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The rapid development of tissue engineering makes it an effective strategy for

repairing cartilage defects. The significant advantages of injectable hydrogels

for cartilage injury include the properties of natural extracellular matrix (ECM),

good biocompatibility, and strong plasticity to adapt to irregular cartilage defect

surfaces. These inherent properties make injectable hydrogels a promising tool

for cartilage tissue engineering. This paper reviews the research progress on

advanced injectable hydrogels. The cross-linking method and structure of

injectable hydrogels are thoroughly discussed. Furthermore, polymers, cells,

and stimulators commonly used in the preparation of injectable hydrogels are

thoroughly reviewed. Finally, we summarize the research progress of the latest

advanced hydrogels for cartilage repair and the future challenges for injectable

hydrogels.
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1 Introduction

Osteoarthritis (OA) is the most common chronic disease of joints, affecting

approximately 90 million adults in the United States alone (approximately 37% of the

adult population) and hundreds of millions worldwide (Krishnan and Grodzinsky, 2018;

Luo et al., 2021). It is characterized by degeneration and defect of articular cartilage, which

can cause joint pain, reduced mobility, and stiffness (Das and Farooqi, 2008). Unlike most

other organizations, cartilage is a type of special connective tissue without blood vessels,

nerves, and lymph nodes, characterized by immersing chondrocytes in ECM, which

consists mainly of a matrix (polysaccharides), fibrous components (fibrin), and interstitial

fluid (mainly water) (Armiento et al., 2019; Sirong et al., 2020). Therefore, cartilage cannot

repair itself due to insufficient nutritional support and proper progenitor cell

differentiation. When cartilage defects go untreated, joints inevitably deteriorate,

leading to OA and disability (Simon and Jackson, 2006; Gao et al., 2014).

Non-surgical conservative treatment and drug (painkillers and NSAIDs) therapy can

effectively relieve pain in the early stages of articular cartilage lesion but cannot reverse
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cartilage degeneration defect (Poddar and Widstrom, 2017).

Transplantation (using allogeneic or autologous cells or

tissues) and stimulation (stimulating self-repair of articular

cartilage) are commonly used in the late treatment of OA

(Tuan et al., 2013). The former includes allograft or

autologous cartilage transplantation, perichondrium and

periosteum transplantation, osteochondral transplantation,

ACI, and other graft repair techniques. The latter include

joint cleansing and debridement, cartilage grinding and

shaping, microfractures, drilling, osteotomy, and joint traction

(Fuggle et al., 2020). For patients with severe OA, severe invasive

total joint replacement surgery is generally considered the last

resort (Katz et al., 2021).

Hydrogels are widely used in tissue engineering and are

advanced cross-linked 3D hydrophilic polymer network

biomaterials because of their unique properties such as

high-water content, biocompatibility, porosity and

biodegradation, solid elastic properties, deformability, and

softness (Yang et al., 2017; Fu et al., 2018; Liu et al., 2021a).

The hydrogel properties are similar to the characteristics of

natural cartilage ECM and are easy to prepare. Hydrogel

development is the most promising method for treating

cartilage defects and cartilage regeneration (Wei et al., 2021;

Huang et al., 2022). Injectable hydrogels have attracted the

attention of biomaterial scientists in cartilage tissue

engineering (Schaeffer et al., 2020; Wang et al., 2021a)

(Figure 1). Because it can replace open implants with

minimally invasive injections, it has the advantages of being

less invasive, fewer complications, shorter hospital stays, and

forming any desired shape in situ to match irregular defects

(Liu et al., 2017a; Pascual-Garrido et al., 2018; Lin et al., 2021a).

Injectable hydrogels provide hydration similar to the height of

cartilage ECM. Biocompatibility and biodegradability of 3D

structure and elastic properties can be controlled by improving

cell metabolites and the supply of nutrients. The stimulus-

response release mechanism can encapsulate cells and deliver

efficient and effective bioactive molecules to the target of

cartilage regeneration (Park et al., 2009; Pereira et al., 2009;

Li et al., 2019). An ideal injectable hydrogel has several

requirements, such as no toxic byproducts during in vivo

gelation, appropriate solubility and gelation under

physiological conditions, and a controlled gelation rate

suitable for clinical practice (Jeznach et al., 2018).

This review aims to clarify the application of advanced

injectable hydrogels in cartilage repair and regeneration. The

progress and advantages of injectable hydrogels in cartilage

repair and regeneration are reviewed, including the

manufacturing technology (crosslinking method and structure)

and suitable materials (polymers, cells and stimulators). Then, we

summarize the research progress of the latest advanced injectable

hydrogels in cartilage tissue engineering. Finally, the challenges

in applying injectable hydrogels and their prospects in tissue

engineering are also discussed.

1.1 Formation of injectable hydrogels

Gelation is a crucial step in the formation of an injectable

hydrogel. According to the design structure and standard

application, it is imperative to select the appropriate

formation method to prepare injectable hydrogels (Li et al.,

2012). There are several ways of preparing injectable

hydrogels based on their reactivity or the connections they

contain. The cross-linking mechanism of the hydrogel can be

divided into chemical cross-linking and physical cross-linking

(Liu et al., 2020) (Figure 2). One of the distinctions between them

is whether or not covalent bonds are formed (Wu et al., 2020).

1.2 Physical cross-linking

Hydrogels can be cross-linked via reversible networks or

physical cross-links through physicochemical or molecular

entanglement interactions, such as hydrophobic interactions,

hydrogen bonds, ionic interaction, supramolecular chemistry,

crystal formation, or charge condensation (Lu et al., 2018;

Niemczyk et al., 2018). The mutual effects that occur in this

hydrogel are fragile. However, they are numerous and lead to

complex behaviors (Lynch et al., 2017; Bustamante-Torres et al.,

2021; Muir and Burdick, 2021). Some injectable hydrogels by

physical cross-linking are described below.

1.2.1 Hydrophobic interactions
Hydrophobic interactions (also known as hydrophobic

bonding) play a significant role in the self-healing course of

soft materials (Tu et al., 2019). This interaction is stronger than

the van der Waals and hydrogen bond interaction. Hydrophilic

and hydrophobic parts are usual in molecules that form gels

through hydrophobic interactions. Hydrophobic interactions are

constituted between non-polar parts to reduce their contact with

water (Skopinska-Wisniewska et al., 2021).

1.2.2 Hydrogen bonding cross-linking
Hydrogen bonds can form cross-linking networks between

hydrogen and electronegative atoms (He et al., 2019).

Supramolecular hydrogels enhanced by multiple hydrogen

bonds have good self-recovery, toughness, and recoverability

as a driving force (Yu et al., 2021a).

1.2.3 Ionic interaction
The cross-linked hydrogel structure is formed when

molecules with opposite electric charges interact

electrostatically (Abdulghani and Morouço, 2019). Ion

interactions have been widely used to physically cross-link

natural polysaccharides, such as chitosan and alginate, to

prepare hydrogels (Huang et al., 2017). Alginate can gelate in

the presence of polyvalent cations such as Sr2+, Ca2+, Fe2+, Co2+,

and Ba2+, which is related to cation binding through G blocks of
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alginate and the formation of so-called “egg boxes” (Lee and

Mooney, 2012; Abasalizadeh et al., 2020). CaCl2 is the most

commonly used ion cross-linking agent in alginate hydrogel. Due

to the high solubility of CaCl2 in aqueous media, alginate gelation

rates are too fast to control. In addition, reduced gel rate results in

greater mechanical integrity and a more uniform structure.

CaCO3 and CaSO4 can be used instead to slow down the

gelling speed. In addition, a buffer containing phosphate (such

as sodium hexametaphosphate) can be used because the

phosphate group in the buffer competes with the carboxylic

group of alginate in the reaction with calcium ions, thereby

reducing gelation (Abasalizadeh et al., 2020; Piras and Smith,

2020; Hu et al., 2021a). Cai et al. (2021). successfully prepared an

injectable hydrogel by in situ cross-linking sodium alginate with

divalent cations released from strontium-doped bioglass. The

hydrogel’s biocompatibility and mechanical properties promoted

BMSC proliferation, cartilage-specific gene expression, and

glycosaminoglycan secretion.

1.2.4 Supramolecular chemistry
Supramolecular chemistry hydrogels have been widely used

in tissue engineering, bioelectronics, and drug delivery. It has

good biocompatibility and biodegradation and contains many

cell adhesion sites (Kim et al., 2011). As a key sense in

supramolecular chemistry, self-assembly is mainly based on

non-covalent interactions (hydrophobic/hydrophilic

interactions, hydrogen bonding, van der Waals interactions,

π-π stacking, and host-guest complexation) between molecules

(Antoniuk and Amiel, 2016; Wang et al., 2020a). The substrate

of supramolecular hydrogels, a basic molecular process, is

usually non-covalent, structural, three-dimensional,

responsive, dynamic, adaptive, and organized. Such

molecular processes can easily interact with, interfere with,

and even simulate cellular events in various biological systems

(Zhou et al., 2017). Supramolecular interactions can promote

physical cross-linking to form hydrogels in two ways. The first

method is commonly used to create supramolecular materials,

molecular gels made of small molecules with high aspect ratios,

such as peptides. Once assembled, supramolecular stacks of

small particles constitute long, typically rigid fibers. The second

approach is that the interactions act as connections between

polymer chains, including motifs based on host-guest

complexation, metal-ligand ligands, and biomolecular

binding (Mantooth et al., 2019; Zhou et al., 2020).

Cyclodextrin-mediated host-guest interaction is an effective

material for hydrogel construction, mainly because of its

bioavailability, ease of chemical modification, and high

reversibility and specificity of inclusion complexes composed

of many hydrophobic guest molecules (Antoniuk and Amiel,

2016).

