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Postoperative intravesical instillation of chemotherapy is a routine procedure

for non-muscular invasive bladder cancer (NMIBC). However, traditional

bladder perfusion methods have insufficient exposure time, resulting in

unsatisfactory therapeutic effects. In the present study, a chitosan (CS)-

based in situ forming depot (ISFD) delivery system, including Fe3O4 magnetic

nanoparticles (Fe3O4-MNP), CS, and β-glycerophosphate (GP) as main

components, was synthesized. Pirarubicin (THP), as a chemotherapeutic

drug, was loaded into the new system. Results showed that our carrier

system (Fe3O4-THP-CS/GP) was converted into gel and attached to the

bladder wall, possessing loose network structures with magnetic targeting

and sustained release properties. Moreover, its retention time in bladder was

more than 72 h accompanied by a suitable expansion rate and good

degradation characteristics. The antitumor activities of Fe3O4-THP-CS/GP

were more effective both in vitro and in vivo than the free THP solution. In

the study of its mechanism, results showed that Fe3O4-THP-CS/GP suppressed

the expression of occludin (OCLN) and affected tight junctions (TJ) between

urothelial cells to promote THP absorption.
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1 Introduction

Bladder cancer is one of the most common tumors in the

urinary system. A total of 549,393 new cases and 199,922 deaths

occurred in 2018 worldwide (Bray et al., 2018). NMIBC defined

as the tumor confined to the mucosa and lamina propria of the

mucosa accounts for about 80% of bladder cancers. Statistically,

50–70% of patients with NMIBC who undergo transurethral

resection (TUR) surgery relapse within 5 years, among whom

20–30% will progress to a higher stage or develop metastases

(Lehmann et al., 2006; Black et al., 2007).

Postoperative intravesical instillation of chemotherapy is a

routine treatment for NMIBC to prevent recurrences. However,

the recurrence rate will be reduced by only 14–17% by adding

bladder instillation, without the inhibitory effect on tumor

progression (Patel et al., 2015). Several limitations to

traditional bladder perfusion should be noted. The

blood–urine barrier, formed by the urothelium, can prevent

the unregulated flow of toxins, ions, and water between urine

and blood. Therefore, it is of fundamental importance for bladder

function and metabolic homeostasis. But on the other hand, the

blood–urine barrier seriously hindered the absorption of drugs

and reduced the effect of bladder instillation (Kreft et al., 2010).

Moreover, periodic urination led to insufficient exposure time

(Parekh et al., 2006). Repeated instillations and increasing drug

concentration will bring urethral injury, hematuria, and lower

urinary tract symptoms to patients.

A variety of biomaterials even inorganic nanomaterials have

been widely used in research to improve tumor therapy (Wang

et al., 2020a; Wang et al., 2021; Xzab et al., 2021). We have been

committed to ISFD to improve the efficacy of bladder instillation.

ISFD is defined as a liquid formulation that, after entering the

body, can be converted in situ to a solid or semisolid precipitated

storehouse. The members of ISFD, bearing the characteristics of

sustained release, can improve drug bioavailability and patients’

compliance. For instance, hydrogels prepared with lignin and

graphene oxide have the ability to absorb impurities (Qian et al.,

2020). Nanoparticle-loaded hydrogel had the ability to slow-

release insulin and improve the pharmacological availability to

279.85% (Peng et al., 2013). In addition, the release rate of

topotecan hydrochloride liposomes incorporated into the

thermo-sensitive hydrogel was found to be slowed down

(Xing et al., 2014).

We have tried to use a magnetic multiwalled carbon

nanotube system to extend the duration of chemotherapeutic

drugs in intravesical instillation by enhancing cytotoxicity and

inhibiting cell proliferation (Suo et al., 2019). Moreover, we

found the magnetic thermosensitive chitosan/β-
glycerophosphate (CS/GP) hydrogel as a feasible matrix for

drug delivery, which permitted an intravesical continuous

release of the drug over 48 h, resulting in enhancing the

antitumor efficacy (Zhang et al., 2014; Sun et al., 2016). CS is

a suitable component of ISFD due to its good biocompatibility

and non-toxicity (Madni et al., 2021). CS itself had no

detrimental effect on urothelial cancer cells. One of the

possible mechanisms of this delivery system for enhancing

therapeutic effects was that CS increased the permeability of

the urothelial layer, broke TJ, and reduced transepithelial

resistance. More importantly, CS enabled the complete

recovery of the permeability barrier after 24 h (Višnjar et al.,

2017). This phenomenon was also observed in intestinal

epithelial cells, leading to increased drug absorption

(Rosenthal et al., 2012). CLDN4 protein, a transmembrane

protein associated with TJ, might be one underlying effector

regulated by CS (Yeh et al., 2011).

