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Although ongoing medical research is working to find a cure for a variety of

cancers, it continues to be one of the major causes of death worldwide.

Chemotherapy and immunotherapy, as well as surgical intervention and

radiation therapy, are critical components of cancer treatment. Most anti-

cancer drugs are given systemically and distribute not just to tumor tissues

but also to normal tissues, where they may cause side effects. Furthermore,

because anti-cancer drugs have a low delivery efficiency, some tumors do not

respond to them. As a result, tumor-targeted drug delivery is critical for

improving the safety and efficacy of anti-cancer treatment. Exosomes are

microscopic extracellular vesicles that cells produce to communicate with

one another. MicroRNA (miRNA), long non-coding RNA (lncRNA), small

interfering RNA (siRNA), DNA, protein, and lipids are among the therapeutic

cargos found in exosomes. Recently, several studies have focused on miRNAs

as a potential therapeutic element for the treatment of cancer. Mesenchymal

stem cells (MSC) have been known to have angiogenic, anti-apoptotic, anti-

inflammatory and immunomodulatory effects. Exosomes derived from MSCs

are gaining popularity as a non-cellular alternative to MSC-based therapy, as

this method avoids unwanted lineage differentiation. Therefore more research

have focused on transferring miRNAs to mesenchymal stem cells (MSC) and

targeting miRNA-loaded exosomes to cancer cells. Here, we initially gave an

overview of the characteristics and potentials of MSC as well as the use of MSC-

derived exosomes in cancer therapy. Finally, we emphasized the utilization of

MSC-derived exosomes for miRNA delivery in the treatment of cancer.
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Introduction

The human body comprises a variety of cell types that make up tissues and organs

with distinct functions that contribute to long-term survival. Long ago, it was discovered

that differentiated cells in several tissues, such as the skin, intestinal epithelium, and

blood, have a short lifecycle and are unable to self-renew (Watt and Driskell, 2010). Stem
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cells may self-renew and have the ability to differentiate into a

variety of cell types in an organism. This discovery gave rise to the

concept of stem cells, which are small unspecialized cells in the

human body that lack a variety of phenotypic features observed

in adult tissues and are used to maintain static and temporary cell

types (Alvarez et al., 2012). Embryonic and non-embryonic stem

cells (somatic stem cells) are the two basic types of stem cells.

Embryonic stem cells are pluripotent, but somatic stem cells,

mesenchymal stem cells (MSCs), for example, are multipotent

stem cells (Singh et al., 2016). Because of their unique properties,

such as self-renewal and the ability to differentiate into a variety

of cell types, MSCs are among the most studied stem cells

(Pittenger et al., 2019).

Friedenstein and colleagues were the first to isolate and define

MSCs from bonemarrow as adherent, highly replicative cells that

can differentiate into mesodermal lineages such as osteoblasts,

chondrocytes, adipocytes, and hematopoietic stroma

(Friedenstein et al., 1966). In addition to bone marrow, MSCs

can be isolated from variety of tissues (da Silva Meirelles et al.,

2006). According to the International Society for Cellular

Therapy (ISCT), MSCs must fulfill three minimal conditions;

(1) adherence to plastic surface when cultured in vitro, (2)

expression of the surface antigens CD73, CD90, and CD105,

and absence of CD34, CD45, CD14 or CD11b, CD79α or CD19,

and HLA-DR, (3) ability to form several mesodermal cell types,

such as adipocytes, chondrocytes, and osteoblasts when cultured

in vitro under appropriate conditions (Dominici et al., 2006).

MSCs are attractive therapeutic targets for a variety of

disorders, including cancer treatment and tissue regeneration,

because of their versatility and ability to self-renew. MSCs have

undeniable medical potential; yet, their capacity to develop into

tumor-associated fibroblasts (Mishra et al., 2008; Miyazaki et al.,

2021), which promote tumor growth via their secretome (Liang

W. et al., 2021), and resistance to apoptosis, makes them

potentially dangerous (Bellagamba et al., 2016). MSCs have

not been successfully used in anticancer therapy because of

their contradictory involvement in cancer progression and

regression. To effectively harness MSCs’ therapeutic potential,

it is critical to understand their underlying molecular pathways.

Exosomes are extracellular vesicles (EVs) produced by

eukaryotic cells that serve as carriers for the transfer of

membrane and cytosolic proteins, lipids, and RNA between

cells, making them a key component of intercellular

communication (Raposo and Stoorvogel, 2013). These

membrane–bounded vesicles can be divided into three

subtypes, exosomes (50–150 nm), microvesicles

(100–1,1000 nm), and apoptotic bodies (500–5,5000 nm)

(Doyle and Wang, 2019). Exosomes and other EVs have been

found in a variety of tissues and biological fluids, including urine,

blood, and cerebrospinal fluid. MicroRNAs (miRNAs) and

proteins are mostly found in exosomes, which are enclosed by

a lipid bilayer membrane (Zhang et al., 2018). Exosomes also

contain other RNA types such as nucleolar RNA, long noncoding

RNA, and ribosomal RNA, as well as DNA fragments (Sato-

Kuwabara et al., 2015). Studies have shown that released

exosomes can be guided to other cells via proteins found on

cell surfaces (Neviani and Fabbri, 2015).

Exosomes derived from MSCs have been shown to possess

potential benefits for the management of several pathological

conditions, including cancer. MSC-derived exosomes have

almost all of the properties of the original cells, in terms of

paracrine effects and immunomodulatory functions. Recently,

loading MSC-derived exosomes with defined cargos such as

miRNAs has been suggested to be a promising strategy for the

treatment of different diseases. Evenmore, genetically engineered

miRNAs can be used in correcting the pathways disrupted in

cancer. In the present review we discuss the function of exosomal

miRNAs derived from MSCs in different type of cancers.

Biological functions of mesenchymal
stem cells

MSCs share many properties with other stem cells, including

robust self-renewal and multidirectional differentiation capacity.

In previous studies, MSCs have been shown to be capable of

differentiating into cells of the mesodermal, ectodermal, and

endodermal lineages (Dominici et al., 2006; Paunescu et al.,

2007). MSCs can regulate the immune system by interacting

with immune cells and also have paracrine effects. Furthermore,

because MSCs have a low immunogenicity, allograft matching

requirements are less stringent, and immunological rejection is

less likely. MSCs can thus be used as ideal seed cells for repairing

tissue and organ damage caused by aging and pathological

changes, and they also have broad clinical applications in the

treatment of autoimmune diseases, inflammation-related

diseases, and cancer (Farini et al., 2014).