FIGURE 1
Schematic diagram of hydrogel injection in repairing cartilage defect. Adapted with permission of Wu et al. (2020).
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1.3 Chemical cross-linking

The convergence of years of research has led to the

development of mild chemistry that can be set at

temperature, physiology, osmotic pressure, and pH while

avoiding using toxic reagents. Chemical cross-linking

depends on the formation of covalent bonds between the

reactive groups grafted to the main chain of the

polymerization, and it can occur under certain conditions

(Flégeau et al., 2017). These conditions include click

chemistry, Michael addition, disulfide cross-linking,

enzyme-mediated cross-linking, silanization, Schiff base

chemistry, photopolymerization, and cross-linking agents

(Radhakrishnan et al., 2014; Piantanida et al., 2019;

Nguyen et al., 2021)

1.3.1 Click chemistry
Click chemistry includes copper-catalyzed alkyne-azide

cycloaddition, copper-free click (strain-promoted azylene

cycloaddition click, Diels-Alder click chemistry, oxime,

mercaptan, and mercaptan alkyne), and pseudo click

(Gopinathan and Noh, 2018; Li et al., 2021a). Click chemistry

is widely used in constructing injectable hydrogels due to its mild

reaction conditions, high chemical selectivity, and fast gelation

time, without adding or producing cytotoxic cross-linking

agents, chemical additives, and byproducts in the gelation

process (Yao et al., 2020).

1.3.2 Michael addition
Michael addition reaction hydrogels are prepared by adding

polymers containing thiol groups to α, β-unsaturated carbonyl

polymers under standard conditions (Quadrado et al., 2021).

PEG-based hydrogels based on the Michael addition reaction

have been widely used in tissue engineering (Guo et al., 2021).

Pupkaite et al. (Pupkaite et al., 2019) tried to overcome the

shortcomings of partially injectable hydrogels, such as complex,

overexpanding, potentially toxic cross-linking processes, or lack

of self-healing and shear thinning. Mercaptan groups were

introduced into collagen. The hydrogel was prepared by cross-

linking with 8-arm polyethylene glycol maleimide. The hydrogel

is cytocompatible and can be used to encapsulate and deliver

cells.

FIGURE 2
Schematic diagram of commonmethods for preparing injectable hydrogels. Injectable hydrogels can be roughly divided into two gel methods:
physical cross-linking and chemical cross-linking reactions. The difference between them is whether or not covalent bonds are formed. Physical
cross-linking is non-covalent bonding via reversible and instantaneous connections, including physicochemical or molecular entanglement
interactions (hydrogen bonding, ionic or hydrophobic interactions). Chemical cross-linking forms covalent bonds in various chemical
processes, including enzyme-mediated cross-linking, photopolymerization, click chemistry, Michael’s addition, Schiff base chemistry, and cross-
linking agents. Adapted with permission of Wu et al. 2(2020).
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1.3.3 Enzyme-mediated cross-linking
Enzyme cross-linking reactions are mild. Most enzymes

catalyze reactions in water environments at neutral pH and

moderate temperatures. This means that they can also be used

to form hydrogels in situ, avoiding the loss of biological activity

caused by natural polymers that cannot withstand the harsh

chemical conditions required for crosslinking (Teixeira et al.,

2012). Several enzyme-mediated injectable hydrogels are used for

cartilage defect repairs, such as tyrosinase, lysyl oxidase, and

transferase enzyme systems (Liu and Lin, 2019; Wang andWang,

2021). HRP and H2O2 are the most common enzyme-mediated

cross-linking agents by phenol partial carbon-oxygen/nitrogen

bond or carbon-carbon bond oxidative coupling. They can easily

control the physical properties of the hydrogel by changing their

concentration (Ren et al., 2015). These hydrogels are formed in a

matter of minutes. They showed excellent biocompatibility and

supported chondrocyte proliferation and differentiation (Jin

et al., 2010). Enzyme-mediated hydroxyapatite hydrogel has

the advantages of injectable, non-cytotoxic, and rapid cross-

linking (Jin et al., 2020). Zhang and his team proposed a

biomimetic enzyme complex of ferrous glycine (Fe [Gly]2)

and glucose oxidase for rapid (less than 5 s) and mild

preparation of injectable tough hydrogels (Zhang et al., 2021a).

1.3.4 Schiff base chemistry
Schiff base chemistry involves the formation of dynamic

covalent imine bonds by cross-linking aldehyde and amine

groups. Schiff base chemistry has the advantages of being

reversible, simple, pH-sensitive, and biocompatible (Xu et al.,

2019; Sahajpal et al., 2022). For the formation of biopolymer

hydrogels, the functions of hydrazones and imines are most

commonly used to achieve dynamic cross-linking behavior (Muir

and Burdick, 2021). Chen et al. (2021). prepared injectable HA

hydrogels modified with methacrylate and aldehyde group

through dynamic Schiff base reaction. The results showed that

the hydrogel was easy to prepare quickly in situ, had good

biocompatibility, promoted BMSC proliferation, and

promoted the regeneration of rat cartilage.

1.3.5 Photopolymerization
Visible or near ultraviolet photopolymerization is one of the

most widely studied gelation processes in the development of

injectable hydrogels. Some types of hydrogels can be

photopolymerized in vitro and in vivo by the interaction of

photoinitiators with visible or ultraviolet light to generate free

radicals and polymerize free radical chains (Meng et al., 2019;

Wu et al., 2020). Photopolymerization is a fascinating method

with the following characteristics: 1) It is based on chemical

reactions unaffected by water, making it suitable for use in

aqueous media. 2) This is usually a very rapid process,

allowing the synthesis of free-standing hydrogels in minutes

or seconds. 3) It allows space and time control of the cross-

linking process. 4) It is very little cytotoxic under the appropriate

conditions and thus does little harm to cell survival and

proliferation (Nicol, 2021; Pierau and Versace, 2021). The

researchers altered collagen with Methacrylamide to photo-

crosslinking under ultraviolet stimulation, enabling fast in situ

gelation (Zhang et al., 2020a). GelMA injectable hydrogel is

formed by introducing a double bond into a gelatin polymer

chain that rapidly forms a hydrogel under light initiation. The

blue light initiator lithium phosphonate makes the gelation

approach faster and the preparation approach easier (Yue

et al., 2015; Wang et al., 2021b; Wang et al., 2021c).

1.4 Comparison of physical and chemical
cross-linking

The ideal injectable hydrogel has several requirements,

including: 1) no evil byproducts are produced after gelation;

2) solubility of the gelated aqueous solution under physiological

conditions (pH, temperature, and ion concentration); 3) the rate

of gelation is rapid enough to meet the clinical efficacy.

Nevertheless, in the presence of an additional agent such as a

cell or bioactive molecule, there is adequate time for appropriate

mixing and injection; 4) Suitable rate of biodegradation (Salavati-

Niasari and Davar, 2006; Naahidi et al., 2017; Elkhoury et al.,

2021). Both physical and chemical gelation must fulfill the above

requirements. However, both physical and chemical techniques

have benefits and deficiencies. Therefore, the most suitable

method should be selected to design injectable hydrogels.

Compared to chemical cross-linked hydrogels, physically

cross-linked hydrogels typically exhibit lower mechanical

properties because the physical interactions are reversible and

weak, so the hydrogels that form loosen easily when physical

conditions (temperature, ionic strength, electrolyte, and pH)

change (Mathew et al., 2018). For example, thermosensitive

cross-linked hydrogels are one of the most widely studied

injectable hydrogels in tissue engineering (Xu et al., 2020;

Torres-Figueroa et al., 2021). Sol-gel transformations occur

during hydration and dehydration at different temperatures

(Shi et al., 2021a). The CST of such hydrogels is close to the

body temperature during the sol-gel transition. The polymer chain

expands in a random coil conformation due to its hydrophilic

interaction with water molecules. However, when the system is

heated beyond CST, the polymer chains collect and collapse due to

a major hydrophobic interaction between the polymer chains (Sala

et al., 2017; Dethe et al., 2022). Different PEG-based polymers,

Poloxam and NIPAAm, are typical examples of thermosensitive

hydrogels. The polar groups in the hydrogel can form hydrogen

bonds with the water molecules between the polymer chains under

CST, making it soluble. Above CST, the polymer chain contracts

and becomes insoluble and hydrophobic, resulting in gelation

(Eslahi et al., 2016).
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Furthermore, ion-sensitive injectable hydrogels for

cartilage defect repair have been developed. By adding

Ca2+, the alginate solution can easily constitute hydrogel

through ion cross-linking through the calcium bridge

between the guluronic acid residues on nearby chains (Hu

et al., 2019). pH-responsive hydrogels consist of polymers

with basic or acidic groups, and their mechanisms involve

dissociation and binding with hydrogen ions in response to

ambient pH. This hydrogel has been extensively studied in

drug delivery applications because the pH curves of

pathological tissues (such as infection, inflammation, and

cancer) differ from those of normal tissues (Eslahi et al.,

2016; Yu et al., 2020a).

These physically cross-linked injectable hydrogels can be

converted from liquid to gel and organized in situ hydrogels

when injected into the body without additional cross-linking

agents, chemical reactions, or environmental treatments (Gao

et al., 2020). Physical interactions (e.g., hydrogen bonds,

electrostatic attraction) or reversible chemical bonds (e.g.,

imine bonds) can form cross-linked pre-gel hydrogels

whose structures are reversible (Arkenberg et al., 2020;

Gupta et al., 2020). Pre-gelated hydrogels are in vitro-

formed hydrogels that can be injected at the target and

self-heal (Oliva et al., 2017). Pre-gelated hydrogels are

injectable due to their self-healing and shear thinning

(Riley et al., 2019). As the shear rate increased (during

injection), the stickiness of the hydrogel decreased

dramatically, reflecting the shear-thinning behavior

(Thambi et al., 2017; Wang et al., 2021d). Although the

injection forces may interfere with the cross-linking

structure and trigger the gel-sol transition, the following

self-healing process can rebuild the gel after removing the

strain (Liu and Hsu, 2018). Shear-thinning injectable

hydrogels protect encapsulated cells from high shear forces,

improving the effectiveness of cell-based therapies (Thakur

et al., 2016).