In the present study, a CS-based ISFD delivery system,

including Fe3O4-MNP, CS, and GP as main components, was

synthesized to examine its targeting and sustained release

capability. Meanwhile, antitumor efficacies in vivo and in vitro

and underlying mechanisms of this system loaded with the

chemotherapeutic agents were also explored.

2 Results

2.1 Characterization of Fe3O4-THP-CS/GP

Fe3O4-THP-CS/GP prepared in the present study showed its

transformation ability from liquid to gel in 3.5 min (Figure 1A),

which was important for bladder perfusion. Moreover, it had

good magnetic targeting performance, allowing quick adherence

to the target within 1 s (Figure 1B). In the dissolution experiment,

the medium color of THP-CS/GP and Fe3O4-THP-CS/GP

gradually displayed orange even after several changes in the

dissolution medium within 24 h (Figure 1C). The release of

THP from the drug delivery system was slow, with a weaker

burst peak (Figure 1D, 170.81 ± 1.78 μg/ml vs 243.32 ± 3.61 μg/

ml) and a longer release time (Figure 1E, approximately 12 vs 2 h)

compared with the free THP solution, indicating the sustained

release of THP from the delivery system.

The main characteristic of the CS/GP gel under a scanning

electron microscope (SEM) was porous and smooth, while the

outer surface of the Fe3O4-THP-CS/GP gel was rough and

granular due to THP and Fe3O4-MNP stuck to or embedded

in the gel matrix (Figure 2). Hematoxylin-eosin (HE) staining

showed Fe3O4-THP-CS/GP as a mesh network in freezing

conditions, with Fe3O4-MNP and THP particles embedded in

a matrix.

2.2 Swelling and degradation
characteristics of Fe3O4-THP-CS/GP

The swelling data are shown in Figure 3A. CS/GP and Fe3O4-

THP-CS/GP gels swelled fast and reached the equilibrium

swelling after 1 h incubation in PBS, with a swelling ratio of
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FIGURE 1
Appearance and characteristics of Fe3O4-THP-CS/GP. (A) Liquid gel changes into a solid and stably sticks to the wall of the container.
CS/GP gel is milky white, orange with THP, and black with Fe3O4-MNP. (B)When the external magnetic field was applied, the Fe3O4-THP-CS/
GP gel at the bottom of the container was quickly adsorbed to the sidewall, demonstrating the gel’s good magnetic targeting performance.
(C) Color of the medium containing THP-CS/GP and Fe3O4-THP-CS/GP gradually changed to orange in 2 h (the color of THP solution is
orange), which showed sustained release performance of the gel. (D)Drug concentration curve in themedium of Fe3O4-THP-CS/GP and free
THP solution. (E) Cumulative release rate curve of Fe3O4-THP-CS/GP and free THP solution.

FIGURE 2
Microstructure of CS/GP and Fe3O4-THP-CS/GP. (A,B)Microstructure of the CS/GP gel by SEM. (C,D)Microstructure of the Fe3O4-THP-CS/GP
gel obtained by SEM. The THP granules were indicated by black arrows. (E,F) Microstructure of the Fe3O4-THP-CS/GP gel obtained by HE staining.
The THP and Fe3O4-MNP granules weremarked by white and black arrows, respectively. (G,H) Transmission electronmicroscopic images of Fe3O4-
MNP at different magnifications.
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211.50% ± 15.00% vs. 182.50% ± 8.10% (p < 0.05). The difference

was statistically significant.

The CS/GP and Fe3O4-THP-CS/GP gels showed similar

degradation curves in the same degradation medium (Figure 3B).

With the different media, Fe3O4-THP-CS/GP in PBS degraded

slowly with only 25.13% ± 1.94% after 10 days. But its

degradation rate in enzyme solution is up to 86.65% ± 3.21%.