MSCs exert their immunomodulatory activity through

interacting with immune cells in both the native and acquired

immune systems. First, MSCs decrease natural killer (NK) cell

proliferation, cytotoxicity, and cytokine secretion by secreting

prostaglandin E2 (PGE2), indoleamine 2,3-dioxygenase (IDO),

and soluble human leukocyte antigen G5 (sHLA-G5) (Galland

et al., 2017). MSCs can also influence the development of

dendritic cells (DCs) by suppressing monocyte differentiation

into DCs (Jung et al., 2007). MSCs can limit the expression of

tumour necrosis factor (TNF) (Yan et al., 2018) and enhance the

expression of interleukin 10 (IL-10) (Selleri et al., 2013) by DCs,

which is likewise regulated by PGE2. MSCs also decrease the

ability of naïve T cells to induce Th1 differentiation (Consentius

et al., 2015), ultimately leading to immunosuppression.

In 2008, Le Blanc and Davies reported success in the

treatment of graft versus host disease (GVHD) with

allogeneic, semicompatible, and mismatched bone

marrow-derived MSC transplantation, indicating that a

strict match was not necessary in the treatment of GVHD
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with MSCs (Le Blanc and Davies, 2015). The low

immunogenicity of MSCs is crucial to the success of

allogeneic MSC transplantation in preclinical and clinical

settings. MSCs express major histocompatibility complex

class I (MHC I) and lymphocyte function-associated

antigen (LFA-3) on a constitutive manner, but only

following stimulation with interferon-gamma they express

MHC II and intercellular adhesion molecule (ICAM) (Tse,

et al., 2003). Furthermore, MSCs do not stimulate the

proliferation of peripheral blood mononuclear cells

(PBMCs) showing low immunogenicity characteristics

(Parys et al., 2017). Additionally, MSCs have the ability to

significantly reduce the proliferation of activated T cells and

interferon-gamma has a vital role in this process

(Chinnadurai et al., 2014).

MSCs can migrate to the site of a lesion in a variety of

illnesses, including inflammation, tissue damage, and tumors

(Nitzsche et al., 2017). Several cell adhesion molecules and

chemokine receptors expressed by MSCs influence their

migration to the lesion site, and MSC-targeted migration to

the lesion site is referred to as “homing” of MSCs (Naji et al.,

2019) which is a multistep process that includes activation,

adhesion, and migration (De Becker and Riet, 2016). First,

inflammatory cytokines generated by inflamed or wounded

tissues activate vascular cell adhesion molecule-1 (VCAM-1)

on the surface of endothelial cells and α4β1 integrin (VLA-4)

on the surface of MSCs, trapping MSCs on the endothelial cell

surface (Uchibori et al., 2013). Following that, many growth

factors generated by inflammation or damaged tissues might

bind to MSC receptors and increase MSC adherence to

endothelial cells (Lejmi et al., 2015). Finally, MSCs express

matrix metalloproteinase 2 (MMP-2) and membrane type-1-

MMP (MT-1-MMP), which activate proteasomes that

breakdown the extracellular matrix and assist MSCs migrate

across the basement membrane to the lesion site (Ries et al.,

2007).

Mesenchymal stem cells in cancer
therapy

Many mediators have been identified in the cross-talk

between MSCs, the tumor microenvironment, and tumor cells.

By triggering numerous signaling pathways, MSCs have different

roles on the cells in the tumor microenvironment. MSCs can

block Wnt signaling by regulating the Dickkopf-related protein 1

(DKK1) secreted by tumor cells, downregulating c-Myc and

Cyclin D2 and upregulating the expression of P21CIP1 and

P27KIP1, resulting to tumor cell suppression (Qiao et al.,

2008; Zhu et al., 2009). By suppressing angiogenesis, naive

MSCs can cause vascular endothelial cells to die (Otsu et al.,

2009). On the contrary, MSCs have been shown to be linked to

increased metastasis, tumorigenesis, and recurrence of tumors by

producing cancer stem cells (CSCs) (Liu et al., 2011). MSCs also

produce chemokines such as CXCR4 (Corcoran et al., 2008),

CCL5 (Karnoub et al., 2007), ICAMs (Tsukamoto et al., 2012),

and VCAMs (Hu et al., 2012). Breast cancer cells induce

mesenchymal stem cells to secrete the chemokine CCL5,

which subsequently acts in a paracrine manner on the cancer

cells to promote motility, invasion, and metastasis (Karnoub

et al., 2007). MSCs obtained from mouse lymphomas produce

CCL2 and enhance cancer cell proliferation as well as the

recruitment of immunosuppressive cells to lymphoid organs

(Ren et al., 2012). MSCs originating from breast cancer tissues

also produce some immunosuppressive mediators such as IL-4,

TGF-β, and IL-10 (Razmkhah et al., 2011). Although themajority

of studies aimed at usingMSCs in cancer therapy have focused on

their tumor-suppressing capabilities, these cells may potentially

stimulate tumor progression by increasing metastasis, tumor

angiogenesis, epithelial–mesenchymal transition, and

disrupting immune surveillance (Hmadcha et al., 2020)

(Figure 1). These unfavorable effects may appear depending

on the number of MSCs injected, their source or origin,

differentiation level, and tumor type, As a result, restrictions

in MSC-based cancer therapy should be considered, and more

research is needed to assess the safety and efficacy of such a

therapeutic approach in the treatment of cancer.

Exosomes as drug carriers

Exosomes are more commonly used as drug delivery vehicles

because of their transport capabilities in delivering functional

content to specific cells. Some natural exosomes can be used as

therapeutic agents because they contain endogenous anti-tumor

biomolecules. Furthermore, bioengineered exosomes with extra

required payloads and targeting specificity offer more promise in

cancer treatment. In contrast to other regularly used drug

delivery vehicles (e.g., liposomes), bioengineered exosomes

have intrinsic targeting capabilities, low immunogenicity, high

modification flexibility, and biological barrier permeability

(Walker et al., 2019).