On the other hand, chemically cross-linked gels typically

have stronger mechanical properties because covalent bonds are

permanent and rigid (Zhao et al., 2020; Ali et al., 2022). The main

drawback of chemical cross-linked hydrogels is the problem of

cytotoxicity, which binding reactive compounds and light

radiation may cause. Fortunately, recent developments in

chemical cross-linking methods have enabled good

biocompatible hydrogels to be gelated under mild reaction

conditions (Lee et al., 2020; Wu et al., 2020).

Advanced injectable hydrogel preparation methods need to

be further developed to improve physiological stability and

mechanical properties, reduce adverse effects and cytotoxicity

of hydrogels in vivo, and ensure gelation occurs at a rate suitable

for clinical practice. Each approach has its advantages and

disadvantages. Future research will explore how to correctly

select the appropriate method and improve the existing

manufacturing method.

1.5 Multiscale structure of injectable
hydrogels

The bearing capacity of materials is a crucial characteristic in

cartilage tissue engineering. Cartilage reduces friction, shear, and

compression forces between bones. Its modulus is 0.5–2 MPa

(Cross et al., 2016). Hydrogel has a stiffness of two orders of

magnitude lower than natural cartilage (Li et al., 2019). Poor

mechanical properties and limited functionality of traditional

injectable hydrogels hinder their application in cartilage (Song

et al., 2015). In addition to high water content and

biocompatibility, the rigid multiscale hydrogel system also has

super tensile property and large fracture energy (Xin, 2022).

Multiscale injectable hydrogels with high mechanical strength

and stability are of particular interest in cartilage tissue

engineering (Figure 3).

1.6 Interpenetrating polymer network
hydrogels

The IUPAC defines IPN as a unique polymer mixture

consisting of two or more cross-linked networks whose parts

are intertwined but not covalently connected and which cannot

be separated unless the chemical bond breaks (Matricardi et al.,

2013). IPN hydrogel was exploited to improve its mechanical

properties (Zhang et al., 2015). Compared with hydrogels formed

by a single polymer model, hydrogels with IPN often exhibit

superior mechanical properties (Zoratto and Matricardi, 2018).

Shojarazavi et al. (2021) used an IPN structure combined with

silk fibroin nanofibers, alginate, and sodium cartilage ECM to

enhance the mechanical properties of ECM to achieve the

mechanical stiffness required for cartilage repair.

1.7 Semi-interpenetrating polymer
network hydrogels

Unlike IPN, the chains of the second type of polymer in

Semi-IPN are only dispersed in the network formed by the first

type of polymer, rather than forming another network

interpenetrating with the first type of polymer (Aminabhavi

et al., 2015). IUPAC defined Semi-IPN as a polymer

consisting of one or more networks and branched or linear

polymers characterized by the penetration of at least one

network at the molecular scale by at least some branched or

linear macromolecules (Rinoldi et al., 2021). Furthermore,

branched or linear polymers composed of Semi-IPN can be

separated from the composed polymer network without

breaking the chemical bond (Dhand et al., 2021).

Thermosensitive hydrogels based on the chitosan/β-
glycerophosphate system are widely used in cartilage

regeneration engineering because of their good injectable
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properties, rapid gelation at the injection site, and ability to repair

cartilage defects (Saravanan et al., 2019). However, due to their

physical cross-linking network, chitosan/-glycerophosphate

hydrogels exhibit high degradation rates and poor mechanical

properties under physiological conditions, limiting their

application (Jalani et al., 2015; Saravanan et al., 2019).

Panyamao et al. (2020) used GE covalent cross-linking and

pullulan Semi-IPN to improve the mechanical properties and

swelling capacity of injectable thermosensitive hydrogels ground

on the chitosan/β-glycerophosphate organization. Moreover,

Wang et al. (2020a) prepared an injectable Semi-IPN hydrogel

based on HA-SH and BPAA-AFF-OH supramolecular short

peptides. The injectable hydrogel exhibits reliable mechanical

strength. Moreover, compared with HA-SH hydrogel, it can

enhance the expression of chondrogenesis-related genes and

matrix secretion and further promote the maintenance of the

hyaline cartilage phenotype.

1.8 Double networks hydrogels

Double-network hydrogels consist of two cross-linked

networks with significantly different mechanical

properties. The first network provides a rigid structure,

and the second network is malleable. This is due to some

structural parameters, namely the rate of the two hydrogel

components, cross-linking density, swelling rate, and

molecular weight allocation of the network polymer

(Jonidi Shariatzadeh et al., 2021; Xin, 2022). Wang et al.

2(2021b) studied a double injectable hydrogel based on

HAMA and GelMA. The double hydrogel combines the

strong mechanical properties of HAMA with GelMA’s role

in chondrocyte phenotype maintenance and ECM

formation.

1.9 Dual networks hydrogels

Unlike a double network using two different mechanical

properties materials, a dual network is defined as two cross-

linked materials to form the same network and have a similar

cross-linking mechanism. Although the dual network does not

have the toughness of the double network, each material in the

dual network can inject other useful properties into the hydrogel.

For example, one material attracts cells and encourages

migration into the injectable hydrogel, while the other

effectively binds to surrounding tissue (Vega et al., 2017). Kim

et al. (2021). (investigated poly(N-isopropyl acrylamide) and

PLL-based dual network injectable hydrogels encapsulating

articular chondrocytes and MSCs. The model experiment of

FIGURE 3
The schematic diagram depicts injectable hydrogels with different structures for cartilage regeneration engineering (A). Traditional single
polymer networks. (B–F). Different multiscale structure of injectable hydrogels. Reproduced with permission of Vega et al. (2017).
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cartilage transplantation in vitro showed that dual hydrogel could

promote cartilage defect repair.

1.10 Nano/micro-composite hydrogels

Mixed hydrogels integrated with nano/micron composites

are networks of hydrated polymers physically or chemically

cross-linked with N/MPs or other nano micron structures

(Mehrali et al., 2017; Kouser et al., 2018).

N/MPs have excellent mechanical properties, surface

reactivity, bioavailability, and a larger surface-to-volume ratio

(Asadi et al., 2018; Zinatloo-Ajabshir et al., 2018; Piantanida

et al., 2019; Ahmadian-Fard-Fini et al., 2020). The hard N/MPs

enhance the soft organic polymer matrix, and the resulting nano/

micron composites hydrogel can exhibit novel or enhanced

biological, mechanical, conductive, optical, or magnetic

properties (Motahari et al., 2015; Motealleh and Kehr, 2017;

Zhao et al., 2017; Ravari et al., 2021). Inorganic materials such as

clay, graphene, CNCs, hydroxyapatite, and metal nanoparticles

can be used as fillers to enhance the hydrogel matrix (Davar et al.,

2010; Zazakowny et al., 2016; Asadi et al., 2018; Zinatloo-

Ajabshir and Salavati-Niasari, 2019). Nano-silicates with high

cellular and biocompatibility could form shear-thinning

hydrogels when combined with long-chain polymers (Thakur

et al., 2016; Lokhande et al., 2018). POEGMA precursor polymer

was physically cross-linked with CNCs, which made CNCs have

excellent hydrogel dispersibility and significantly enhanced gel

mechanical properties. Other gel properties, including swelling,

degradation kinetics, and gelation rate, also changed significantly

(De France et al., 2016). GelMA injectable hydrogel microspheres

prepared by microfluidic technology are widely used in cartilage

repair due to their enhanced high injectivity, structural stability,

and uniform size (Han et al., 2021). Lei and his team reduced

articular cartilage friction by coating the surface of injectable

hydrogel microspheres with liposomes to form a self-renewing

hydration layer through friction and wear. In addition, the release

of an autophagy activator (rapamycin) promotes cartilage repair

(Lei et al., 2022).

Moreover, the N/MPs adsorbs and retain essential stimulating

factors, prolonging their release time due to the larger surface-to-

volume ratio and high encapsulation efficiency of stimulating factor

(Amiri et al., 2017; Nagahama et al., 2018;Wong et al., 2018; Ishihara

et al., 2019; Bian et al., 2021; Zewail et al., 2021; Luu et al., 2022; Seo

et al., 2022). Wang et al. (2020b) loaded the water-soluble antibiotic

isoniazid into a cross-linked PEG network and encapsulated the

hydrophobic antibiotic rifampicin into mesoporous silica

nanoparticles. The addition of nanoparticles can significantly

adjust and enhance injectable hydrogels’ mechanical strength and

elasticity. The release time of rifampicinwas significantly longer than

isoniazid and promoted cartilage repair. Lin et al. (2021b) developed

PLGA microspheres loaded with TGF-β3, and injectable hydrogel-

coated PLGA microspheres could sustainably release TGF-β3. This

synthetic micron composite injectable hydrogel system regulates

chondrocyte differentiation and biosynthesis.

The electroactive nanomaterials promote the migration,

adhesion, proliferation, and differentiation of preosteoblasts

and MSCs. Aniline oligomers (Penta aniline or tetra aniline)

are the most commonly used conductive oligomers, with the

advantages of good biocompatibility, low cost, easy synthesis,

good stability, easy processing, electrochemical behavior similar

to conductive polymers, and due to low MW, easy to be

eliminated from the body by renal excretion (Wang et al.,

2016; Hassanpour et al., 2017; Zinatloo-Ajabshir et al., 2020;

Monsef and Salavati-Niasari, 2021).

2 Material of injectable hydrogels

Injectable hydrogels are generally required to have the

following characteristics, including low toxicity, adequate

biocompatibility, support for cell adhesion, proliferation and

differentiation, biodegradability, appropriate degradation rate,

and fine structure similar to the tissue or organ to be repaired,

and controlled release of biomolecules (Jiang et al., 2021).

Strategies for cartilage repair based on natural and synthetic

injectable hydrogels and their combination were studied.

2.1 Natural polymers

Natural polymers can be broadly divided into three categories:

those based on proteins, polysaccharides, and protein nucleotides.