There was a significant statistical difference between the two

degradation rates (p < 0.0001). The CS/GP gel had the same result.

2.3 Antitumor activity in vitro

No significant differences in CCK-8 values among the

control group, magnetic field group, and magnetic field +

Fe3O4-CS/GP group were observed (the data are shown in

Table 1) in three groups of different concentrations of THP

treatment (Figure 4). CCK-8 values were dramatically

suppressed by adding THP (200 μg/ml) both in the magnetic

field + THP group and magnetic field + Fe3O4-THP-CS/GP

group but without significant difference (0.021 ± 0.0036 vs.

0.023 ± 0.0023; p > 0.9999). However, CCK-8 values were

significantly lower in the magnetic field + Fe3O4-THP-CS/

GP group than the magnetic field + THP group whether

THP was 100 μg/ml (0.272 ± 0.01 vs 0.061 ± 0.016; p <
0.0001) or 50 μg/ml (1.603 ± 0.049 vs 0.381 ± 0.034; p < 0.0001).

2.4 Retention characteristic of Fe3O4-
THP-CS/GP in the bladder

Fe3O4-THP-CS/GP solution was immediately converted to

gel and stuck to the bladder wall after perfusion for 2 h (Figure 5).

The mass of the gel degraded gradually with the extension of

observation time. Magnetic gel and THP particles were still

observed after bladder perfusion for 72 h.

2.5 Antitumor ability in vivo

Representative bladder tumors are shown in Figure 6A. The

tumors in rats that received PBS and Fe3O4-CS/GP were larger with

wider bases and obvious infiltrative growth. Tumor volumes in rats

that received THP and Fe3O4-THP-CS/GP were smaller than the

other rats. Moreover, significantly smaller tumors were observed in

the Fe3O4-THP-CS/GP group than in the THP group (Figure 6B,

2.125 ± 1.976 mm3 vs 6.863 ± 3.716mm3; p< 0.05). The survival rate

is a decisive parameter to evaluate the antitumor efficacy in animal

experiments. Kaplan–Meier analysis showed that the Fe3O4-THP-

CS/GP treatment group had the highest survival rate and the longest

survival time (Figure 6C, p < 0.05).

FIGURE 3
Line chart of swelling and the degradation rate of different gels. (A) CS/GP and Fe3O4-THP-CS/GP gel had good swelling properties, and the
swelling equilibrium was reached in about 1 h (211.50% ± 15.00% vs. 182.50% ± 8.10%; p < 0.05), but the swelling property of Fe3O4-THP-CS/GP
was significantly lower than that of CS/GP. (B)Degradation of CS/GP and Fe3O4-THP-CS/GP gels in pure PBS was slow, and the degradation rate
was less than 30% in 10 days. After lysozyme was added, the degradation rate of the two was significantly accelerated. The degradation rate
of different solvents was significantly different on the 10th day (23.30% ± 3.08% vs. 87.17% ± 2.55%, p < 0.0001 for CS/GP; 25.13% ± 1.94% vs.
86.65% ± 3.21%, p < 0.0001 for Fe3O4-THP-CS/GP).

TABLE 1 p values of the cell activity among the first three groups of
different THP concentrations (1: control group; 2: magnetic field
group; and 3: magnetic field + Fe3O4-CS/GP group).

Concentration 1v2 1v3 2v3

THP 200 μg/ml p > 0.9999 p > 0.9999 p > 0.9999

THP 100 μg/ml p = 0.0689 p = 0.1682 p = 0.9733

THP 50 μg/ml p = 0.9998 p = 0.2818 p = 0.3494
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2.6 Mechanism of CS-mediated TJ
opening

As can be seen in Figure 7Aa, b, before CS treatment, the

adjacent bladder tumor cells were closely connected with each

other under a transmission electron microscope (TEM). TJ

between two cells appeared as two closed parallel lines

without space between them. After CS treatment, the

intercellular space was looser and wider than before

(Figure 7Ac, d), losing the intact structures.

FIGURE 4
CCK-8 values were examined to determine of the antitumor activity of Fe3O4-THP-CS/GP in vitro with different THP concentrations (A)
200 µg/ml (B) 100 µg/ml (C) 50 µg/ml (p < 0.0001).

