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Gene regulatory network (GRN) provides abundant information on gene

interactions, which contributes to demonstrating pathology, predicting

clinical outcomes, and identifying drug targets. Existing high-throughput

experiments provide rich time-series gene expression data to reconstruct

the GRN to further gain insights into the mechanism of organisms

responding to external stimuli. Numerous machine-learning methods have

been proposed to infer gene regulatory networks. Nevertheless, machine

learning, especially deep learning, is generally a “black box,” which lacks

interpretability. The causality has not been well recognized in GRN inference

procedures. In this article, we introduce grey theory integratedwith the adaptive

sliding window technique to flexibly capture instant gene–gene interactions in

the uncertain regulatory system. Then, we incorporate generalized multivariate

Granger causality regression methods to transform the dynamic grey

association into causation to generate directional regulatory links. We

evaluate our model on the DREAM4 in silico benchmark dataset and real-

world hepatocellular carcinoma (HCC) time-series data. We achieved

competitive results on the DREAM4 compared with other state-of-the-art

algorithms and gained meaningful GRN structure on HCC data respectively.
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1 Introduction

The gene regulatory network plays a central role in understanding the mechanisms of

gene expression regulation, complex diseases, and cellular heterogeneity (Xiang et al.,

2019; Fang et al., 2020; Liao et al., 2022). Compared to the genomes between humanHomo

sapiens and yeast Saccharomyces cerevisiae, we can conclude that the complexity in life

does not result from the number of genes, but the essence and dynamics of the

interactions between genes (Huynh-Thu and Sanguinetti, 2019; Freyre-González et al.,

2022; Jansen et al., 2022), i.e., gene regulatory network.
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Diverse methods have been proposed to infer gene regulatory

networks. Recently, the emergence and rise of machine-learning

methods to infer gene regulatory networks have dated back to

GENIE3 (Vân et al., 2010), which won the DERAM4 (Dialog on

Reverse Engineering Assessment and Methods) in silico

multifactorial challenge. Then, Jump3 (Huynh-Thu and

Sanguinetti, 2015) was proposed to learn the promoter state

of the target gene from candidate regulators based on the decision

tree. SWING (Finkle et al., 2018) introduced sliding windows to

address heterogeneous time delays in the network structure

inference. To further improve the inference accuracy, BTNET

(Sungjoon et al., 2018) and BiXGBoost (Zheng et al., 2018)

transformed the random forest into gradient boosting

algorithms. Regularization-based regression introduced

different constraints for de novo GRN reconstruction (Phan

and Rosemary, 2018; Ghosh Roy et al., 2020; Zhang et al.,

2021). BETS applied bootstrap elastic net regression based on

Granger causality to infer the GRN (Lu et al., 2021). Recurrent

neural network (RNN) was utilized to model gene interactions

due to the superior capability of tracking complicated temporal

behaviors in the real underlying regulatory system (Cheng et al.,

2011; Biswas and Acharyya, 2018). Although machine-learning

methods achieved great success, the internal procedures are

unknown to us or they are known but hard to be understood

by observers (Guidotti et al., 2018).

In this article, we propose an interpretable machine-learning

methodnamedGreyNet, i.e., dynamic grey association and regression,

to infer the gene regulatory network from time-course gene expression

data. We first apply dynamic grey association to model intricated

underlying the regulatory system. Different from the static grey

association, we assimilate the adaptive sliding window technique to

conduct dynamic analysis which can better capture instant

interactions over time. The dynamic grey association takes

advantage of local temporal information to search for candidate

regulators. Then, we embed the Granger causality framework

(Arnold et al., 2007; Finkle et al., 2018; Li et al., 2020) based on

regression models which can find causal and directional regulatory

links. Through this hybrid strategy, GreyNet can better model gene

interactions in real scenarios and is easier to be understood in network

inference.

2 Materials and methods

In this section, we demonstrate GreyNet to reconstruct the

directional graph of GRN G (v, e) from time-series gene

expression data. Time-series can effectively disclose the

dynamic interactions of genes with time (Haonan et al., 2020).