Because ECM is a complex combination of fibrin (such as laminin,

collagen, and ficonin) and hydrophilic proteoglycan. A simple and

effective way to simulate ECM is to prepare injectable hydrogels

using natural polymers that mimic many of its characteristics

(Farrell et al., 2017). Natural polymers have several advantages

over synthetic polymers:1) they are more biocompatible; 2) They

can contain cell-binding motifs, realize cell adhesion, proliferation,

and biological activity cues, and influence cell behavior; 3) They can

exhibit fibrous structures that mimic the ECM of natural tissues; 4)

They can be recognized and processed metabolically by the body,

allowing cells to reshape them along with cell-secreted ECM

deposition (Gomez-Florit et al., 2020). On the other hand,

natural polymers have low mechanical strength and vary from

batch to batch and from natural source to natural source,

making their molecular weight, chemical structure, and rate of

degradation difficult to control (Yan et al., 2014; Coenen et al., 2018).

2.2 Protein polymer

2.2.1 Silk fibroin
SF polymers can be easily processed into various forms,

including micron/nanoparticles, membranes, films, fibers, and
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mainly hydrogel scaffolds (Zheng et al., 2022). Chemical and

physical methods can prepare SF injectable hydrogels through

the β-sheet formation. Various chemical reagents, including

alcohols, acids, salts, and surfactants, have been used as SF

crosslinkers (Yuan et al., 2021a).

2.2.2 Gelatin
Gelatin is a commercial biomaterial whose biological

properties are widely used in biomedical engineering due

to its similarity to more expensive collagen as an adhesive

protein (Tonda-Turo et al., 2017). Gelatin is produced by

regional hydrolysis of collagen and can promote cell

adhesion, proliferation, migration, and differentiation due

to RGD sequence in its structure (García-Fernández et al.,

2020). In addition, one of the main characteristics of this

water-soluble protein is its thermal response, with reversible

sol-gel transformations occurring when cooled above the

critical solution temperature (25–35°C). Gelatin is therefore

widely used in cartilage tissue engineering (Echave et al.,

2019).

2.2.3 Collagen
Two-thirds of the dry weight of the adult joints cartilage is

collagen. The fibrous network of developing cartilage is a

copolymer of collagen XI, IX, and II and small amounts of

other types of collagen (Eyre, 2004). Varieties of combinations

of collagen with other natural polymers like inulin, combinations

of fibrin, alginate, and gelatin have been transformed into

formulations for injectable hydrogels, enabling in-situ

formation (Rigogliuso et al., 2020).

2.3 Polysaccharide polymer

2.3.1 Alginate
Alginate is a polysaccharide extracted from brown seaweed

and composed of α-L-guluronate (G block) and β-D-

mannuronate (M block) copolymers linked by 1, 4-

glycosidic bonds. G block of alginate is cross-linked with

divalent cations such as Ba2+ and Ca2+ to form gel

(Balakrishnan et al., 2014). It is widely used due to its

biocompatibility, biodegradability, and ease of manufacture.

However, alginate lacks the property of cell adhesion. Alginate

was mixed with other polymers for cartilage repair to improve

its biological properties (Jaikumar et al., 2015).

2.3.2 Chitosan
Chitosan natural polymer is a widely available polysaccharide

created by completely deacetylating chitin, a structural

component extracted from insect and crustacean bones.

Importantly, chitosan-based materials have received much

attention as hydrogels because of their good cellular

compatibility, pH sensitivity, and biodegradability. In general,

chitosan could dissolve in acidic solutions, and its viscosity

properties can be easily adjusted by adjusting the

concentration (Zheng et al., 2022). The insolubility of chitosan

in water limits its use. Therefore, many studies have focused on

soluble chitosan derivatives (Fattahpour et al., 2020). For

example, chitosan becomes a thermosensitive polymer when

mixed with polyol phosphate salts like β -glycerophosphate

(BGP) (Panyamao et al., 2020).

2.3.3 Hyaluronic acid
HA is the primary component of glycosaminoglycan in ECM.

It consists of repeated disaccharide units of n-acetyl-D-

glucosamine and β -D-glucuronic acid, alternately linked by

β-1,4 and β-1,3 glycosidic bonds (Graça et al., 2020; Li et al.,

2021b). Natural HA does not affect cell adhesion or gel

formation. Hence, it is necessary to chemically alter the

functional groups of HA, adjusting their physical, chemical,

or biological properties according to special requirements of

specific applications (Zaviskova et al., 2018). In the absence of

chemical cross-linking agents, hydrogels are formed by Schiff

bases between the amino group of ethylene glycol-chitosan

and the aldehyde group of oxidized hyaluronate. These

hydrogels show good bio durability and compatibility

under physiological cases, and they may be a potential

injectable cell delivery system in cartilage tissue engineering

(Kim et al., 2017).

2.3.4 Agar
Agar is a water-extracted cell-wall polysaccharide from

Gracilariaceae and Gelidiaceae plants of seaweeds, consisting

mainly of (1–3) 3, 6-hydroxy-lactose repeated units and

alternating (1–4) D-galactose. Agar is solvable in water at

temperatures beyond 65°C and forms a gel between 17 and

40°C (Tonda-Turo et al., 2017). Agar and gellan gum promote

cartilage regeneration by inhibiting inflammatory mediators and

inducing chondrogenesis and autophagy-related gene expression

(Heo et al., 2020).

2.3.5 Gellan gum
Gellan gum is a bacterial polysaccharide extracted from

Sphingomonas elodea. Its main glycoside chain is a repeating

tetrasaccharide unit, each repeating unit contains one acetate and

one L-glyceride, and one esterified substituent occurs in every

two sequences (Oliveira et al., 2021). Gellan gum can form a

thermally reversible injectable gel with no cytotoxicity in

different test environments. It is commonly used in the food

industry and has previously been used for drug delivery in the

biomedical field. Gellan gum can effectively regenerate hyaline

cartilage tissue in the defect (Oliveira et al., 2010). Choi et al.

(2020) loaded 6-(6-amino-hexyl) amino-6-deoxy-β-cyclodextrin
onto the Gellan gum chain to reduce gel temperature, enhance

physicochemical properties, and improve drug delivery efficiency

and release.
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2.3.6 Cellulose
The physical capabilities of cellulose depend on the presence

of three hydroxyl groups (OH) at the C-6, C-3, and C-2 positions.

Cellulose injectable hydrogels made from carboxymethyl

cellulose (CMC), methylcellulose (MC), and hydroxypropyl

cellulose (HPC) have good mechanical properties and are

biocompatible (Zhang et al., 2021b).

2.3.7 CS
CS is a GAG consisting of alternating units of (β-L, 4)

n-acetylgalactosamine (GalNAc) and β-1,3-linked glucuronic

acid (Glca). The residues of galactosamine at position 4 or

6 can be sulphated (Yuan et al., 2021b). Furthermore, CS is

the most abundant GAG in the human body and the main

component of chondrocyte ECM, which has attracted great

attention as a biomaterial for cartilage defect repair. CS in

cartilage has multifold key roles, including supporting

chondrogenesis, providing resistance to stress, chondrocyte

signaling, and intercellular communication (Thomas et al.,

2021).

2.4 Protein nucleotide polymer

2.4.1 Deoxyribonucleic acid
DNA is a brilliant molecule because of its biocompatibility,

minimal toxicity, precise molecular recognition, and easy

programming (Li et al., 2020a; Li et al., 2022). Physical tangles

between DNA strands or chemical connections between DNA

molecules can be used to create DNA hydrogels. Chemically,

polymers are held together by covalent bonds, which confer great

mechanical strength and environmental stability (Kahn et al.,

2017; Zhang et al., 2020b; Khajouei et al., 2020). DNA injectable

hydrogels are widely used in cartilage repair engineering due to

their injectable properties, adjustable mechanical properties, and

good permeability (Yan et al., 2021).

2.5 Extracellular matrix

ECM hydrogel provides cells with a natural adhesion surface

and superior biological activity. Preparing acellular ECM

hydrogels can maximize the retention of growth factors and

low molecular weight peptides present in natural ECM (Gong

et al., 2021). At present, bionic and tissue-specific injectable

hydrogels are prepared from various acellular ECM (amniotic

membrane, cartilage, bone, heart, and lung) for cartilage

regeneration engineering (Bhattacharjee et al., 2020; Gong

et al., 2021; Bhattacharjee et al., 2022). Bordbar et al. (2020)

developed an injectable hydrogel derived from acellular sheep

chondrocyte ECM. The cells embedded in the hydrogel can

differentiate into chondrocytes. Sevastianov et al. (2021)

compared the effects of injectable collagen hydrogels and

acellular porcine articular cartilage injectable hydrogels on

rabbit BMSCs differentiation. Injectable collagen hydrogel is

more beneficial in stimulating BMSCs to repair cartilage in

vivo, and injectable porcine articular cartilage is an inducer

for BMSCs to form chondroid tissue in vitro.

2.6 Synthetic polymer

Synthetic polymer hydrogels have been developed to meet

the need for more alternative materials in tissue engineering.

Synthetic polymers mainly include polymers based on PLA,

PGA, PLGA, PCL, PVA, and polyester copolymers

(Werkmeister et al., 2010; Yan et al., 2014). Synthetic

polymers of glycopeptides mimic natural glycoproteins or

glycopeptides and have great potential in biomedical

applications. The extracts of glycopeptide copolymer and

glycopeptide hydrogel showed good cytocompatibility in vitro.

When injected subcutaneously into rats, glycopeptide hydrogels

formed rapidly in situ (Ren et al., 2015). A one-component

synthetic methacrylate type II collagen can be photo-

crosslinked to form a firm injectable hydrogel. MSCs

encapsulated in this hydrogel showed good activity and could

coagulate and undergo chondrogenesis (Behan et al., 2022).