Different methods are currently being employed for the

purification of exosomes, such as differential

ultracentrifugation, density gradient ultracentrifugation, size

exclusion chromatography, etc. (Wang et al., 2021). For

isolation, the International Society for Extracellular Vesicles

(ISEV) has established detailed guidelines. However, none of

the methods were able to accomplish absolute purification, or

total separation of exosomes from other biological products.

Each approach has advantages and limitations, and combining

them for optimum exosome enrichment may be recommended

(Thery et al., 2018). It is necessary to characterize exosomes

thoroughly according to ISEV’s report for the validation of the

isolation technique. Generally, Western Blot or ELISA are used

for this purpose. The ISEV recommends identifying at least three
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positive and one negative protein markers. At least one

transmembrane/lipid-bound protein (e.g., CD63, CD9, CD81)

and one cytosolic protein (e.g., TSG101, ALIX) must be present

as a positive protein marker. Single vesicle characterization

requires imaging techniques (atomic force microscopy (AFM)

and electron microscopy (EM)) and biophysical characterization

(nanoparticle tracking analysis (NTA), tunable resistance pulse

sensing (TRPS), dynamic light scattering (DLS), and flow

cytometry (FC)) (Thery et al., 2018).

Bioengineered exosomes have greater therapeutic

potential as delivery vehicles due their ability to transfer

desired payloads and give better targeting specificity. To

date, two key strategies for maximizing therapeutic efficacy

of exosomes have been employed; (1) cargo engineering and,

(2) surface engineering.

Cargo engineering

Different medicinal substances, such as drugs, proteins,

and nucleic acids, can be encapsulated by exosomes. Pre-

loading (before separation) and post-loading (after isolation)

are the two main types of cargo loading techniques. In pre-

loading, therapeutic molecules can be endogenously packed

into exosomes during the biogenesis stage by modifying

parental cells. This can be accomplished by manipulating

the genetics of parental cells. Parental cells can overexpress

therapeutic miRNAs, siRNAs, mRNAs, proteins, and peptides

by transfection, which then be encapsulated into exosomes.

Another method is to directly incubate drugs with parental

cells, resulting in drug-containing exosomes (Herrmann et al.,

2021). The post-loading occurs after exosomes are isolated.

Exogenous payloads are passively or actively loaded into

exosomes. After direct co-incubation, hydrophobic drugs

can be mixed with the exosome lipid bilayer membrane

and incorporated into the surface. The hydrophobic nature

of the payloads and the concentration gradient of the

molecules determine this passive loading method, which

usually results in a poor loading capacity (Liang Y. et al.,

2021). Different active loading strategies for hydrophilic

molecules have been developed to temporarily permeabilize

the hydrophobic lipid barrier, either physically or chemically,

allowing the passage of the drug into exosomes.

Electroporation, sonication, freeze-thaw cycles, and

extrusion are examples of physical techniques that entail

brief disruption of the exosome membrane by external

forces (Walker et al., 2019). Electroporation is currently the

most popular method, particularly for RNA encapsulation.

Chemical techniques, on the other hand, use transfection

reagents or permeabilizers like saponin to help payloads

FIGURE 1
Functions ofmesenchymal stem cells in cancer (createdwith BioRender). MSCs have number of effects on tumor cells, mostly increasing tumor
growth as a result of their function in controlling inflammation and tissue repair. They affect tumor cell survival and stemness (A) and contribute to
angiogenesis (B) by producing angiogenic factors. MSCs stimulate tumor cell motility, epithelial mesenchymal transition (EMT), and metastasis (C),
and secrete chemokines, including CXCL1, CXCL2, and CXCL12, and cytokines, including IL-6 and several matrix metalloproteinases (MMPs),
which degrade the extracellular matrix to facilitate tumor cell migration. They show immunomodulatory function (D) and can induce drug resistance
(E). MSCs are generally pro-tumorigenic, however research has suggested that they may also have anti-tumor properties (F).

Frontiers in Bioengineering and Biotechnology frontiersin.org04

Dalmizrak and Dalmizrak 10.3389/fbioe.2022.956563

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.956563


enter the exosomes without disrupting its lipid bilayer

structure (Haney et al., 2019).

Surface engineering

Exosomes isolated from distinct cell origins have different

surface molecules, indicating that they are selective for specific

recipient cells. The biodistribution and tropism of exosomes can

be influenced by changing their surface, particularly their protein

composition. The major purpose of surface engineering is to give

exosomes more targeting specificity, raising the local

concentration of exosomes at desirable localizations while

lowering unwanted systemic toxicity. Genetic engineering,

chemical modification, and hybrid membrane engineering are

the three types of surface engineering technologies (Liang W

et al., 2021) (Figure 2).

Mesenchymal stem cell-derived
exosomes in cancer

Exosomes can be isolated from cell cultures or body fluids.

The most common cell sources are MSCs, immune cells, and

cancer cells. MSCs are the most abundant producer when

compared to other cell sources, and they have a large

expansion capacity for economically feasible exosome

production (Kim et al., 2021). Additionally, MSCs can also be

isolated from a variety of human tissues without having an ethical

concern (Zhou et al., 2021). Numerous in vivo and in vitro studies

demonstrate the immunoregulatory, pro-angiogenic, and tissue-

regeneration properties of MSC-derived exosomes. For instance,

MSC-derived exosomes alleviate the severity of myocardial injury

(Ma J. et al., 2017); promote tissue damage repair (Zhang B. et al.,

2015); and regulate the immune system (Ti et al., 2015). Other

benefits include the prevention of acute tubular injury (Bruno

et al., 2009), nerve injury (Drommelschmidt et al., 2017), and

lung injury (Lee et al., 2012). Preclinical data have proven the

safety of exosome therapy and scalability of their isolation

methods from MSCs for clinical application. However, due to

the lack of established cell culture conditions, suitable protocols

for production, isolation, and storage of exosomes, optimal

therapeutic dose and administration schedule, and reliable

potency assays to assess the efficacy of exosome therapy, the

use of MSC-derived exosomes in clinical settings is limited

(Börger et al., 2017).

