve (AUC) Green and Swets (1966) is the area

under a curve of true positive rate versus false positive rate for

different thresholds on the saliency map. We use two variants of

AUC: AUC-Judd and AUC-Borji Bylinskii et al. (2017), and

shuffled-AUC (sAUC) Tatler et al. (2005), which alleviates the

effects of center bias. The Normalized Scanpath Saliency (NSS)

Peters et al. (2005) computes the average value at all fixations in a

normalized saliency map. Similarity (SIM) Judd et al. (2012)

calculates the sum of minimum values of saliency distribution

and fixation distribution at each point. The saliency map can be

compared with the human fixation map with the Linear

Correlation Coefficient (CC) Le Meur et al. (2007) and the

Kullback-Leibler divergence (KL) Tatler et al. (2005). The

Earth Movers Distance (EMD) Rubner et al. (2000) considers

FIGURE 6
APNet outperforms N-APNet in colorful scenes. APNet uses contextual information to improve fixation prediction by learning the relative
importance of colorful objects. Compared to N-APNet, APNet’s predictions more closely match human color perception priorities.
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the ground-truth and predicted saliency maps to be two

probability distributions and measure the cost of transferring

one distribution to the other. Information Gain (IG) Bylinskii

et al. (2017) as an information theoretic metric that measures

saliency model performance beyond systematic bias (e.g., a center

prior baseline).

6.2.4 Result
Tables 3–5 give the quantitative results of comparison with

state-of-the arts models on OSIE dataset, CAT2000 dataset and

CGed dataset respectively, and Figure 5 shows visual comparisons of

results generated by our saliency model with previous methods. We

report results for our model both with the subnetwork for context

saliency prediction (APNet) and without the subnetwork

(N-APNet—Not Adaptive color weighting and priori attention

weighting Network). We compared saliency prediction models

with seven others. There are state-of-the-art DNN-based models:

CASNet Fan et al. (2018), SALICON Thomas (2016) (We use the

code of OpenSALICONThomas (2016) which is a publicly available

implementation of SALICON), SalGAN Pan et al. (2017), and ML-

Net Cornia et al. (2016). Four are non-DNN models with top

performance in the non-DNN model category: BMS), SROD, and

GBVS. These models achieved state of the art performance in their

experiments on benchmark.

The comparison method ensures fairness. We exclude

DNN models that use or learn center bias (e.g., SAM-

ResNet Cornia et al. (2018)). All DNN-based models are

trained on the SALICON dataset to achieve their best

possible performance, and all models, including ours, are

directly tested on the three benchmark datasets without

training/fine-tuning on them.

As shown in the quantitative results, the proposed APNet

model with the contextual saliency subnetwork has the best overall

performance across dataset, without additional center bias

mechanism. APNet consistently outperforms N-APNet on all

datasets, indicating the effectiveness of learning the relative

weights of salient regions inside an image through the proposed

subnetwork. On AUC-judd, NSS, IG, and KL, APNet consistently

outperforms. For othermetrics, APNet is not always the best, but it

is close to the best. As we all know, NSS and IG consider the

relative importance of salient regions and are therefore the best

evaluationmeasures for contextual saliency. APNet beats the other

models on these two metrics across all three datasets,

demonstrating its advantage in contextual saliency. In Figure 6,

we analyze the effectiveness of APNet in learning the relative

importance of contextual information for brightly colored objects.

7 Conclusion

Studies conducted in the paper focus on understanding how

humans perceive and prioritize colors in scenes and how it is

related to visual attention. Based on the statistical results on a

collected CGed dataset, we proposed a novel salient object

detection model and a novel fixation prediction model

considering the factor of color computationally. Our current

work is still limited in dataset size, and the study of colorized

effects on visual saliency still needs further exploration. For

future work, we will collect more data to cover different

scenes and different subjects. Previous work showed that

fusing multi-scale features Huang et al. (2022) or multi-modal

information such as depth Jiang et al. (2021) is useful, which

could be another future direction. Moreover, considering that the

fixation prediction models are constructed originally to

understand human visual attention and eye movement

prediction, while the saliency detection models were driven by

the requirements of saliency-based applications, another future

work could focus on integrating the two tasks of eye fixation

prediction and salient object detection, to enhance the

performance of both types of models. The proposed color-

aware saliency computing methods can also be extended to

benefit other related areas such as object proposal generation

and segmentation.
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