FIGURE 5
Retention of the Fe3O4-THP-CS/GP gel on the bladder wall at different time points. The black and white arrows marked Fe3O4-MNP and THP
granules, respectively.
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Six common TJ-related genes were analyzed, namely, OCLN,

ZO-1, JAMA, CLDN1, CLDN2, and CLDN4. There were no

significant changes in the transcription level of these genes after

CS treatment in bladder tumor cells (Figure 7B, Supplementary Table

S1, p > 0.05). According toWestern blot analysis, the expression level

of OCLN protein was significantly decreased after CS treatment (p <
0.05), but the expression levels of the other TJ proteins did not change

significantly (Figure 7B, Supplementary Figure S1A).

Western blot results showed the expressions of the pigment

epithelium-derived factor (PEDF) in T24 cells were significantly

upregulated by adding CS (p < 0.05), but the expression of VEGF

did not change significantly (Figure 7C, Supplementary Figure S1B,

p > 0.05). The expressions of OCLN protein were significantly

decreased by adding CS (p < 0.001) or exogenous recombinant

PEDF (rPEDF) (Figure 7C, Supplementary Figure S1C, p < 0.01).

Moreover, immunofluorescence staining showed the fluorescence

intensities of OCLN in the bladder tumor cells were significantly

reduced after being treated with rPEDF (Figure 7D).

3 Discussion

CS/GP hydrogels are composed of three-dimensional

polymer networks with numerous hydrophilic cavities. They

are pliable, viscoelastic, and compatible with most living

tissues, making no damage to surrounding tissues when

implanted into the host (Bhattarai et al., 2010). Hence, CS/GP

hydrogels are ideal candidates for biomedical applications, such

as tissue repair and drug delivery. We previously found that the

deacetylation degree of CS affected gel transformation time,

while the molecular weight of CS and loaded drugs had no

such effect (Sun et al., 2016).

In the present study, the significant difference in the swelling

rate between CS/GP and Fe3O4-THP-CS/GP is mainly due to the

partial space occupied by Fe3O4-MNP and THP. But this does

not affect Fe3O4-THP-CS/GP possessing good swelling

performance. The CS/GP and Fe3O4-THP-CS/GP showed

similar degradation curves, implying that neither Fe3O4-MNP

nor THP affected the degradation property. Moreover, the

Fe3O4-THP-CS/GP gel degraded slowly and lasted more than

10 days in the enzyme solution. Different from the results

in vitro, the retention study demonstrated that degradation

was significantly faster in vivo. The main reason is a variety of

enzymes contained in the urine. Second, the washing effect of

urine will also accelerate the disintegration of the gel. In general,

the degradation ratio of Fe3O4-THP-CS/GP in the harsh

environment of the bladder was excellent. The holes and

space were smaller in Fe3O4-THP-CS/GP, reflecting the

FIGURE 6
In vivo antitumor activity. (A) Representative images of bladder tumors in each treatment group. Relatively large bladder tumors are shown in
groups treated with PBS and Fe3O4-CS/GP. Small tumors are observed in the group treated with free THP solution. The smallest tumors without
progression are found in the group treated with Fe3O4-THP-CS/GP. (B) Summary of the tumor volume per tumor data. (C) Survival rates of the
different groups upon tumor induction, p < 0.05. The white arrows indicate the tumors (p < 0.05).
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embedding of THP and Fe3O4-MNP in the gels. Moreover, the

fast swelling and easy irrigation characteristics of our system

indicated good liquid absorption and sustained release of THP.

On the other hand, the swelling ratio of Fe3O4-THP-CS/GP

could be adjusted by regulating the amounts of THP and

Fe3O4-MNP.