As for the data D{G|G ∈ Rm×n}, v represents the nodes or vertexes

and e represents the regulatory links between pairwise vertexes.

For the edge eij, it represents gene j under the upstream

regulation of gene i. The arrangement of the whole gene

expression time-series is as follows:

G i, j( ) �
g11 g12 . . . g1n

g21 g22 . . . g2n

..

. ..
.

1 ..
.

gm1 gm2 . . . gmn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(1)

where each column represents an instance and each row

represents the value of the selected instance at a specific

timestamp. The overall framework of GreyNet is illustrated in

Figure 1. We will demonstrate the major steps in the following

sections.

2.1 Dynamic grey association

The biological system is very complicated. Although we have

revealed important mechanisms of gene regulation, we are

still far from being fully clear about it. In the gene regulatory

system, genes generally are under the regulation of various

types of regulators and most of them are still unknown or

unobserved (Ming et al., 2020). With poor data and limited

knowledge at present, the GRN inference works on uncertain

systems, namely the grey system between black and white. In

other words, reconstructing the GRN is with partially known

and unknown information, but we want to draw out the

valuable GRN structure from observed gene expression data.

In this condition, we propose the dynamic grey association to

model gene interactions. The dynamic grey association

consists of grey relational analysis (Deng, 1989;

Sallehuddin et al., 2008; Yuansheng et al., 2019) and the

adaptive sliding window (Papadimitriou et al., 2006). Under

the circumstance of the relationships between two

components are usually variational over time in the

biological system, we integrate grey association with the

adaptive sliding window which endows the capacity of

flexibly tracking instant interactions in time-series data.

Therefore, the dynamic grey association is much more

interpretable than the “black box” and conforms to

current knowledge.

We formally introduce how to obtain the dynamic grey

association coefficient here. Firstly, we demonstrate the way to

design the adaptive sliding window (Figure 1B). For the gene

expression time-series D{G|G ∈ Rm×n}, we take the first-order

difference to get the time derivative. We select one gene as a

target or reference node y = {g1, g2, . . ., gn} and the rest of the

genes are comparative nodes Xk = {G1, . . ., Gk−1, Gk+1, . . ., Gm},

where Gk is a vector that represents the expression data of gene k.

∇y � ∇g1,∇g2, . . . ,∇gn{ } (2)
∇gn � gn − gn−1 (3)

Then, we normalize the time derivative to transform it into

probability by using the softmax function. Information

entropy is a good choice to evaluate the amount of

information.
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pi � softmax |∇y|( ) � exp |∇gi|( )
∑∇gi∈∇y exp |∇gi|( ) (4)

Ei � −∑pi × log2 pi( ) (5)
Finally, we divide the present information entropy by the

previous one to obtain the window coefficient. The preceding

window length multiplies the window coefficient to get the

current sliding window. The window length will be adjusted

by information entropy automatically.

Li � Ei

Ei−1
× Li−1 (6)

In every adaptive sliding window, we get the individual grey

relational grade. Initially, the target node subtracts the

comparative nodes’ corresponding elements to get the

absolute value of the first-order norm residual ∇.

∇ � |y i( ) − xk i( )| (7)

From the maximum and minimum of the residual ∇, the

association coefficient ri is given by:

ξk i( ) �
min
k

min
i

∇ + ρpmax
k

max
i

∇

∇ + ρpmax
k

max
i

∇
(8)

ri � 1
L
∑L
i�1

ξk i( ) (9)

where L is the length of the adaptive sliding window. ρ is the

distinguished coefficient which is positively related to

distinguishing the difference (Kuo et al., 2008). Finally,

we average all the sliding windows to get the dynamic

grey association score DGA:

DGA � 1
n
∑n
i�1

ri (10)

DGA determines the dominant factors between the multivariable

and target gene based on the geometric curve. The higher the

value of DGA, the higher the association between the two

variables.