Recent studies have shown that MSC-derived exosomes play

an important role in angiogenesis, tumor development, and

tumor invasion. It is still unclear whether natural MSC-

derived exosomes have beneficial or detrimental effects on

tumors. Several studies have reported that natural MSC-

derived exosomes enhanced tumor development. However,

some studies suggested that these exosomes can prevent

tumor progression. According to a prior study, the dual effect

may be influenced by the origin of the MSC-derived exosomes,

the dose and timing of the MSC injection, the kind of

malignancy, and other parameters (Shojaei et al., 2019). Zhu

et al. (2012) showed that exosomes released by MSCs could

stimulate tumor growth in vivo. In xenograft mouse models of

stomach and colon malignancies, exosomes generated from

FIGURE 2
Overview of purification, characterization and functionalization of mesencyhmal stem cell-derived exosomes (created with BioRender).
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human bone marrow mesenchymal stem cells (hBMSCs)

promoted tumor growth. However, exosomes had no similar

effects on tumor cells in vitro. Angiogenesis-related molecular

signaling pathway activation was detected in vivo and in vitro

with increased VEGF and CXCR4 mRNA levels, which

corresponded to enhanced vascular density in tumor tissues in

vivo. Finally, they showed that stimulation of the ERK1/2 and

p38 MAPK pathways by hBMSC-derived exosomes increased

VEGF and CXCR4 expression in tumor cells, resulting in

increased angiogenesis and hence tumor growth in vivo (Zhu

et al., 2012). In non-small cell lung cancer (NSCLC), MSC and

MSC-derived exosomes promote malignancy by triggering

epithelial mesenchymal transition, migration, autophagy, and

also inhibiting apoptosis through the activation of the AMPK

signaling pathway (Wang et al., 2022). In hepatocellular

carcinoma (HCC) cells, MSC-derived exosomes increase

proliferation, invasion, sphere formation ability and suppress

apoptosis through TMBIM6. As a result of silencing TMBIM6,

viability, sphere formation, invasion, epithelial mesenchymal

transition and PI3K/AKT signaling pathway are suppressed,

and apoptosis is triggered (Shang et al., 2022). Adipocyte-

derived exosomes differentiated from MSC in breast cancer

promote cell proliferation and migration, and also inhibit

apoptosis via the Hippo signaling pathway. Suppression of the

signaling pathway blocks the growth-promoting effect of

adipocyte exosomes (Wang S. et al., 2019).

On the contrary, Wu et al. (2013) found that human

umbilical cord Wharton’s jelly mesenchymal stem cells

(hWJMSCs)-derived exosomes could induce apoptosis and cell

cycle arrest in T24, a bladder cancer cell line, by increasing the

expression of caspase-3 and decreasing the phosphorylation of

Akt. According to a study by Kalimuthu et al. (2016) treatment

with MSC-derived extracellular vesicles led lung cancer cells to

undergo apoptosis.

Functions of miRNA loaded
mesenchymal stem cell-derived
exosomes in cancer

miRNAs are a family of short single-stranded non-coding

RNAs that regulate gene expression in target cells. They range in

length from 20 to 25 nucleotides (Leavitt et al., 2019). miRNAs

act at the 3′UTR of mRNAs to downregulate their translation or

cause their degradation as part of the RNA-induced silencing

complex (RISC) (Gu et al., 2009). miRNA expression can be

altered due to many reasons such as germline and somatic

mutations in miRNA genes, amplification or deletion of

miRNA genes, epigenetic regulation in miRNA locus, changes

in miRNA biogenesis mechanisms, editing and chemical

modifications of miRNAs. These dysregulations result in up-

or downregulation of miRNAs and predispose to the formation

of many diseases, including cancer (Urbanek-Trzeciak et al.,

2020). Under specific circumstances, miRNAs can act as

tumor suppressors or oncogenes. It has been demonstrated

that dysregulated miRNAs have an impact on the

characteristics of cancer, including maintaining proliferative

signaling, avoiding growth inhibitors, resisting cell death,

triggering invasion and metastasis, and promoting

angiogenesis (Table 1). miRNAs have been identified as

possible biomarkers for the diagnosis and prognosis of human

cancers and therapeutic targets (Peng and Croce, 2016).

Two types of miRNA-based approaches can be used to

change the expression levels of target genes for therapeutic

purposes: (a) miRNA suppression therapy when the target

gene is downregulated and (b) miRNA replacement therapy

when the target gene is upregulated. Usually, the

reticuloendothelial system and the ribonucleases present in the

blood rapidly degrade naked RNA. The stability of

oligonucleotides can be improved by chemical modifications

for in vivo delivery. Antisense oligonucleotide (ASO)

technology was developed for studying miRNA, and the ASOs

that are used to silence miRNA are called anti-miRNA

oligonucleotides (AMOs) (Zhang and Farwell, 2008).

miRNA suppression therapy can remove miRNA

suppression on the target mRNA, thus increasing the mRNA

expression level. AMOs bind to the miRNA sense strand, block

interactions between miRISC and its target mRNA, prevent the

degradation of the mRNA, and thus allow the mRNA to be

translated. In miRNA replacement therapy, miRNA mimics,

synthetic double-stranded miRNA-like RNA molecules, can

stimulate endogenous miRNAs and bind to mRNA of the

target gene, resulting in posttranscriptional suppression (Fu

et al., 2019). Since cancer is related with the deregulation of

multiple genes and miRNAs, it is commonly accepted that

focusing on just one target is insufficient for an effective

treatment. Therefore high target specificity has been replaced

with multi-specificity. In that regard, miRNA-based therapies are

an advantage since they affect the regulatory sequence,

commonly functioning on an entire pathway or even several

pathways rather than just one gene (Baumann and Winkler,

2014).

Because of their negative charge and hydrophilic nature,

miRNAs are difficult to cross the cell membrane. Additionally,

they are destroyed after entering the body. Therefore, exosomes

can serve as excellent carriers for miRNAs (Zhang et al., 2022).

There are two methods for miRNA enrichment/loading in

exosomes. The first strategy involves creating a cell line that

overexpresses the desired therapeutic miRNA. The cell line then

displays a high level of miRNA in their cytoplasm, followed by

exosome secretion containing therapeutic miRNA. The second

strategy involves separating exosomes from the source (cell lines

or body fluids) and then loading them with selected miRNA by

using chemical or physical approaches. Since it is widely known

that increasing the quantity of miRNA in the cytosol may

increase their passive loading in exosomes, it is possible to
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TABLE 1 Examples of miRNAs and their roles in different cancers.