In the traditional bladder perfusion therapy, the drug burst

release demonstrated an intense one-time pattern. Some patients

FIGURE 7
Changes in the TJ structure and related protein expression after CS treatment. (A) a, b after PBS treatment, the two cells remained closely
attached, and the TJ structure was intact; c, d after CS induction, gaps appeared between adjacent cells, and TJ was opened. (B) Changes in TJ-
related genes at transcription and translation levels after CS treatment. (C) After CS treatment, the PEDF expression increased, while the VEGF
expression did not change significantly. After CS or rPEDF treatment, theOCLN expression was significantly reduced. (D) Fluorescence intensity
of OCLN decreased obviously after being treated with rPEDF.
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cannot bear bladder irritation and thus urinate early, leading to

unsatisfactory therapeutic effects (Chen et al., 2019), while the

release of THP from Fe3O4-THP-CS/GP gel was gentle, with a

weaker initial burst and release for a longer time even after

several times of micturition. THP was embedded or attached to

the gel matrix, and it could only be released after the solvent

penetration or after the gel gradually degraded. In addition, the

interactions between drug and matrix molecules also contributed

to the sustained release. THP and CS both contain amino groups

that form hydrogen bonds (Teodori et al., 2019), which enhance

the mutual attraction and promote sustained release. Chemical

modifications can further optimize this effect. For instance, a

mixture of biodegradable nanoparticles and CS/β-
glycerophosphate gel showed an enhanced ability to deliver

and release insulin slowly (Peng et al., 2013), by which only

19.11% of total insulin was released within 31 days. However,

most formulations and chemically modified CS-based gel carriers

were prepared using organic solvents and chemical crosslinkers.

Clinical applications were restricted by their toxicities and

complex preparations (Rizeq et al., 2019; Cao et al., 2022). In

our research, Fe3O4-THP-CS/GP had the advantages of simple

preparation, low cost, and non-toxicity to achieve the goals of

sustained release.

No significant differences in CCK-8 values among the

control group, magnetic field group, and magnetic field +

Fe3O4-CS/GP group (Figure 4) was observed, prompting that

Fe3O4-CS/GP and magnets had made no difference in the drug

action of THP.With the decrease in the THP dose, the antitumor

effect of the magnetic field + Fe3O4-THP-CS/GP group was

significantly stronger than that of the free THP group. This

indicates that the prolonged exposure time and sustained-release

properties of Fe3O4-THP-CS/GP can enhance the antitumor

activity of THP. From the microscopic structure of the Fe3O4-

THP-CS/GP gel, the porous and loose structure provided a

channel for medium penetration, allowing the drug to dissolve

and release slowly.

The amino group of CS is positively charged, that is, it

exhibits cationic properties. The negatively charged

(anionic) acidic groups in the mucosa attract the CS

through ion interaction to achieve adhesion (Grabovac

et al., 2005). The interactions between CS and mucosa

were improved by increasing the temperature,

deacetylation degree of CS, and keeping the medium

pH value between the isoelectric point (2.6) of mucin and

the ionic dissociation constant (6.5) in CS (Lang et al., 2020).

In the present study, normal body temperature, pH of urine,

and 95% deacetylation of CS were in proper conditions to

achieve a better adhesion effect.

As narrated earlier, prolonged gel retention time was one of

the reasons for better antitumor effects. Another reason that

should be considered is that CS could increase drug absorption

by affecting TJ. TJ, the main structure of the blood–urine barrier

of bladder, effectively prevents the metabolic wastes and toxic

substances in the urine from being reabsorbed through the

urothelium (Lewis, 2000; Ma et al., 2018). Moreover, with the

increase in tissue depth, the drug content decreased by about 50%

every 500 μm (Wientjes et al., 1993). The drug content in the

urothelium and lamina propria was about 2.8% of that in the

bladder lumen. Therefore, normal TJ can prevent THP

absorption in traditional bladder perfusion. CS was found not

only to remove the glycosaminoglycan layer on the mucosal

surface of bladder but also to open the TJ to promote the

absorption of moxifloxacin (Kerec et al., 2005). Another

report showed CS promoted the transport of alginic acid and

polyglucuronic acid by reversibly opening TJ (Wang et al.,

2020b). This conclusion was also verified by the result in the

present study, which was the opening of the TJ structure after CS

treatment. Moreover, OCLN, one of TJ-related proteins, was

detected to express less in the present study. Although

ubiquitination and degradation of OCLN induced by VEGF

can reduce the functions of TJ (Murakami et al., 2009; Li

et al., 2019), its regulatory effect on TJ and cell permeability

remains to be elucidated. However, it was found in our study that

the VEGF expression did not change after CS treatment.

Therefore, we hypothesized that CS might induce OCLN

degradation through other pathways.