FIGURE 1
The overview of the GreyNet framework. (A) is the expression matrix of genes. (B,C) is the procedure of dynamic grey association. The window
length is automatically adjusted by information entropy (IE). We firstly sample the time points by the sliding window. Then, we input the sampled data
into grey relational analysis to get the dynamic grey association coefficient as (D). (E) is the weight matrix generated by regression methods that
transform the dynamic grey association to causal directional regulatory link as (F).
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2.2 Causation

GRN represents directional causal regulatory relationships

among genes (Leng et al., 2019). However, the dynamic grey

association cannot depict causality for pairwise genes. In this

case, we incorporate the Granger causality framework to turn the

dynamic grey association into causation. The Granger causality is

intuitive and defined that the past values of the cause make a

larger contribution to predicting the future values of the

effect than auto-regression. However, it is time-consuming

and ignores the possible interactions between features.

Inspired by LASSO Granger (Arnold et al., 2007), we

apply multivariate regression strategies to identify the

subset of features on which the feature is conditionally

dependent, namely, we formulate it to a problem of

feature selection, given the fact that the best estimator for

the target variable is the one with the least error or the

maximum gain (Arnold et al., 2007; Li et al., 2020).

In this study, we mainly introduce four regressors to infer

GRN. The four regressors we selected are: bagging algorithm

random forest (RF) (Friedman, 2001), gradient boosting

algorithm XGBoost (Chen and Guestrin, 2016), L1-penalty

LASSO (Tibshirani, 1996), and L2-penalty Ridge (Hoerl and

Kennard, 1970). We regress target variable yt in terms of Xlag.

For different regressors, the objective function of the regressor

and optimizing strategy are different. With regards to RF, it is

similar to GENIE3 (Vân et al., 2010). The goal of the tree-based

regressor is to build a fine decision tree structure in terms of

splitting nodes. The criterion for measuring the quality of

splitting is the mean squared error, which is equal to variance

reduction. The evaluation of the objective function for the target

is as:

I N( ) � #SVar N( ) − #SptVar Spt( ) − #SpfVar Spf( ) (11)

where # is the number of the samples; S is the sample sets that

reach the node N is a single tree; Spt is the sample sets predicted

true; and Spf is the sample sets that predicted false. Nevertheless,

the criterion of Xgboost regression is modified by:

Lsplit � 1
2

G2
left

Hleft + λ
+ G2

right

Hright + λ
− G2

H + λ
[ ] − γ

Gleft � ∑
i∈Ileft

gi Hleft � ∑
j∈Ileft

hj

I � Ileft ∪ Iright

(12)

where gi and hi are the first-order and second-order gradient

statistics. λ and γ are both complexity parameters. Ileft and Iright
are the sample sets after splitting. Regularization-based

regression introduces different regularization terms to prevent

overfitting and get optimal reconstruction. The objective

function of regularized regression is:

Obj � 1
m

∑m
i�1

yi −Xlagw( )2 + λ∑n
j�1

‖wj‖p (13)

where ‖wj‖p is the regularization term. λ is the regularization

coefficient. When p equals one or two, it represents the LASSO

regression or Ridge regression.

Based on the aforementioned regression criteria, we can

obtain weight matrix w from wy = regressor (y, Xlag) (as shown

in Figure 1E). To confirm the causal regulatory direction, we

summarize LASSO Granger as an example that other regression

methods are similar to it. If x regulates y, xt ∈ wy for some t but

yt∉wx; if y regulates x, yt ∈ wx for some t but xt∉wy; and if x and y

regulate each other, then xt ∈ wy and yt ∈ wx.

3 Results

3.1 Gene expression data

GreyNet focuses on time-course bulk gene expression data.