2.6.1 Poly lactic-co-glycolic acid
PLGA is a synthetic polypeptide formed by natural L-glutamic

acid through an amide bond, biodegradable, avoids antigenicity or

immunogenicity, and is non-toxic and hydrophilic. In addition,

abundant side-chain carboxyl groups on the PLGA chain enable it to

undergo chemical modification. These properties make PLGA an

ideal biomedical material (Yan et al., 2014).

2.6.2 Polyethylene glycol
PEG is a non-toxic, non-immunogenic, and pollution-

resistant synthetic polymer widely used as a substrate in tissue

engineering, such as articular cartilage, bladder, and nerve tissue

regeneration (Li et al., 2021c). A PEGDA hydrogel involved in

chondroitin sulfate binder has entered clinical trials for repairing

cartilage defects and has shown improved results in combination

with microfractures (Qi et al., 2018; Qi et al., 20182021).

2.6.3 Polyglycolic acid
PGA is a polypeptide secreted by Bacillus subtilis natto.

Many carboxylic acid groups (-COOH on the side chain of

-PGA) are easily functionalized to achieve precise functions.

The ultimate degradation product of PGA is glutamate, a

component of collagen. Due to its excellent biocompatibility,

biodegradability, and non-toxicity, PGA is used to prepare

hydrogels with various functions for tissue engineering matrix,

especially cartilage (Wei et al., 2022).
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2.7 Natural/synthetic polymer

Synthetic polymers are easy to manufacture and replicate.

However, they have poor biodegradability and biocompatibility.

Naturally derived polymers are widely used in injectable

hydrogels for repairing cartilage defects due to their excellent

biodegradability, biocompatibility, and similar 3D

microenvironment in vivo. However, rapid degradation, poor

mechanical properties, and enhanced microenvironment for cell

proliferation and differentiation are challenges in practical

applications (Jian et al., 2012; Lee et al., 2021). The

combination of natural and synthetic polymers can play to

their respective strengths and compensate for their weaknesses

(Peng et al., 2019; Li et al., 2021c). Yang et al. (2021) mixed

injectable hydrogels of 2%DF-PEG/1.5%GCS, which significantly

improved the mechanical properties and biocompatibility of

hydrogels, and the hydrogels loaded with ADSCs promoted

cartilage repair. Shi’s team researched and prepared an

injectable hydrogel with natural antioxidant capacity. A

dynamic covalent bond between PVA and phenylboronic acid

grafted to HA-PBA forms hydrogels, which are further stabilized

by secondary cross-linking between the acrylate portion of the

HA-PBA and the free sulfhydryl group in the vulcanized gelatin

(Shi et al., 2021b). The existence of a dynamic covalent bond

contributes to the shear thinning of hydrogels, which makes

hydrogels have suitable printing. Hydrogels protected coated

chondrocytes from ROS-induced upregulation of

Chondrocyte-specific catabolic genes (MMP13) and

downregulation of anabolic genes (COL2 and ACAN) after

incubation with H2O2.

2.8 Cells and stimulating factors
integrated into injectable hydrogels

Injectable hydrogels can integrate appropriate cells and

stimulating factors to stimulate damaged tissue’s original

microenvironment and thus help regenerate damaged cartilage

(Yang et al., 2017; Ngadimin et al., 2021). Injectable hydrogels act

as the matrix to promote cell-cell interactions and cell-matrix

interactions, while stimulating factors are part of signals that

mediate cell adhesion andmigration to scaffolds. Hence, cells and

stimulating factors are important for applying injectable

hydrogels in tissue engineering, as they play a vital role in cell

differentiation and tissue growth (Sun et al., 2017; Cho et al.,

2020; Stampoultzis et al., 2021). Living tissue cells migrate from

the surrounding to the hydrogel and interact within the hydrogel

to reconstruct the desired tissue at the implant site. Injectable

hydrogels can also transport cells that interact with protocell

populations and deliver growth factors or other therapeutic

biomolecules to recapture abnormal biology (Dimatteo et al.,

2018).

2.9 Cell source and cell capsulation

The requirements of injectable hydrogel-encapsulated cells

for cartilage repair are as follows: 1) they can constitute cartilage

tissue; 2) suitable for clinical application, that is, the source is

vast, the trauma is minor, and the extraction is easy; 3) after many

passages, they can obtain the required number of cells while

maintaining the cartilage phenotype (Kwon et al., 2019).

Embedding cells into injectable hydrogels can be achieved by

embedding cells during gel formation or by inoculating cells into

prefabricated porous gels (Armiento et al., 2018; Jabbari and

Sepahvandi, 2022).

2.9.1 Chondrocytes
ACI has been successfully used to promote articular cartilage

regeneration. Hu et al. 2(2021b). loaded chondrocytes in IPN

injectable hydrogel composed of chitosan/HA/Si-HPMC. The

chondrocytes proliferated well in vitro, promoting cartilage

defect repair in rat models in vivo. Chiang et al. (2021)

prepared an injectable HA-PAA hydrogel with magnetic

navigation and glutathione release. The chondrocytes

embedded in the hydrogel proliferated and differentiated at

the site of cartilage damage through magnetic interaction of

internal iron nanoparticles and adhesion of CD44 receptors on

HA chain. The rabbit cartilage defect model produced uniform

and smooth, regenerated cartilage 8 weeks after hydrogel

implantation, and the columnar arrangement of chondrocytes

in the deep tissue was similar to that of normal chondrocytes

(Chiang et al., 2021).

However, some shortcomings still need to be addressed, such as

the low number of cells that are difficult to extract and harvest.With

the increase of amplification generations, chondrocytes lose their

chondrogenic phenotype. Eventually, this results in lower cartilage

repair (Cai et al., 2020; Zhou et al., 2022). Autologous chondrocytes

are mainly derived from natural cartilage in the non-weight-bearing

region of the joint, whichmay lead to donor site disease (Chen et al.,

2018). hNCs are a clinically valuable source of cartilage tissue

regeneration. hNCs are relatively easier to obtain through a

marginally invasive collection program during septal surgery for

nasal obstruction, with a lower incidence than chondrocytes

obtained from articular cartilage (Lim et al., 2020).

2.9.2 Stem cells
Due to the insuperable limitations of chondrocytes in the

treatment of damaged cartilage, a significant amount of research

has focused on the research of stem cells in recent years. Stem

cells are self-renewing cells that, due to their undifferentiated

biology, can produce more stem cells through mitosis or can

differentiate into specialized cells (Ma et al., 2018; Yin and Cao,

2021). Various types of stem cells such as ESCs, CSPCs, MSCs,

and iPSCs are used to treat cartilage defects (Deng et al., 2020;

Johnstone et al., 2020).
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2.9.3 Embryonic stem cells
ESCs are derived from inner cell masses of blastocyst

embryos and are essentially pluripotent stem cells with the

ability to differentiate into all cell types in the body,

potentially providing an unlimited supply of cells for cell and

tissue therapy and replacement (Toh et al., 2011). However, using

ESCs is linked with ethical issues, as induction of ESCs destroys

embryos. In addition, ESCs will form teratoma. Because of safety

concerns, it is inappropriate to use ESCs for cartilage tissue

engineering at this time (Im and Shin, 2015).

CSPCs: Articular cartilage has a single cell type,
chondrocytes. Although lacking intrinsic repairability, articular
cartilage has been proved to contain a population of stem or
progenitor cells, similar to those discovered in many other
tissues, thought to be relevant to maintaining tissue
homeostasis (Jiang et al., 2016). These CSPCs have been
found in human, bovine, and horse articular cartilage (Jiang
and Tuan, 2015). Li et al. verified the injectable hydrogels based
on THA and HB-PEG multi-acrylate macromer containing
CSPCs. The secretion of extracellular chondrocyte ECM was
enhanced under chondrogenic conditions, and inflammatory
gene expression was down-regulated (Li et al., 2020b).

MSCs are undifferentiated pluripotent stem cells characterized

by the ability to self-renewwhen exposed to specific growth signals

(Mohamed-Ahmed et al., 2018; Gonzalez-Fernandez et al., 2022).

MSCs could differentiate into chondrocytes, osteoblasts, muscle

cells, and adipose cells, providing great potential for cartilage tissue

engineering. They can be collected from tissues such as bone

marrow, umbilical cord blood, adipose, amniotic fluid, pulp,

synovium, and even breast milk (Deng et al., 2014; Shao et al.,

2015; Mohamed-Ahmed et al., 2018; Fu et al., 2022). MSCs also

have immune-enhancing and immunosuppressive effects on the

deficiency of primary histocompatibility class II antigens and the

secretion of helper T cell type 2 cytokines (Ding et al., 2021).

In particular, BMSCs are considered important seed cells in

the treatment of cartilage injury due to their advantages of

extensive sources, easy access, strong proliferation ability,

significant multidirectional differentiation potential, and the

ability to regulate inflammation (Muscolino et al., 2021; Zhu

et al., 2022a). Ji et al. studied a temperature-sensitive GM-HPCH

injectable hydrogel loaded with BMSCs and TGF-β1. Composite

hydrogels can promote the migration of BMSCs, increase the

expression of migrated genes, promote the differentiation of

BMSCs cartilage, and effectively repair cartilage (Ji et al.,

2020). However, ADSCs showed lower levels of

immunogenicity than BMSCs. ADSCs showed better stability

in the treatment of osteoarthritis. This finding was supported by

single-cell analysis results, which clearly showed that ADSCs

were more conspecific than BMSCs (Wu et al., 2013; Mazini et al.,

2019). Compared with in vitro culture conditions, the cell

microenvironment in vivo can be relatively deficient in oxygen

and nutrition. The failure of transplanted cells to adapt to

environmental changes may be one of the reasons for the low

survival rate of MSCs. Under serum deprivation and hypoxia,

ADSCs were more resistant to apoptosis, implying that they may

be better adapted to post-transplant conditions (Xu et al., 2017a;

Zhou et al., 2019). Boyer et al. and Dehghan-Baniani et al. studied

injectable hydrogels loaded with ADSCs in vivo and in vitro,

promoting cartilage defect repair (Boyer et al., 2020; Dehghan-

Baniani et al., 2020).

hUCMSCs are also an alternative stem cell source for

cartilage tissue engineering. Compared with BMSCs, regarded

as standard stem cell sources, which produced more intense type

II collagen staining, the hUCMSCs produced more type I

collagen and aggregative proteoglycans (Talaat et al., 2020).

iPSCs: IPSCs refer to the reprogramming of somatic cells with

the potential to be self-renewing and pluripotent stem cells, similar

to ESCs, but without the ethical issues and immune response that

plague ESCs (Tsumaki et al., 2015; Castro-Viñuelas et al., 2018). In

contrast to MSCs’ limited differentiation ability after the fourth

generation, IPSCs can provide abundant unlimited cell sources

with low tumorigenicity (Chang et al., 2020). The potential of

IPSCs to differentiate into chondrocytes and its application in

cartilage defect modeling have been successfully demonstrated in

several researches (Zhang et al., 2020c; Csobonyeiova et al., 2021).