Cancer type miRNA Expression Target Pathway Effect References

Brain Cancer miR-7 Downregulated EGFR, PI3K- Akt
EGFR, IRS1, IRS2

EGFR, PTEN-PI3K-
Akt IGF-1R/Akt

Cell growth, cell cycle arrest
Invasion, proliferation, cell
cycle, survival/cell death

Liu Z. et al. (2014), Matos
et al. (2018)

miR-101 Downregulated SOX9 Akt, Wnt, BMI1 Proliferation, migration,
invasion

Liu et al. (2017)

miR-29a/b/c Downregulated CDC42 CDC42-PAK Migration, invasion Shi et al. (2017)

miR-146b-5p Downregulated TRAF6 TRAF6-TAK1 Cell proliferation, apoptosis
resistance

Liu et al. (2015)

miR-181c Downregulated NOTCH2 NOTCH Tumor progression Ayala-Ortega et al. (2016)

miR-320a Downregulated SND1, β-catenin TGFβ1 Cell proliferation, invasion,
migration

Li et al. (2017)

miR-21 Upregulated EGFR, Akt, cyclin D,
Bcl-2

EGFR, Akt Apoptosis, TMZ resistance Zhou et al. (2010), Wong
et al. (2012)

miR-221 miR-222 Upregulated SOCS3 JAK/STAT Invasion, migration,
proliferation, angiogenesis

Xu C. H. et al. (2019)

miR-10b Upregulated PTEN, p53, BIM
E-cadherin, Apaf-1,
PTEN/TGF-β1

TGF-β Growth, invasion, apoptosis
Proliferation,
migration, EMT.

Sun et al. (2019), Ma C.
et al. (2017)

miR-181b Upregulated KPNA4 EMT Growth, invasion,
proliferation

Wang et al. (2015)

miR-141 Upregulated Jagged1 NOTCH Growth Gao et al. (2017)

Head and Neck
Cancer

let-7c Downregulated IL-8 Radio-/chemoresistance Peng C. Y. et al. (2018)

miR-101 Downregulated EZH2 CDK8 Wnt/β-catenin Metastasis, EMT
Tumorigenesis

Chen L. et al. (2019), Li
et al. (2015)

miR-124 Downregulated STAT3 JAK/STAT Tumor growth and metastasis Xu et al. (2016)

miR-let-7e Downregulated HMGB1 NF-κB Migration, invasion Ding C. et al. (2019)

miR-206 Downregulated MAP4K3 p38, JNK Cell proliferation, apoptosis,
multidrug resistance

Liu et al. (2019)

miR-30a miR-379 Downregulated DNMT3B Retinoic acid
pathway

Growth Shiah et al. (2020)

miR-125a Upregulated p53 Cell proliferation, migration,
invasion

Chen J. et al. (2019)

miR-134 Upregulated PDCD7 WWOX E-cadherin expression
Suppressor inhibition

Peng S. Y. et al. (2018), Liu
C. J. et al. (2014)

miR-196b Upregulated PCDH-17 Cell proliferation, migration,
and invasion

Luo M. et al. (2019)

miR-144 Upregulated mTOR PI3K/Akt/mTOR Cell proliferation,
clonogenicity, migration,
invasion, tumor formation

Shabani et al. (2018)

Breast Cancer miR-126 Downregulated VEGFA, PIK3R2 VEGF/PI3K/Akt Angiogenesis Zhu et al. (2011)

miR-204 Downregulated PI3K-α, c-SRC, VEGF,
FAK, RAF1, MAPK

PI3K/AKT, RAF1/
MAPK, VEGF,
FAK/SRC

Angiogenesis Salinas-Vera et al. (2018)

miR-720 Downregulated ADAM8 ERK Metastasis Das et al. (2016)

miR-205 Downregulated ZEB1, ZEB2, HER3,
AMOT, erbB2/erbB3

Proliferation, invasion,
metastasis

Wang et al. (2013), Zhang
and Fan, (2015), Huo et al.
(2016)

miR-200 family Downregulated ZEB2, E-cadherin Metastasis, invasion Liu et al. (2018), Rogers
et al. (2019)

miR-203a-3p Downregulated ZEB2 Metastasis, invasion Fahim et al. (2020)

miR-1-3p Downregulated K-RAS, MALAT1 Proliferation, apoptosis Chou et al. (2016), Jin et al.
(2016), Fahim et al. (2020)

miR-210 Upregulated HRAS, PTK2, SHC1,
HIF1a

Hypoxia VEGF
signaling

Development of cancer,
angiogenesis

Foekens et al. (2008)

miR-182 Upregulated FBXW7 HIF-1α- VEGF-A Proliferation, angiogenesis Chiang et al. (2016)

(Continued on following page)
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TABLE 1 (Continued) Examples of miRNAs and their roles in different cancers.

Cancer type miRNA Expression Target Pathway Effect References

miR-155 Upregulated VHL VHL/HIF-1α/VEGF Angiogenesis Kong et al. (2014)

miR526b miR655 Upregulated VEGFA, VEGFC,
VEGFD, CD31,
LYVE1

PI3K/Akt Angiogenesis Hunter et al. (2019)

miR-20b Upregulated PTEN PTEN-PI3K-Akt Progression, angiogenesis Zhou et al. (2014)

miR-155 miR-203
miR-125a

Upregulated SOCS1, SOCS3,
STAT3, PIAS3, IL-6,
IL-6R

JAK/STAT3 Lei et al. (2016), Ru et al.
(2011), Park and Kim,
(2019)

Gastrointestinal
Cancer

miR-28-5p Downregulated AKT Proliferation, migration Xiao et al. (2018)

miR-7 Downregulated RelA/p65 Raf-1 NF-κB Metastasis, tumor
development, angiogenesis