Our method is not suitable for single-cell RNA-seq data due to

dropout events. In the past decade, the DREAM challenge has

been the standard benchmark dataset to evaluate the quality of

the reconstructing algorithm (Marbach et al., 2009; Marbach

et al., 2010). Therefore, we firstly validate GreyNet on the

DREAM4 time-series dataset which contains two sizes of

networks, size10 and size100, and each network includes five

subnetworks. To further test the performance of our model, we

evaluate it on a real-world hepatocellular carcinoma dataset

(Yang et al., 2019a). HCC expression profiles are detected

from 105 samples represented stepwise from pre-neoplastic

lesions to HCC. 105 samples cover the nine development

stages of HCC. To preprocess HCC data from NCBI GEO, we

map probeset IDs to NCBI official gene symbols through the

GEO annotation file. If one gene has multiple probeset mappings,

the probeset with the maximum inter quartile expression range

(IQR) is selected (Liu et al., 2014). Finally, we employ prior

knowledge to separate the TF expression and target expression

(Lambert, 2018) to conduct transcriptomic GRN inference by

GreyNet. The detailed descriptions of the DREAM4 and HCC

time-series expression data are shown in Table 1. The

development stages of HCC from normal to hepatocellular

carcinoma are shown in Table 2.

3.2 Evaluation metrics

We mainly use two common metrics, AUROC and AUPRC,

to evaluate our model. AUROC is calculated from the ROC

curve, showing the trade-off between true positive rate (TPR) and

false positive rate (FPR) across different thresholds. AUPRC is

just the area under the PR curve, where the x-axis is Precision and

the y-axis is Recall. The other measurement metrics, such as

Precision, Matthews correlation coefficient (MCC), and

Accuracy, are shown in Supplementary Table S1 (Tng et al.,

2021; Le and Ho, 2022).
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TPR � Recall � TP

TP + FN
(14)

FPR � FP

FP + TN
(15)

Precision � TP

TP + FP
(16)

3.3 Performance on DREAM4 data

In the DREAM4 challenge, we implement four different

regression strategies on the DREAM4 dataset combined with

the dynamic grey association. We select one typical model from

each bagging and gradient boosting algorithm, i.e., random forest

(RF) and Xgboost. Analogously, we also incorporate two

different regularized regression methods L1-norm LASSO and

L2-norm Ridge. For each regression method, we run them

100 times to reduce randomness. To further validate the

capacity of the grey technique, we compare the four different

regression methods with and without the dynamic grey

association. The performances of bagging and gradient

boosting comparisons are shown in Figure 2. As shown,

GreyNet-RF and GreyNet-Xgboost are significantly superior to

the corresponding regressors without the dynamic grey

association in both AUROC [PRF − value = 3.93–18; PXgboost −

value = 6.57e − 18, Wilcoxon test] and AUPRC [PRF − value =

3.96e − 18; PXgboost − value = 3.96e − 18]. In the 100 trials, two

regularized regression methods have little changes in AUROC

and AUPRC. The results of the two regularized regression

comparisons are shown in Figure 3. From Figure 3, we can

see that GreyNet-LASSO and GreyNet-Ridge significantly

outperform LASSO and Ridge regressors with respect to both

AUROC [PLASSO − value = 1.86e − 18; PRidge − value = 1.55e − 23]

and AUPRC [PLASSO − value = 2.10e − 18; PRidge − value = 1.55e −

23]. Therefore, the dynamic grey association is effective and

efficient to improve the GRN structure inference.

We further compare our model with other seven state-of-the-

art methods, including GENIE3-lag (Huynh-Thu, 2011), Jump3

(Huynh-Thu and Sanguinetti, 2015), SWING (Finkle et al.,

2018), BTNET (Sungjoon et al., 2018), BiXGBoost (Zheng

et al., 2018), BETS (Lu et al., 2021), and TIGRESS(Anne-

Claire et al., 2012). In the five subnetworks, the average

AUROC and AUPRC of GreyNet achieve 0.854 ± 0.032, and

0.622 ± 0.108 in size10 and 0.768 ± 0.036, 0.222 ± 0.039 in

size100, respectively. The detailed results of AUROC and

AUPRC in each subnetwork are shown in Table 3. The ROC

and PR curves of GreyNet are shown in Supplementary Figure

S1. From Table 3, we can see that our model achieves the highest

AUROC in networks 2, 3, and 4 of size10 among the comparing

methods. Other than network 1, our model gets the highest

AUPRC. In DREAM4 in-silico size100, GreyNet achieves all of

the highest AUROC and AUPRC in the five networks other than

AUROC in network 4. The complete performances of GreyNet

with four different regression strategies are shown in

Supplementary Tables S2, S3.