PEDF, an endogenously secreted glycoprotein, is the most

powerful angiogenesis inhibitor discovered at present, which

can inhibit angiogenesis by inhibiting VEGF. Hence, a higher

expression of PEDF was associated with less metastasis and

better prognosis in patients with tumors (Rivera-Perez et al.,

2018). In the present study, PEDF was significantly

upregulated by adding CS, inducing the suppression of

OCLN. How PEDF regulates OCLN remains unclear. p38/

MAPK, the downstream pathway of PEDF in the process of

cancer cachexia, can upregulate a variety of E3 ubiquitin

ligases in tumor cells, leading to ubiquitination and

degradation of proteins (Zhang et al., 2011; Quan-Jun

et al., 2017; Mulder et al., 2020). In addition,

polychlorinated biphenyls can promote Itch expression by

activating the p38/MAPK pathway (Jia et al., 2017).

Interestingly, Itch was an E3 ubiquitin ligase that induced

ubiquitination degradation of OCLN (Konson et al., 2018),

which needs further research for confirmation.

4 Materials and methods

4.1 Materials

CS powder (419419; >75% deacetylation, Mw 310–375 kDa,

viscosity 800–2000 cP) was purchased from Sigma-Aldrich (St.

Louis, MO, United States ). THP (IP1500) was purchased from

Solarbio Life Sciences Co., LTD. (Beijing, China). Analytical-

grade GP (G9422) was acquired from Sigma-Aldrich (St. Louis,

MO, United States ). Fe3O4-MNP (N106282027275; >99.5%
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purity, 50 nm) was obtained from Changsha Jingkang Co., LTD.

(Hubei, China). The exogenous recombinant PEDF (SRP4988)

was purchased from Thermo Fisher Technology Co., LTD.

(Shanghai, China). Anti-β-actin (ab8227), anti-VEGF

(ab32152), anti-PEDF (ab14993), anti-OCLN (ab216327), anti-

ZO-1 (ab276131), anti-JAMA (ab52647), anti-CLDN1

(ab211737), anti-CLDN2 (ab53032), and anti-CLDN4

(ab210796) antibodies were obtained from Abcam (Shanghai)

Trading Co., LTD. (Shanghai, China). N-butyl-N-(4-

hydroxybutyl) nitrous amide (BBN) (B8601) was acquired

from Sigma-Aldrich (St. Louis, MO, United States ).

Superscript III reverse transcriptase (18080044) was purchased

from Invitrogen Co., LTD. (Carlsbad, CA, United States ). The

chemiluminescent HRP substrate (P90719) was acquired from

Millipore Corporation (Billerica, MA, United States ). Secondary

antibodies Alexa Fluor 594 goat anti-rabbit (B40925), TRI

reagents (AM9738), and DAPI (D3571) were purchased from

Thermo Fisher Technology Co., LTD. (Shanghai, China). All

other chemicals and reagents used in this study were of analytical

grade.

Seventy-six 8-week-old female Wistar rats were maintained

in a temperature and humidity-controlled room on 12-h light/

dark cycles. All rats had free access to water and food. All animal

care, treatments, and procedures in this study were approved by

the Experimental Animal Ethics Committee of Provincial

Hospital affiliated to Shandong First Medical University (No.

2020–171), and animal care followed National Institutes of

Health criteria for the care and use of laboratory animals in

research.

4.2 Preparation and basic characteristics
of the Fe3O4-THP-CS/GP system

4.2.1 Preparation of the Fe3O4-THP-CS/GP gel
CS/GP solution was prepared according to the previous

method (Zhang et al., 2013). Briefly, the CS powder was

dissolved in 0.1 M hydrochloric acid and then stirred

magnetically at room temperature for 2 h. GP powder was

dissolved in distilled water. Both solutions were cooled in an

ice bath for 10 min. The GP and CS were then mixed under

magnetic agitation at 4°C to form a clear and uniform solution.

Fe3O4-MNP (W/V: 0.3%) and THP powder (W/V: 0.1%, unless

otherwise specified) were successively added to CS/GP mixture

under stirring and then dispersed by ultrasound.