Ye et al. (2019), Lin J. et al.
(2020)

miR-1299 Downregulated ARF6 Proliferation, apoptosis,
migration, invasion

Qiu et al. (2022)

miR-223-3p Downregulated Zhou et al. (2017)

miR-339-5p Downregulated Cdc25A Luo A. et al. (2019)

miR-148a-3p miR-
181a-5p

Downregulated Lin Z. et al. (2020)

miR-497 Downregulated Differentiation, lymph node
metastasis

Zou G. et al. (2019)

miR-100 Downregulated Stroese et al. (2018)

miR-181a Upregulated Caprin-1 Proliferation, apoptosis,
invasion, metastasis

Lu et al. (2019)

miR-653-5p Upregulated SOCS6-STAT3 JAK2/
STAT3 pathway

Proliferation, metastasis Li Z. et al. (2021)

miR-1301-3p Upregulated SIRT1 Proliferation, cell cycle,
tumorigenesis

Luo et al. (2021)

miR-106a miR-18a
miR-20b miR-486-
5p miR-584

Upregulated Zhou et al. (2017)

miR-34a-5p Upregulated Lin Z. et al. (2020)

miR-199a-3p Upregulated Depth of invasion Nonaka et al. (2014)

miR-103 miR-720 Upregulated Differentiation, lymph node
metastasis

Nonaka et al. (2015)

miR-19a-3p miR-
19b-3p miR-25-3p
miR-192-5p miR-
223-3p

Upregulated Zou X. et al. (2019)

Genitourinary
Cancer

miRNA-199a-3p Downregulated Cyclin D1, c-Myc,
mTOR EGFR

Proliferation, clonal
expansion, regeneration

Liu et al. (2016)

miRNA-203 Downregulated IRS-1 ERK Cell proliferation, cell cycle Meng et al. (2020)

miRNA-218 Downregulated GAB2 PI3K/Akt/GSK-3β Cell proliferation, migration Tian et al. (2020)

miRNA-1 Downregulated c-Met Akt/mTOR Cell survival, proliferation Gao et al. (2019)

miRNA-31-5p Downregulated 14–3-3 ε PI3K/AKT/Bcl-2 Cell survival, proliferation Zhao et al. (2020)

miRNA-381 Downregulated RELN PI3K/Akt/mTOR Autophagy, apoptosis Liao and Zhang, (2020)

miRNA-125b Upregulated p14ARF p53 Cell proliferation Amir et al. (2013)

miRNA-486-5p Upregulated SMAD2/TGF- β
PTEN/PI3K FoxO

Proliferation, development,
pathogenesis

Yang et al. (2017)

miRNA-4534 Upregulated PTEN/PI3K/Akt Migration, apoptosis Nip et al. (2016)

Gynecologic
Cancer

let-7d-5p Downregulated HMGA1 p53 Proliferation,
chemosensitivity

Chen Y. N. et al. (2019)

miR-101-5p Downregulated CXCL6 Colony formation, invasion,
migration

Shen et al. (2019)

miR-132 Downregulated SMAD2 Lymph node metastasis Zhao J. L. et al. (2015)

miR-138-5p Downregulated SIRT1 Tumorigenesis, metastasis Ou et al. (2018)

(Continued on following page)
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transfect a designed miRNA into cells for exosomal therapy.

Choosing the right cell type is one of the requirements for

transfection. Although MSCs are the most commonly used

“biofactories” for producing exosomes with loaded miRNA,

there are some limitations in their utilization for therapeutic

purposes. Initially, the cell system should be selected carefully

according to the purpose of miRNA-loading. The disease being

studied, the dynamics of communication between exosome-

producing cells and the recipient cell, the rate of exosome

secretion, and the capacity of exosomes to uptake exogenous

therapeutic miRNAs should also be considered (Munir et al.,

2020). Exosomes essentially have proteins on their surface, such

as tetraspanins (CD-81, -82, -37, and CD-63), membrane

trafficking proteins, cytoskeletal proteins, and two members of

the Endosomal Sorting Complex Required for Transport

(ESCRT) pathway, namely Alix and Tumor Susceptibility

Gene 101 (TSG-101). The propensity of these proteins to

target particular tissues is modest. Additionally, these proteins

enable exosomes to accumulate in the liver, kidney, and spleen.

They can be also eliminated through bile, renal filtration, and

reticuloendothelial phagocytosis (Xitong and Xiaorong, 2016).

Therefore, it is strongly advised to change the surface of

exosomes in order to improve precise targeting and decrease

the clearance rate. This can be accomplished by directly or

genetically altering the exosome membrane proteins. Exosome

surfaces can be directly altered using non-covalent or covalent

techniques. In the non-covalent technique, exosomes and protein

are combined. The covalent technique, on the other hand,

involves the attachment of a peptide with covalent bonding.

However, it remains to be unclear how effective these methods

are for developing miRNA-enriched exosomes for targeted

therapy. Both techniques have the potential for chemical

contamination and have varying degrees of modification

efficacy. Additionally, non-covalent attachment may dissociate

under physiologic conditions (Hu et al., 2020). Genetic alteration

involves producing a particular protein on the exosome surface

which results in more homogenous population and sustained

target specificity. It is more expensive than a direct approach.

TABLE 1 (Continued) Examples of miRNAs and their roles in different cancers.

Cancer type miRNA Expression Target Pathway Effect References

miR-148b Downregulated CASP3 Cell proliferation, invasion,
apoptosis

Mou et al. (2016)

miR-508 miR-
509–2 miR-526b

Downregulated p53,SMAD4, NF-κB-1,
MMP1, NOTCH1,
SMAD4

Migration, invasion, lymph
node metastasis, tumor
progression

Chen et al. (2018)

miR-16–1 Upregulated CycE1 Controls the transition of
cells from G1 to S phase

Zubillaga-Guerrero et al.
(2015)

miR-20a Upregulated TIMP2, ATG7 Lymph node metastasis,
invasion

Zhao S. et al. (2015)

miR-20b Upregulated TIMP2 Regulates the cytoskeleton
and activates EMT,
migration, invasion

Cheng et al. (2017)

miR-27b Upregulated CDH11 Proliferation, cell cycle
transition from G1 to S phase,
migration, invasion

Yao et al. (2016)

miR-106b-5p Upregulated GSK3B, VEGFA, PTK2 PI3K-Akt Lymph node metastasis Yi et al. (2018)

Hematologic
Cancer

miR-3173 Downregulated PTK2 Proliferation, migration,
invasion

Tian et al. (2017)

miR-181a Downregulated Smad7 TGF-β1 Proliferation, apoptosis,
diagnostic sensitivity