3.4 Performance on hepatocellular
carcinoma data

Hepatocellular carcinoma (HCC) accounts for > 90% of liver

cancers with a five-year survival of only 18 % and the fourth

leading cause of cancer-related deaths (Yang et al., 2019b;

Villanueva, 2019). It is estimated that more than one million

individuals will be affected by liver cancer annually by 2025 and

the World Health Organization (WHO) predicted that the

mortality of liver cancer will also arrive at one million in 2030

(Yang et al., 2019b; Villanueva, 2019; Llovet et al., 2021). It is

imperative to search for important biomarkers of molecular and

immune classes to guide therapy. A GRN of HCC will

significantly benefit this kind of search.

TABLE 1 The dscription of the datasets used in the experiments.

Network #TF #Gene #Timepoints #Samples

DREAM4 in-silico size 10 10 10 21 5

DREAM4 in-silico size 100 100 100 21 10

HCC 21 258 10 105

TABLE 2 The development stages of HCC.

Development Notation #Samples

Normal N 13

Choronic Hepatitis with low grade FL 8

Choronic Hepatitis with high grade FH 12

Cirrhosis CS 12

Dysplastic nodules with low garde DL 11

Dysplastic nodules with high garde DH 11

Early hepatocellular carcinoma eHCC 5

Hepatecellular carcinoma (TG1) TG1 9

Hepatecellular carcinoma (TG2) TG2 12

Hepatecellular carcinoma (TG3) TG3 12
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In this article, we apply GreyNet to the HCC time-course

expression data. We select the top 500 regulatory links in HCC

GRN by the score of the inference. The inferred HCC GRN is

shown in Figure 4. From Figure 4, we can see that, TP53,

PIK3CA, AXIN1, MET, APC, CTNNB1, and TERT (all

aforementioned genes are protein-coding genes) are elite

genes highly related to HCC. TP53, TERT (promoter), and

CTNNB1 are dominant mutational driver cancer genes, which

account for 21–31 %, 44–65 %, and 27–40 % of patients with

HCC (Yang et al., 2019b; Llovet et al., 2021). In terms of TF genes,

ARID2 is correlated with the initiation and progression of

HCC(Schulze et al., 2015); NFE2L2 is involved in

hepatocarcinogenesis and progression (Nault et al., 2014; Niu

et al., 2016); HNF1A is related to promoting genetic liver

adenomatosis occurrence and possibly further malignant

transformation to HCC(Zucman-Rossi et al., 2015).

Then, we enrich the HCC GRN by NOA (Wang et al.,

2011). The result of the enriched Gene Ontology (GO)

biological process and documented pathways in KEGG are

shown in Table 4. From Table 4, we can see that the

deregulations of the multiple signal pathways in HCC

affect cell proliferation, RNA, nucleobase, nucleoside,

nucleotide, nucleic acid metabolic process, and liver

development. The ‘Wnt signaling pathway’ has a

significant impact on cancer development and cancer

mechanism evolution (Polakis, 2012; Zhan et al., 2017).