He et al. (He et al., 2016) successfully cultured mouse IPSCs to

differentiate into chondrocytes based on the sodium alginate

hydrogel platform. Xu et al. (Xu et al., 2017b) inoculated

human IPSCs with PLCG hydrogel scaffolds and showed

repaired chondroid tissues in rabbit cartilage defect models

without teratoma.

2.10 Stimulating factor

Stimulating factors play an important role in regulating cell

proliferation, migration, and differentiation (Zhong et al., 2016;

Fan et al., 2020). Many studies have revealed that many cytokines

are generally involved in the chondrogenic differentiation of stem

cells and maintenance of chondrocyte phenotypes, IGF-1, TGF-β1
or TGF-β3, BMP-2, BMP-4 or BMP-7, and GDF-5 (Campos et al.,

2019). Moreover, through genetic engineering to enhance the

expression of biologically active molecules, gene therapy offers

an alternative method for locally delivering the appropriate

stimulus (Huang et al., 2018). Due to the fast clearance of

drugs in the joint, much traditional cartilage repair drug

therapy has limited efficacy. Injectable hydrogels can maintain

drug release and prolong drug retention in the articular cavity.

Many studies have been done on injectable hydrogels loaded with

drugs (Li et al., 2019).

2.10.1 Transforming growth factor-β
The TGF-β family plays a crucial role in homeostasis and the

development of various tissues. Signaling in this protein familymainly

activates SMAD-dependent transcription and signaling and SMAD-

independent signaling through MAPK such as TAK1 and ERK

(Thielen et al., 2019). They regulate cell proliferation, migration,
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differentiation, and apoptosis and control the degradation and

synthesis of ECM. In mammals, there are three isotypes of TGF-β.
TGF-β is an inactive soluble protein complex composed of TGF-β
dimer, latent TGF-β binding protein, and pre-peptide latency (Blaney
Davidson et al., 2007). TGF-β1 is abundant in natural cartilage and

controls cartilage ECM production by affecting the synthesis of

fibronectin, proteoglycan, and collagen (Zheng et al., 2022). Zhang

et al. 2(2021b) developed an injectable hydrogel system based on

cross-linked thiolated chitosan and carboxymethyl cellulose as carriers

for TGF-β1 in cartilage tissue engineering applications. At 8 weeks

postoperatively, hydrogels loaded with TGF-β1 showed excellent

repairability in a rat model of full-thickness cartilage defects of the

knee. TGF-β3 is also shown to have chondrogenic properties (Martin

et al., 2021). Lin et al. 2(2021b) demonstrated in vitro that injectable

hydrogels loaded with TGF-β3 promoted the expression of

chondrogenic genes (Col-2α and ACAN) and decreased the

expression of osteogenic genes (Col-1α) in chondrocytes.

2.10.2 Bone morphogenetic protein
BMPs are protein molecules secreted by varieties of cells and are

members of TGF-β superfamily. BMP plays a vital role in cartilage

and bone formation and is named after its ability to induce cartilage

and bone (Deng et al., 2018). BMP promotes SOX9 expression in

chondrogenic MSCs. BMP acts upstream of SOX9, and SOX9 is

critical for BMP-induced chondrogenesis. SOX9 and BMP

participate in a positive feedback loop (Pogue and Lyons, 2006).

2.10.3 Growth/differentiation factor-5
GDF-5 is also a member of TGFβ superfamily. It is a large

precursor protein consisting of two main domains: the active

C-terminal domain and the N-terminal precursor domain with

signal sequences and cleavage sites. GDF-5 overexpression can

promote chondrogenesis, which improves MSC adhesion and

chondrocyte proliferation (Sun et al., 2021). However, GDF-5

promotes osteogenesis and hypertrophy, limiting its therapeutic

effect on cartilage repair. Therefore, it is better to control the

anabolism and anti-catabolism of GDF-5 on chondrocytes and

apply it to cartilage tissue engineering (Mang et al., 2020).

2.10.4 Insulin-like growth factor-1
IGF-1 is an anabolic growth factor that promotes cell

proliferation and inhibits apoptosis and is vital in

chondrogenesis and homeostasis. IGF-1 is a crucial factor

promoting cartilage matrix anabolism in synovial fluid and

serum. In addition to stimulating ECM production, IGF-1 can

stimulate MSCs proliferation and chondrogenic differentiation

(Wen et al., 2021). Many studies have demonstrated the

effectiveness of IGF-1 in articular cartilage repair, and it is

dose-dependent (Wei et al., 2020). High-dose IGF-1 is more

conducive to the formation and integration of cartilage

regeneration, while low-dose IGF-1 is more conducive to

subchondral bone (Zhang et al., 2017).

2.10.5 Platelet-rich plasma
PRP is rich in various growth factors, cytokines, and proteins,

and many studies have demonstrated the potential effectiveness and

excellent biocompatibility of PRP for cartilage defect repair (Yan

et al., 2020). PL is a natural GFs pool consisting of TGF-β1, TGF-β3,
IGF-1, and VEGF and can be prepared by simple PRP thermal

cycling. Due to the removal of platelet fragments by gradient

centrifugation, the immunogenicity of PL is lower than that of

PRP (Li et al., 2021b). Tang and his team encapsulated PL using EPL

and heparin NPs into injectable hydrogels. The injectable hydrogel

ameliorated early cartilage degeneration and promoted late cartilage

repair in rats with knee arthritis (Tang et al., 2021).

2.10.6 Kartogenin
KGN is a stable, nonprotein small molecule with a structure of 2-

[(4-phenyl) carbamoyl] benzoic acid that induces the differentiation of

BMSCs into chondrocytes regulating the CBFβ-RUNX1 signaling

pathway (Yuan et al., 2021b). It is more effective than growth

factors in inducing cartilage regeneration and has been processed

and applied in various forms in cartilage tissue engineering (Cai

et al., 2019). Dehghan Baniani et al. (Dehghan-Baniani et al., 2020)

incorporated KGN into a thermosensitive injectable chitosan hydrogel.

KGN can be released continuously for more than 40 days and promote

chondrogenic differentiation of human ADSCs in vitro (including

upregulation of COL2A, SOX9, and ACAN chondrogenic genes).

2.10.7 Gene therapy
It refers to delivering nucleic acids to tissues of interest by direct (in

vivo) or transduced cell-mediated (in vitro) methods using viral and

non-viral vectors. In the past few decades, the strategy of expressing

therapeutic transgenes at injured sites has been adopted to promote

cartilage repair (Grol and Lee, 2018). However, the problems associated

with non-standard procedures remain unresolved. In addition, the

association of gene therapy with tissue engineering may be a

promising strategy for treating cartilage and osteochondral damage

(Bellavia et al., 2018). Several clinical trials of gene therapy have been

conducted inpatientswith end-stage kneeOAby intraarticular injection

of human adolescent chondrocytes overexpressing cDNA encoding

TGF-β1 with retroviral vectors. In the latest placebo-controlled

randomized trial, clinical scores improved in the gene therapy group

compared with placebo (Madry and Cucchiarini, 2016). Zhu et al.

(2022b) used an injectable hydrogel to deliver miR-29b-5p (aging-

associated miRNA), which was functionalized by binding to stem cell

homing peptide SKPPGTSS for SMSCs recruitment

contemporaneously. Sustained miR-29b-5p transport and

recruitment of SMSCs, followed by chondrocyte differentiation,

results in successful chondrocyte regeneration and cartilage repair.

Yu et al. (2021b) implanted genetically modified ADSCs

overexpressing TGF-β1 into injectable ECM hydrogels. In the rat

OA model, intraarticular injection of hydrogels loaded with ADSCs

overexpressing TGF-β1 significantly reduced joint inflammation,

cartilage degeneration, and subchondral bone loss.
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TABLE 1 Application of some advanced injectable hydrogels in cartilage tissue engineering.