Nabhan et al. (2017)

miR-142-3p Downregulated MLL-AF4, HOXA7,
HOXA9, HOXA10

Cell proliferation Dou et al. (2013)

hsa-miR-103a-3p
hsa-miR486-3p

Downregulated HOXA7, S100A10 Cell growth, motility, cell
cycle progression,
differentiation, Poor
outcomes, chemoresistance

Huang et al. (2020)

miR-21 Upregulated PDCD4, PTEN, TPM1 Cell growth, invasion,
angiogenesis, metastasis

Labib et al. (2017)

miR-339-5p Upregulated BCL2L11, Bax, FGFR1 Cell cycle progression,
apoptosis

Hu et al. (2018)

miR-125b miR-17
miR-181b

Upregulated PPP1CA, BTG2, PTEN Proliferation, apoptosis Vafadar et al. (2019)

miR-187-5p Upregulated DKK2 Wnt/β-catenin Proliferation, apoptosis Lou et al. (2016)
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TABLE 2 Effects of miRNAs delivered by mesencymal stem cell-derived exosomes in different cancer types.

Type of
cancer

Source of
MSC

miRNA Target gene/Pathway Effects References

Brain Cancer

Glioma miR-584 CYP2J2, MMP-2, Bcl-2,
Bax exp.

↓ proliferation, invasion, metastasis, ↑ apoptosis Kim et al. (2018)

Bone marrow
(mice)

miR-133b EZH2 exp. Wnt/β-catenin
signaling pathway

↓ proliferation, invasion, migration Xu H. et al. (2019)

Bone marrow
(human)

miR-34a SIRT1 exp. ↑ cellular senescence Li Q. et al. (2019)

Bone marrow
(human)

miR-199a AGAP2 exp. ↓ proliferation, invasion, migration, ↓tumor growth
(in vivo), ↑ chemosensitivity to temozolomide (in
vivo)

Yu et al. (2019)

Glioblastoma
multiforme

Wharton’s jelly
(human)

miR-124 CDK6 exp. ↓ migration, ↑ chemosensitivity to temozolomide Sharif et al. (2018)

Adipose tissue
(human)

miR-4731 ↓ proliferation stimulation of cell cycle arrest,
apoptosis

Allahverdi et al.
(2020)

Bone marrow
(human)

miR-512-5p JAG1 exp. Notch signaling
pathway

↓ proliferation stimulation of cell cycle arrest, ↓
tumor growth (in vivo) prolongation of survival (in
vivo)

Yan et al. (2021)

Bone marrow
(human)

miR-30c IL-6 exp ↓ migration, invasion, ↑ apoptosis Mahjoor et al. (2021)

Neuroblastoma Adipose tissue
(human)

miR-124 ↓ proliferation, ↑ apoptosis stimulate neuronal
differentiation

Sharif et al. (2021)

Head and Neck Cancer

Oral cancer Bone marrow
(human)

miR-101-3p COL10A1 exp. ↓ proliferation, invasion, migration, ↓tumor growth
(in vivo)

Xie et al. (2019)

Oral leukoplakia Bone marrow
(mice)

miR-185 Akt, caspase-3 and 9 exp. ↓severity of inflammation (in vivo), ↓number of
dysplasia in the OPMD tissue (in vivo), ↑ apoptosis

Wang L. et al. (2019)

Thyroid cancer Umbilical cord
(human)

miR-30c-5p PELI1, Ki-67, MMP-2 exp.,
PI3K-AKT signaling pathway

↓ proliferation, migration, ↓tumor growth (in vivo) Zheng et al. (2022)

Breast Cancer

Bone marrow
(mice)

LNA-
antimiR-
142-3p

miR-150, APC, P2X7R
exp. Wnt signaling pathway

Penetration to the tumor site (in vivo), ↓ reduction of
clone-formation, tumor-initiating abilitiy

Naseri et al. (2018),
Naseri et al. (2020)

Umbilical cord
(human)

miR-148b-3p TRIM59 exp. suppressive effect on the progression, antitumor
effect (in vivo)

Yuan et al. (2019)

Adipose tissue
(human)

miR-145 ROCK1, MMP9, ERBB2,
TP53 exp.

↓ metastasis, ↑ apoptosis Sheykhhasan et al.
(2021)

Umbilical cord
(human)

miR-3182 mTOR, S6KB1 exp. ↓ proliferation, migration, ↑ apoptosis Khazaei-Poul et al.
(2021)

Adipose tissue miR-381 Wnt signaling pathway ↓ proliferation, migration, invasion, ↓ epithelial
mesenchymal transition, ↑ apoptosis

Shojaei et al. (2021)

Gastrointestinal Cancer

Esophageal
squamous cell
carcinoma

Umbilical cord
(human)

miR-375 ENAH ↓ proliferation, migration, invasion, tumorsphere
formation, ↑ apoptosis, ↓tumor growth (in vivo)

He et al. (2020)

Gastric cancer Umbilical cord
(human)

miR-6785-5p INHBA exp ↓ angiogenesis, metastasis Chen et al. (2021)

Pancreatic ductal
adenocarcinoma

Umbilical cord
(human)

miR-145-5p Smad 3 exp ↓ proliferation, invasion, ↑ apoptosis, cell cycle
arrest, ↓ tumor growth (in vivo)

Ding Y. et al. (2019)

Liver cancer Adipose tissue
(human)

miR-122 Genes involved in drug
resistance or sensitivity

↑ susceptibility to chemotherapeutic drugs, ↑
anticancer activity of sorafenib (in vivo)

Lou et al. (2015)

Adipose tissue
(human)

miR-199a mTOR signaling pathway ↑ sensitivity to doxorubicin Lou et al. (2020)

Genitourinary Cancer

Prostate cancer Bone marrow
(human)

miR-205 RHPN2 exp ↓ proliferation, invasion, metastasis, ↑ apoptosis Jiang et al. (2019)

(Continued on following page)
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Additionally, it raises safety issues, which makes it unsuitable for

clinical uses (Ohno et al., 2013).

The effect of miRNAs carried by MSC-derived exosomes in

tumor treatment is contradictory, with some research claiming

that they can stimulate tumor growth and others claiming that

they can repress tumor growth. In osteosarcoma, miR-208a in

MSC-derived exosomes increased tumor growth by

downregulating programmed cell death and activating the

ERK1/2 pathway (Qin et al., 2020). Furthermore, MSC-

exosome-derived miR-142-3p and miR-146a have been shown

to stimulate tumor growth via many mechanisms (De Veirman

et al., 2016; Li and Li, 2018). Similarly, miR-146a can enhance the

progression of multiple myeloma, validating this concept (De

Veirman et al., 2016).