The dysregulation of Wnt−/−β-catenin (a key component

of the Wnt pathway) brings out the aberrant activation of

signaling in HCC (Waisberg and Saba, 2015). Activated β-

catenin translocates to the nucleus, interacting with TCF

(T cell factor) and LEF (lymphoid enhancer-binding

factor), and activates the transcription of the target genes

which participate in CSC maintenance and EMT (Zhan

et al., 2017; Farzaneh et al., 2021). Ultimately, it will lead

to cell proliferation, angiogenesis, and anti-apoptosis. The

“JNK pathway” is implicated in multiple cancers, including

the regulation of liver tumorigenesis. In the mice model, it

is shown that the increased expression of p21 (a cell-cycle

FIGURE 2
The comparison of RF, GreyNet-RF, Xgboost, and GreyNet-Xgboost on DREAM4 insilico datasets. (A) is the results of AUROC on
DREAM4 size10 networks. (B) is the results of AUPRC on DREAM4 size10 networks. (C) is the results of AUROC on DREAM4 size100 networks. (D) is
the results of AUPRC on DREAM4 size100 networks.
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inhibitor) can cause impaired proliferation. In human

HCC, the activity of JNK can affect liver cell proliferation

via p21 and c-Myc (a negative regulator of p21). It is found

that the growth of xenografted human HCC cells can be

reduced by pharmacologic inhibition of JNK (Hui et al.,

2008; Dimri and Satyanarayana, 2020). The ‘receptor

tyrosine kinase pathways’ implicate in activating multiple

downstream signals, including the epidermal growth factor

(EGF) receptor, the fibroblast growth factor (FGF) receptor,

the hepatocyte growth factor (HGF/c-MET), the stem cell

growth factor receptor c-KIT, the platelet-derived growth

factor (PDGF) receptor, and the vascular endothelial growth

factor (VEGF) receptor (Dimri and Satyanarayana, 2020).

The “transforming growth factor-beta” (TGF-β) involves

multiple stages of HCC development from liver injury

toward fibrosis, cirrhosis, and cancer. In

hepatocarcinogenesis, TGF-β performs as a suppressor

factor in the early stages. However, TGF-β contributes to

tumor progression latterly (Fabregat and Caballero-Díaz,

2018). The consistency between these enriched functions

and the prior knowledge about HCC implies the effectiveness

of GreyNet.

4 Discussion

Limited by current technology and knowledge, the

underlying gene regulatory mechanisms in cells are not

very clear to us. It is reasonable to assume that gene

interactions behave as a grey system. Moreover, the

similarity and association of the two components are

variational, evolving the time in the biological systems. It is

less useful to assign a single static score fraction to two

variables over an entire time-series. In this condition, we

turned the static coefficient to the dynamic grey association

by incorporating the adaptive sliding window technique to

capture the dynamic evolution, which is much more aligned

with real and known gene regulations.

The dynamic grey association is not enough to mine the

causality in GRN. Thus, we further introduced both linear and

non-linear regression methods to search for causal links by

temporal information. Causal relationships between the

variables can disclose the origin of the outcome and

contribute to decision making. The Granger

causal regression model is easy to be understood and

explained.

FIGURE 3
The comparison of LASSO, GreyNet-LASSO, Ridge, and GreyNet-Ridge on DREAM4 in in silico datasets. (A) is the results of AUROC on
size10 networks. (B) is the results of AUPRC on size10 networks. (C) is the results of AUROC on size100 networks. (D) is the results of AUPRC on
size100 networks.
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TABLE 3 The comparative results of models on DREAM4 data.