Model Formation Technique Structure Major materials Cell Stimulating
factor

Ref

Minipig Chemical
crosslinking

Photopolymerization Nanocomposite
hydrogel

HA/ PLGA — KGN Cao et al. (2021a)

Rat Physical
crosslinking

Thermosensitive Dual networks Alginate/ Bioglass — Quercetin Wen et al. (2021)

Rabbit Chemical
crosslinking

Schiff base chemistry/
Photopolymerization

Dual networks Alginate/Amino gelatin< — TGF-β3/KGN Deng et al. (2014)

Rat Chemical
crosslinking

Enzyme-mediated
crosslinking

Dual networks Col I/ tyramine hyaluronic
acid

BMSCs TGF-β1 Tang et al. (2021)

In vitro Physical
crosslinking

— — Amnion membrane ADSCs (rat) — Kim et al. (2017)

In vitro Physical
crosslinking

Ionic interaction Nanocomposite
hydrogel

Carboxymethyl chitosan/
methylcellulose/ Pluronic
F127/ ZnCl2

Chondrocytes
(sheep)

Meloxicam Jiang et al. (2021)

Mice Chemical
crosslinking

Enzyme-mediated
crosslinking

Dual networks HA/ gelatin/ EGCG — — Liu and Lin, (2019)

Rabbit Physical
crosslinking

Thermosensitive Microspheres
hydrogel

Pluronic F127/ PLGA BMSCs BMP-2 Yan et al. (2020)

Rat Chemical
crosslinking

Photopolymerization particle
scaffolding
hydrogel

PEG-MAL/ PEG thiol/
arginine-glycine-aspartic
acid cell adhesive
peptide/ CS

— — Fu et al. (2018)

Rabbit Chemical
crosslinking

Schiff base chemistry Semi-IPN Gelatin/ HA/ Dex-ox — Naproxen/
Dexamethasone

Wang et al. (2020b)

Canine — — — Silanised
hydroxypropymethyl
cellulose/ silanised chitosan

ADSCs - Johnstone et al.
(2020)

In vitro Chemical
crosslinking

Enzyme-mediated
crosslinking

Dual networks Collagen/ gelatin/ hydroxy-
phenyl-propionic acid

Chondrocytes
(bovine)

- Monsef and
Salavati-Niasari,
(2021)

In vitro Chemical
crosslinking

Click chemistry Nanocomposite
hydrogel

PEGDGE/ PAMAM/ silica
nanoparticles/ silver
nanoparticles

— Isoniazid/
rifampicin

De France et al.
(2016)

Human
ex vivo /
rabbit

Chemical
crosslinking

Photopolymerization Traditional GelMA/ FITC fluorophore ADSCs/ BMSCs - García-Couce et al.
(2022)

Rat Physical/
chemical
crosslinking

Thermosensitive/
photopolymerization

Traditional Hydroxypropyl chitin/
methacrylate

BMSCs TGF-β1 Chen et al. (2018)

In vitro Physical/
chemical
crosslinking

Thermosensitive Microspheres
hydrogel

methoxy poly (ethylene
glycol)-poly (alanine)/
PLGA

Chondrocytes
(rat)

TGF-β3 Han et al. (2021)

Rat Physical
crosslinking

Ionic interaction Microspheres
hydrogel

sodium alginate / bioglass/
δ-Gluconolactone

— Strontium Lee and Mooney,
(2012)

Goat Chemical
crosslinking

Enzyme-mediated
crosslinking

Dual networks Silk fibroin/ CMC/ gelatin ADSCs — Cai et al. (2019)

Rat Physical
crosslinking

Thermosensitive Nanocomposite
hydrogel

PLEL/ EPL — Platelet lysate Castro-Viñuelas
et al. (2018)

Rat Chemical
crosslinking

Disulfide crosslinking Dual networks Thiolated chitosan/
carboxy-methyl cellulose

— TGF-β1 Echave et al. (2019)

Rat — — Microspheres
hydrogel

PLGA/ chitosan/ gelatin — Platelet lysate Gomez-Florit et al.
(2020)

Rat Chemical
crosslinking

Photopolymerization Traditional Sericin/ methacrylogy
groups

Chondrocytes — Yuan et al. (2021b)

In vitro Chemical
crosslinking

Enzyme-mediated
crosslinking

IPN Alginate/ cartilage silk
fibroin extracellular matrix/

Chondrocytes
(human)

— Song et al. (2015)

(Continued on following page)
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TABLE 1 (Continued) Application of some advanced injectable hydrogels in cartilage tissue engineering.

Model Formation Technique Structure Major materials Cell Stimulating
factor

Ref

Rat Chemical
crosslinking

Photopolymerization Microspheres
hydrogel

GelMA — Diclofenac
sodium

Zinatloo-Ajabshir
et al. (2018)

Rat Chemical
crosslinking

Photopolymerization IPN GelMA — — Nicol, (2021)

Rabbit - - - DNA BMSCs — Graça et al. (2020)

Rabbit Chemical
crosslinking

Schiff base chemistry Dual networks Chitosan/ HA ADSCs Chondrocyte EVs Mok et al. (2020)

Rat Chemical
crosslinking

Silanization IPN Chitosan/ HA/ silanized-
hydroxypropyl
methylcellulose

Chondrocytes - Li et al. (2021c)

Rat Chemical
crosslinking

Enzyme-mediated
crosslinking

Double networks Alginate/ dopamine/ CS/
silk fibroin

— BMSCs EVs Zhu et al. (2022b)

In vitro Chemical
crosslinking

Chemical crosslinking Microspheres
hydrogel

PLGA/ carboxymethyl
chitosan-oxidized
chondroitin sulfate

BMSCs (rabbit) KGN Eyre, (2004)

In vitro Physical
crosslinking

Thermosensitive Microspheres
hydrogel

Chitosan/ human acellular
cartilage ECM

BMSCs (human) - Mehrali et al. (2017)

Rat Physical
crosslinking

Thermosensitive Dual networks PDLLA-PEG-PDLLA - SMSCs EVs/
circRNA3503

Yu et al. (2021b)

In vitro Chemical
crosslinking

Click chemistry Dual networks PEG/ CS ADSCs (rat) — Zhang et al. (2021b)

Rabbit Physical
crosslinking

Guest-host
complexation

Microspheres
hydrogel

HA–cyclodextrin/
polyacrylic acid–ferrocene/
PLGA

Chondrocytes GSH/ iron oxide
nanoparticles

Qi et al. (2018)

Pig
explants

Physical
crosslinking

Thermosensitive Dual networks PLL/ poly
(N-isopropylacrylamide

Chondrocytes/
MSCs (rabbit)

— Saravanan et al.
(2019)

Rat Physical
crosslinking

Thermosensitive Dual networks Sodium alginate/ bioglass — Naringin Wei et al. (2020)

In vitro Physical/
chemical
crosslinking

Ionic interaction IPN GelMA/ HA — — Rinoldi et al. (2021)

Rat Physical
crosslinking

Thermosensitive Nanoparticle
hydrogel

Poly organosphosphazenes — TCA Lokhande et al.
(2018)

Rat Physical
crosslinking

pH-responsive IPN Thiolated HA/ Col I Gene-engineered
ADSCs
overexpressing
TGF-β1

— Fan et al. (2020)

In vitro Physical
crosslinking

Thermosensitive Traditional Chitosan/ N-(β-
maleimidopropyloxy)
succinimide ester/ β-
glycerophosphate

ADSCs (human) KGN Deng et al. (2020)

Rat Chemical
crosslinking

Dynamic chemical
bonds

Dual networks Glycol chitosan/ GCS/
DF-PEG

ADSCs — Kahn et al. (2017)

In vitro Chemical
crosslinking

Ionic interaction Microspheres
hydrogel

Decellularized bovine
articular Cartilage/ alginate

BMSCs (human) — Werkmeister et al.
(2010)

Rat Chemical
crosslinking

— — SAP — miR-29b-5p Xu et al. (2017b)

Rat Physical
crosslinking

Thermosensitive IPN HA/ Poloxamer 407 BMSCs Icariin Cai et al. (2020)

In vitro Chemical
crosslinking

Photopolymerization Double networks GelMA/ HA/ hyaluronic
acid methacrylate

Chondrocytes
(rabbit)

— Meng et al. (2019)

Rat Physical
crosslinking

Thermosensitive Nanoparticle
hydrogel

Chitosan/ silk fibroin/
glycerophosphate

BMSCs TGF-β1 Luu et al. (2022)
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2.10.8 Drug
Until now, the conventional treatment for OA has been to

reduce the main symptoms with oral or topical injections of

various drugs, including NSAIDs, analgesics, and corticosteroids.

The efficacy of local injection is hampered by their rapid

diffusion, instability, and low retention at the target site (Mok

et al., 2020). More importantly, frequent oral use of these drugs

can cause serious side effects, such as increased throw of

cardiovascular disease and stimulus of the gastrointestinal

tract (García-Couce et al., 2022). Suitable injectable hydrogel

delivery systems could sustainably release therapeutic drug

concentrations in cartilage (Cao et al., 2021a; Cao et al.,

2021b; Shi et al., 2021b; Khan et al., 2022). Hanafy and El-

Ganainy, 2020 prepared an injectable hydrogel based on

Poloxamer 407 and HA loaded with the anti-inflammatory

drug DK. 40% of DK was released after 4 days. Injectable

hydrogels maintain DK content and drug release percentage

after 3 months of storage. Loaded DK injectable hydrogel had

the greatest anti-edematous and anti-nociceptive effect

compared to oral and direct injection DK. Both

histomorphology and radiology showed regeneration of

cartilage defects. Branco et al. (2022) prepared an injectable

PVA-based hydrogel that continuously released diclofenac for

cartilage regeneration.

Some of the following drugs are also used in injectable

hydrogels to repair cartilage damage. Dexamethasone, a

glucocorticoid, has 20–30 times the anti-inflammatory potency

of natural hydrocortisone. It can reduce the loss of collagen and

proteoglycan in ECM, maintain ECM synthesis, and maintain

the viability of chondrocytes. In addition, it is a key reagent for

inducing chondrogenesis of MSCs in vitro (García-Fernández

et al., 2020;Wang et al., 2021e; García-Couce et al., 2022). GlcN is

a naturally occurring amino monosaccharide, widely used to

reduce joint pain and repair cartilage (Suo et al., 2020; Zhang

et al., 2021c). Quercetin and naringin are flavonoids widely found

in fruits and vegetables with strong anti-inflammatory and

antioxidant effects. It can inhibit ECM degradation, reduce

the inflammatory response and maintain chondrocyte

phenotype (Yu et al., 2020b; Li et al., 2021d). Icariin can

improve cartilage ECM synthesis and restrain ECM

degradation, up-regulate chondrogenic specific gene

expression of chondrocytes, and induce oriented

chondrogenesis of BMSCs without hypertrophic differentiation

(Zhu et al., 2022a).