On the other hand, anti-tumor effects of miRNA carrying

MSC-derived exosomes have been shown by different groups

(Kang et al., 2015; Renjie and Haiqian, 2015; Gopalan et al.,

2018). In prostate cancer, human bone marrow MSC-derived

exosomal miR-143 has been shown to inhibit cell proliferation,

invasion, metastasis, and tumor growth (Che et al., 2019). miR-

23b in MSC-derived exosomes can prevent tumor development,

keep tumors dormant, improve patient’s life quality, and

lengthen survival time (Ono et al., 2014). In hepatocellular

carcinoma, MSC-derived exosomes transfected with miR-122

can improve drug sensitivity (Lou et al., 2015). miR-34c in

MSC has been proven to improve tumor sensitivity to

radiotherapy in addition to enhancing chemical sensitivity

(Wan et al., 2020). This shows that MSC-exosomes can be

used in combination with conventional cancer treatments

such as chemotherapy and radiotherapy.

miRNAs in MSC-derived exosomes have received a great

deal of interest recently, and they are being studied largely for

tumor inhibition. These studies differ from each other in terms of

the cancer type of interest, selected MSC subtype, the way of

miRNAs is transferred to MSCs, preferred miRNA and target

genes according to the cancer type. The general approach in

studies is to first detect and confirmmiRNA and target genes that

negatively regulate each other in bioinformatic studies or

healthy/patient samples, and then detect alteration in the

proliferation, apoptosis, migration and invasion capacities of

TABLE 2 (Continued) Effects of miRNAs delivered by mesencymal stem cell-derived exosomes in different cancer types.

Type of
cancer

Source of
MSC

miRNA Target gene/Pathway Effects References

Bladder cancer Umbilical cord
(human)

miR-139-5p PRC1 ↓ development of bladder cancer Jia et al. (2021)

Gynecologic Cancer

Endometrial cancer Umbilical cord
(human)

miR-302a cyclin D1 exp. AKT signaling
pathway

↓ proliferation, migration Li X. et al. (2019)

miR-499a-5p VAV3 exp ↓ proliferation, endothelial cell tube formation, ↓
tumor growth and angiogenesis (in vivo)

Jing et al. (2020)

Cervical cancer Bone marrow
(human)

miR-144-3p CEP55 exp ↓ proliferation, migration, invasion, ↑ apoptosis Meng et al. (2021)

Ovarian cancer Bone marrow
(mice)

miR-424 MYB, VEGF, VEGFR exp. ↓ proliferation, migration, invasion of ovarian cancer
cells, ↓ proliferation, migration, invasion, tube
formation of human umbilical vein endothelial cells,
↓ tumorigenesis, angiogenesis (in vivo)

Li P. et al. (2021)

Hematologic Cancer

Acute myeloid
leukemia

Bone marrow
(human)

miR-222-3p IRF2 exp. IRF2/INPP4B
signaling pathway

↓ proliferation, ↑ apoptosis Zhang et al. (2020)

Bone marrow
(human)

miR-26a-5p GSK3 exp. Wnt/β-catenin
signaling pathway

promoting effect on AML progression Ji et al. (2021)

Other cancer types

Bone cancer Bone marrow
(human)

miR-143, ↓ proliferation, migration, Shimbo et al. (2014),

Bone marrow
(mice)

miR-9-5p REST, cytokine, MOR exp. alleviation of bone cancer pain by modulating
neuroinflammation in the central nervous system

Zhu et al. (2020)

Lung cancer Bone marrow miR-328-3p NF2 exp. Hippo signaling
pathway

promote formation and progression of cancer Liu et al. (2021)

Umbilical cord
(human)

miR-320a SOX4 exp. SOX4/Wnt/β-
catenin axis

Antitumor effect Xie and Wang, (2021)
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cancer cells after administration in vitro and in vivo. The general

conclusion reached is that miRNA transfer with MSC-derived

exosomes has positive effects. However, it is emphasized that

such studies are at a preclinical stage, the data on the mechanism

of action are still insufficient, and therefore studies should

continue in order to reveal the mechanisms. We summarized

the studies on the use of MSC-derived exosomes as vehicles for

the delivery and restoration of miRNAs in Table 2, with the goal

of developing an effective therapeutic strategy for various

malignancies.

Conclusion

While significant progress has been made in the fight against

cancer, it remains a leading cause of mortality in the twenty-first

century, necessitating a greater understanding of the biology of

cancer cells and their environment in order to create novel

therapeutic options. Over the last three decades, researchers

and clinicians have mostly concentrated on identifying cancer-

specific targets and developing targeted medicines that can

effectively destroy cancer cells while sparing their normal

counterparts, decreasing undesired side effects. A variety of

intriguing and very effective small compounds targeting

cancer-specific mutations and/or altered signal transduction

pathways that control cancer cell proliferation and survival

have been developed as a result of this global endeavor.

MSC-derived exosomes have been identified as significant

mediators in the therapeutic benefits of MSCs. MSC-derived

exosomes can promote or inhibit tumor growth, but engineered

MSC-derived exosomes are implicated in the suppression of

cancer formation and progression by the delivery of

numerous therapeutic compounds, including miRNAs.

Dysregulation of miRNAs is thought to be involved in the

initiation and progression of tumors. Furthermore, promising

results show that restoring these regulatory miRNAs can be used

as a therapeutic method in cancer treatment. Replacement of

these molecules can contribute to the inhibition of cell

proliferation, invasion, migration, and metastasis, along with

increased sensitivity to chemotherapeutic drugs and activation

of apoptosis through direct control of their target genes.

To summarize, recent findings have confirmed the capacity

of MSC-derived exosomes to transport therapeutic miRNAs in a

variety of malignancies, indicating that this approach is novel and

extremely promising in the treatment of cancer. Despite the fact

that MSCs have been shown to have anticancer properties, there

have also been some conflicting claims about their roles in tumor

growth. Hence, their potential in tumor progression should also

be considered.
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