DREAM4 in silico size10

Method Network1 Network2 Network3 Network4 Network5

AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

GreyNet 0.839 0.479 0.833 0.628 0.838 0.580 0.844 0.611 0.917 0.812

BTNET(GB) 0.834 0.516 0.698 0.362 0.682 0.473 0.822 0.560 0.934 0.774

BTNET(AB) 0.875 0.552 0.719 0.370 0.719 0.465 0.791 0.506 0.903 0.701

SWING-RF 0.832 0.508 0.779 0.525 0.815 0.546 0.728 0.441 0.925 0.753

SWING-Dionesus 0.743 0.469 0.786 0.484 0.789 0.421 0.772 0.540 0.807 0.625

BiXGBoost 0.816 0.573 0.784 0.422 0.771 0.376 0.787 0.533 0.888 0.741

GENIE3-lag 0.834 0.476 0.741 0.391 0.750 0.478 0.797 0.520 0.869 0.734

Jump3 0.700 0.442 0.698 0.308 0.717 0.401 0.784 0.486 0.841 0.619

TIGRESS 0.758 0.375 0.602 0.222 0.618 0.200 0.764 0.324 0.804 0.411

DREAM4 in silico size100

GreyNet 0.822 0.258 0.725 0.160 0.771 0.267 0.731 0.205 0.789 0.221

BTNET(GB) 0.776 0.186 0.694 0.113 0.759 0.235 0.723 0.143 0.758 0.165

BTNET(AB) 0.776 0.207 0.699 0.116 0.770 0.224 0.740 0.158 0.780 0.169

SWING-RF 0.793 0.192 0.723 0.116 0.759 0.214 0.742 0.193 0.775 0.160

SWING-Dionesus 0.772 0.124 0.700 0.095 0.709 0.194 0.727 0.187 0.771 0.143

BiXGBoost 0.744 0.138 0.682 0.075 0.716 0.119 0.702 0.106 0.728 0.090

GENIE3-lag 0.790 0.167 0.711 0.103 0.767 0.215 0.742 0.152 0.786 0.146

Jump3 0.724 0.099 0.623 0.057 0.696 0.077 0.662 0.072 0.696 0.074

TIGRESS 0.715 0.054 0.532 0.037 0.483 0.018 0.467 0.018 0.521 0.022

The highest AUROC and AUPR are shown in bold for each network.

FIGURE 4
The HCC GRN reconstructed by GreyNet. In the network, the larger blue hexagon nodes represent TFs. The circle orange nodes represent the
target genes. The diamond green nodes represent some elite disease genes in HCC.
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Reconstructing the causal gene regulatory network is a

preliminary step to finding out the internal mechanism of the

biological procedure and facilitating our understanding of

the basic pathology of tumors and other diseases (Lesage

et al., 2018; Femerling et al., 2022). However, current

biological datasets generated by the facilities are usually

accompanied by a low rate of signal-to-noise ratio.

Simultaneously, GRN inference is an ill-posed

problem with sparsity. A purely data-driven model will

find it hard to accurately find real and key regulatory

links (Santra, 2014). Fortunately, many databases (Liu

et al., 2015; Fang et al., 2020; Zhang et al., 2020) have

been established to provide adequate regulatory prior

knowledge. Fusing prior knowledge in the model may be

an anticipated solution to improve the quality of the GRN

topology (Ideker et al., 2011; Abdelzaher et al., 2015; Dandan

et al., 2020). It is expected to investigate their effects on

GreyNet in the future.

5 Conclusion

In this article, we proposed an interpretable machine-

learning framework to infer the gene regulatory network from

time-series expression data. We applied grey theory with the

adaptive sliding window technique to model internal interactions

in real regulatory procedures in the condition of limited

information and knowledge. We further incorporated the

Granger causality framework to search for causal regulations

between genes. In DREAM4 in silico datasets, our model got

competitive performances on AUROC and AUPRC compared

with other state-of-the-art models. In the real HCC dataset,

TABLE 4 The enrichment of GO biological process and KEGG pathway in HCC GRN.

GO:
Term

Term Name Representative Gene Corr.
p-val

GO:
0016055

Wnt receptor signaling pathway DVL1; WNT7B; DVL3; WNT8A; CCND1; WNT11; TCF7L2; FZD3; TCF7; LRP5;
WNT9B; FZD1; WNT3; TCF7L1; FZD6; APC2; GSK3B; FRAT1; WNT4; FZD2; FZD4;
APC; WNT5B; WNT7A; AXIN2; DVL2; CTNNB1; WNT1; CSNK1A1; FZD9; WNT10A;
LEF1; FZD8; FRAT2; FZD5; WNT10B; AXIN1; WNT16; WNT5A

1.1E-54

GO:
0008283

Cell proliferation WNT7B; CCND1; BAD; FZD3; SMAD4; FZD6; GSK3B; WNT4; BAK1; BCL2L1;
CTNNB1; TGFB1; WNT1; FZD9; BAX; TERC; MAP2K1; HGF; WNT10B; MET;
WNT5A