3 Advanced injectable hydrogels for
cartilage repair tissue engineering

In recent years, various injectable hydrogels with good

plasticity and biological properties have been widely studied

for cartilage repair tissue engineering (Table 1). Many studies

have investigated the regeneration potential of injectable

hydrogel cartilage in vitro and in vivo. Fattahpour et al.

(2020) developed and characterized MC-CMC-Pluronic and

ZnCl2 injectable hydrogels containing meloxicam. The release

time of meloxicam in hydrogels containing nanoparticles was

significantly longer than in hydrogels without nanoparticles.

This injectable hydrogel showed good chondrocyte adhesion

and proliferation. Qi et al. (2018) prepared a photo-

crosslinked injectable SerMA hydrogel loaded with

chondrocytes. After 8 weeks of implantation, SerMA

hydrogel loaded with chondrocytes successfully formed

regenerative cartilage in rabbits. Most importantly,

regenerated cartilage is structurally similar to natural

cartilage (Qi et al., 2018, Qi et al., 2021).

Numerous studies have investigated injectable hydrogel

strategies that guide stem cell phenotypic expression and

manipulate cartilage matrix properties. Liu et al. (2021b)

revealed that hydrogel scaffolds with gradient distribution

could better simulate the function of natural cartilage and

promote stem cell differentiation than homogeneous hydrogel

scaffolds. In rabbit models, injectable hydrogels containing

BMSCs that sustained-release BMP-2 were more effective than

microfractures alone in treating cartilage damage (Vayas et al.,

2021). Zhang and his team prepared injectable hydrogels

composed of hyaluronic acid-tyramine and collagen type

I-tyramine-loaded BMSCs and TGF-β1 (Zhang et al., 2020d).

The injectable hydrogel supports the differentiation of BMSCs

into chondrocytes. In vivo experiments further demonstrated

that this injectable hydrogel can achieve good repair of

transparent articular cartilage. Mahajan et al. (2022)

developed a silk fibroin/CMC/gelatin complex hydrogel that

increases contraction and hardness over time. The contractile-

mediated mechanical stimulation promotes the formation of

ADSCs cartilage. The regenerated cartilage of goats is very

similar to natural cartilage. The cells may have a therapeutic

effect because EVs derived from them can induce stem cell

differentiation and chondrocyte proliferation (Liu et al.,

2017b; Saveh-Shemshaki et al., 2019; Song et al., 2021). Zhang

et al. (Zhang et al., 2021d) prepared the load with BMSCs-EVs

alginate/dopamine/CS/silk fibroin composite injectable hydrogel.

When the hydrogel was injected into a rat cartilage defectmodel,

EVs released by injectable hydrogel could recruit BMSCs into the

hydrogel through a chemokine signaling pathway and promote

BMSCs proliferation and differentiation to promote cartilage repair.

Tao et al. (2021) implanted circRNA3503 carried by SMSCS-EVS

into PDLLA-PEG-PDLLA injectable hydrogel. EVs promoted

chondrocyte migration and proliferation, while

circRNA3503 reduced chondrocyte apoptosis and ECM

degradation, and both of them combined with regenerating

damaged cartilage in rats. Heirani-Tabasi et al. (2021)

demonstrated that human articular chondrocytes EVs in

chitosan-HA injectable hydrogels have chondrogenic

differentiation effects on ADSCs. In the rabbit cartilage defect

model, EVS-treated ADSCs had greater cartilage
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regeneration ability than untreated MSCs or ADSCs treated

with EVS without gel.

In addition, injectable hydrogels have been studied to detect

cartilage repair ability dynamically. According to Onofrillo et al.

(Onofrillo et al., 2021), FLIH was considered a sensitive tool for

monitoring the photo-crosslinked injectable hydrogels in

cartilage tissue engineering structure. The generation of

cartilage ECM in injectable hydrogels is related to the

fluorescence loss curve, which describes the hydrogels’

degradation rate. Using FLIH can be achieved through an

extensible system for sample maintenance and fluorescence

recording, resulting in an analytical real-time monitoring

system suitable for non-contact high-throughput evaluation of

chondrogenesis.

4 Summary and perspectives

The repair of cartilage defects still faces many challenges.

Injectable hydrogel is the main development direction of

cartilage tissue engineering, not only because of its bionic

properties similar to cartilage ECM due to its high moisture

content but also because of its minimally invasive properties

and strong plasticity ability to match irregular defects. First, to

improve the biomechanical properties of injectable hydrogels,

traditional single-network hydrogels are added with different

polymer mixtures or networks, and many nano/micron-

composite materials are used to alter the mechanical

properties and sustained-release properties of the matrix.

Integrating cells and cytokines or other stimulators into

injectable hydrogels can improve the integration of

hydrogels with surrounding cartilage and promote cartilage

regeneration. Controlling the proliferation and differentiation

of stem cells into chondrocytes is of great interest.

Despite many relatively successful preclinical studies and

several advanced manufacturing methods for engineered

tissues, there remain limitations that must be addressed in

preparing injectable hydrogels with excellent performance for

optimal regeneration of cartilage defects. First, the injectable

hydrogel matrix must be able to fill the defect area with a

smooth surface similar to natural cartilage without fusing with

the surrounding healthy tissue. Second, rapid degradation of

the hydrogel matrix before replacement by regenerative ECM

may compromise its mechanical stability and therapeutic

efficacy. To address this issue, appropriate exogenous cells

(such as MSCs) can be added to the hydrogel matrix, or

peripheral cartilage cells can be recruited to the defect area,

where they generate new cartilage tissue to replace the

degraded hydrogel smatrix. Therefore, the signaling

pathway from stem cells to specific chondrocytes and the

specific stimulation mechanism in hydrogel must be further

understood. Finally, injectable hydrogels need to be further

studied at the clinical level, from experimental animals to

human experiments, and thoroughly evaluated factors such as

biocompatibility, degradability, and comfort of hydrogel

materials.
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Glossary

ECM Extracellular matrix

OA Osteoarthritis

NSAIDs Non-steroidal anti-inflammatory drugs

ACI Autologous chondrocyte implantation

HRP Horseradish peroxidase

H2O2 Hydrogen peroxide

CST Critical solution temperature

NIPAAm N-isopropyl acrylamide

IPN Interpenetrating Polymer Network

IUPAC International Union of Pure and Applied Chemistry

GE Genipin

HA-SH Thiolated hyaluronic acid

N/MPs Nano/micron particles

NPs Nanoparticles

CNCs Cellulose nanocrystals

POEGMA Poly (oligoethylene glycol methacrylate)

MW Molecular weight;

RGD Rrginine-glycine-aspartate

PLGA Poly lactic-co-glycolic acid

PLA Polylactic acid

PGA Polyglycolic acid

PCL Polycaprolactone

PVA Polyvinyl alcohol

PLL Poly L-lysine

MPA Methoxy poly (ethylene glycol)-poly (alanine)

PL Platelet lysates

GFs Growth factors

IGF-1 Insulin-like growth factor

VEGF Vascular endothelial growth factor

TGF-β Transforming growth factor-β
TGF-β1 Transforming growth factor-β1
TGF-β3 Transforming growth factor-β3
BMP-2 Bone morphogenetic protein-2

BMP-4 Bone morphogenetic protein-4

BMP-7 Bone morphogenetic protein-7

GDF-5 Growth/differentiation factor-5

PRP Platelet-rich plasma

PDLLA Poly (D, L-lactide)

PEG Polyethylene glycol

HB-PEG Hyperbranched PEG

PEGDA PEG diacrylate

PEG-MAL PEG maleimide

GCS Glycol chitosan

DF-PEG Dibenzaldehyde-terminated PEG

PAMAM Polyamidoamine dendrimer

EGCG Epigallocatechin-3-gallate

CS Chondroitin sulfate

HA Hyaluronic acid

GAG Glycosaminoglycans

GelMA Gelatin methacrylate

HAMA Methacrylated hyaluronic acid

PBA 3-Aminophenylboronic acid

EPL ε-poly-L-lysine
PLEL Poly (d, L-lactide)-poly (ethylene glycol)-poly (d,

L-lactide)

DNA Deoxyribonucleic acid

EVs Extracellular vesicles

MSCs Mesenchymal stem cells

ADSCs Adipose mesenchymal stem cells

BMSCs Bone marrow mesenchymal stem cells

SMSCs Synovium mesenchymal stem cells

CSPCs Chondrogenic stem/progenitor cells

THA Thiolfunctionalised hyaluronic acid

KGN Kartogenin

circRNA3503 Circular RNA 3503

GSH Glutathione

Dex-ox Oxidized dextran

FITC Fluorescein isothiocyanate

CMC Carboxymethyl cellulose

SF Silk fibroin

TCA Triamcinolone acetonide

Col I Type I collagen

Col 1α Type 1α collagen

Col 2α Type 2α collagen

miR-29b-5p MicroRNA-29b-5p

SAP Serum amyloid P component

ROS Reactive oxygen species

MMP13 Matrix metallopeptidase13

3D Third Dimension

COL2 Type II collagen

ACAN Aggrecan

hNCs Human nasal septal cartilage

hUCMSCs Human umbilical cord mesenchymal stem cells
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CBFβ-RUNX1 Core-binding factor β-Runt-related transcription
factor 1

SKPPGTSS A stem cell-homing peptide

DK Diclofenac potassium

GlcN Glucosamine

MC Methylcellulose

MC-CMC Methylcellulose-carboxymethyl chitosan

FLIH Fluorescently labeled injectable hydrogels

Si-HPMC Silanized-hydroxypropyl methylcellulose

HA–pAA Hyaluronic acid–polyacrylic acid

iPSCs Induced Pluripotent Stem Cells

ESCs Embryonic stem cells

GM-HPCH Glycidyl methacrylate-modified-hydroxypropyl

chitin hydrogel

PLCG Poly(lactic-co-glycolide)

SMAD Small mothers against decapentaplegic

TAK1 Transforming growth factor beta-activated kinase1

ERK Extracellular signal-regulated kinase

SOX9 SRY-related high-mobility-group box 9

SerMA Sericin methacryloyl
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