7.0E-17

GO:
0007169

Transmembrane receptor protein tyrosine kinase
signaling pathway

AKT1; GRB2; IGF1R; PIK3R1; SOS1; SMARCC1; EGFR; PIK3R3; PTEN; FGFR4; GAB1;
RAF1; HGF; MET

5.3E-10

GO:
0051252

Regulation of RNA metabolic process ARID2; HNF1A; AKT2; TCF7L2; TCF7; SMAD3; ELK1; TCF7L1; SMAD4; SMARCC1;
GSK3B; E2F3; WNT4; TGFB3; RB1; CDKN2A; WNT7A; CTNNB1; TGFB1; WNT1;
E2F2; EPO; LEF1; MAP2K1; SMAD2; WNT10B; AXIN1; MET

7.6E-9

GO:
0043408

Regulation of MAPKKK cascade AKT1; WNT7B; GRB2; AKT2; IGF1R; BRAF; APC; WNT7A; CTNNB1; GAB1; AXIN1;
WNT5A

5.7E-9

GO:
0006357

Regulation of transcription from RNA polymerase
II promoter

ARID2; HNF1A; AKT2; TCF7L2; SMAD3; TCF7L1; SMAD4; SMARCC1; TGFB3; RB1;
CTNNB1; TGFB1; WNT1; EPO; LEF1; MAP2K1; SMAD2; WNT10B; AXIN1; MET

1.7E-7

GO:
0007265

Ras protein signal transduction SHC3; GRB2; SOS1; CDKN1A; RB1; TP53; NRAS; MAPK3; RAF1; MAP2K1; CDKN2A;
MAP2K2; KRAS; SHC2

3.3E-7

GO:
0043405

Regulation of MAP kinase activity WNT7B; GSK3B; TGFB3; GAB1; MAP2K1; PRKCA; HGF; AXIN1; MET; WNT5A 1.0E-7

GO:
0006338

Chromatin remodeling HNF1A; RB1; ACTL6A; ARID1A; SMARCC1; SMARCD1; ARID1B; SMARCC2;
SMARCA2; SMARCB1

5.6E-6

GO:
0046328

Regulation of JNK cascade AKT1; WNT7B; AKT2; WNT7A; GAB1; AXIN1; WNT5A 2.3E-5

GO:
0007179

Transforming growth factor beta receptor signaling
pathway

SMAD4; SMAD3; TGFB1; TGFBR1; TGFB3; TGFBR2; TGFB2; SMAD2 9.1E-4

GO:
0006139

Nucleobase, nucleoside, nucleotide and nucleic acid
metabolic process

DPF1; HNF1A; NRAS; TCF7L2; DDB2; TCF7; SMARCD3; SMAD3; ELK1; TCF7L1;
SMAD4; ABCC3; SMARCC1; KEAP1; E2F3; ACTL6A; ACTL6B; ARID1A; RB1;
CDKN2A; CTNNB1; E2F2; TERT; PRKCB; POLK; UGP2; LEF1; TERC; SMAD2;
SMARCC2; SMARCB1; AXIN1; DPF3

8.2E-4

GO:
0007264

Small GTPase mediated signal transduction SHC3; GRB2; SOS1; CDKN1A; RB1; TP53; BRAF; NRAS; MAPK3; RAF1; MAP2K1;
SOS2; CDKN2A; MAP2K2; HMOX1; KRAS; SHC2

4.6E-4

GO:
0043491

Protein kinase B signaling cascade AKT1; RPS6KB1; AKT2; RPS6KB2 3.2E-4

GO:
0001889

Liver development CCND1; HGF; SMAD3; AFP; CTNNB1; HNF1A; ALDH2; ALDOB; ASS1 2.0E-4
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GreyNet can find meaningful pathways in HCC development

from the functional enrichment results of HCC GRN. In the

future, we will provide an update tomake our model applicable to

single-cell RNA-seq data.
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