4.2.2 Sustained-release characteristics of Fe3O4-
THP-CS/GP

The comparisons of the drug release behavior between the

Fe3O4-THP-CS/GP gel system and traditional bladder perfusion

were analyzed by the dialysis method (Peng et al., 2010). The

drug loading gel was placed in a dialysis bag and then placed in a

beaker containing the dissolution medium. The dissolution

medium was changed every 2 h in a 37°C constant

temperature water bath shaker to simulate the urination cycle.

The collected dissolution samples were stored at −80°C after

filtration for batch testing. The concentration of THP was

determined by high-performance liquid chromatography

(HPLC) (Yi et al., 2015). After statistical data, the

concentration–time curve and the total amount of release

were plotted. The peak concentration and release time were

compared with traditional bladder perfusion.

4.2.3 Magnetic targeting characteristics of
Fe3O4-THP-CS/GP

The magnetic targeting ability of the Fe3O4-THP-CS/GP

system was also tested. A clot of the Fe3O4-THP-CS/GP gel

was laid on the bottom of a beaker filled with phosphate buffer

solution. Then, a magnet was placed outside the beaker to

observe the movement of Fe3O4-THP-CS/GP.

4.2.4 Observation of internal structures of the
Fe3O4-THP-CS/GP system

After gelation, CS/GP and Fe3O4-THP-CS/GP were

lyophilized and sprayed with gold to increase the electrical

conductivity. The internal structure of CS/GP and Fe3O4-

THP-CS/GP was observed and analyzed under SEM (Hitachi,

SU-70, Japan) at an acceleration voltage of 3–20 kV. Moreover, a

total of 0.1 ml of the Fe3O4-THP-CS/GP mixture was sectioned

and stained by HE to observe the internal structures under a

digital microscope.

4.3 Examinations of the swelling rate and
degradation rate of Fe3O4-THP-CS/GP

The swelling rate and degradation rate of Fe3O4-THP-CS/GP

were examined by gravimetric analysis.

CS/GP and Fe3O4-THP-CS/GP gels were prepared, freeze-

dried, and weighed. Dry weight (W0) was recorded. The

xerogel was placed in 10 ml PBS at pH 6.0 and heated in

water bath at 37°C. At the time points of 1, 2, 4, 6, 8, 10, 12, and

24 h, the gels were carefully removed, the water attached to the

surface of the gels was gently wiped off with a filter paper, and

the wet weights of the gels were recorded as Wt. The swelling

rate was calculated by the following formula. To generate

statistically relevant data, three independent parallel

experiments were repeated.

Swelling rate � Wt −W0
W0

× 100%.

The degradation rate was tested following similar

protocols. The degradation solution was a pH 6.0 PBS

solution containing 4 mg/ml lysozyme. PBS without

lysozyme was used as control. The xerogel prepared earlier

was placed in the degradation solution in a 37 °C water bath
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shaker (60 rpm). At the set time points of 1, 2, 3, 4, 5, 6, 7, 8, 9,

and 10 days, the gels were carefully removed and washed with

distilled water. After vacuum drying, the dry weight was

recorded as Wd. The degradation rate was calculated by the

following formula. Parallel experiments were repeated three

times.

Degradation rate � W0 −Wd
W0

× 100%.

4.4 Examinations of the antitumor activity
of Fe3O4-THP-CS/GP in vitro

The CCK-8 kit was used for detection. After 96-well plate

inoculation, T24 cells were grouped and given different

treatments: the blank control group without special

treatment; external magnetic field; external magnetic field +

Fe3O4-CS/GP gel; external magnetic field + THP solution

(200, 100, and 50 μg/ml, respectively); and external

magnetic field + Fe3O4-THP-CS/GP gel (the same dose of

THP as mentioned previously). The gel was attracted to the

sidewall using a magnetic field to avoid pressing the cells. The

medium was changed every 2 h to simulate periodic urination.

After treatment for 24 h, a CCK-8 reagent was added to

measure the optical density (OD).

4.5 Retention capacity of Fe3O4-THP-CS/
GP in the bladder

A fresh liquid solution of Fe3O4-THP-CS/GP was

prepared. Self-made 3F catheters were inserted into the

bladders of 27 female Wistar rats. A measure of 0.1 ml of

the Fe3O4-THP-CS/GP solution was infused into each

bladder. The rats were then placed in a cage surrounded

by a magnetic field of 0.4 T. At each time point of 2, 4, 6, 8, 10,

12, 24, 48, and 72 h, three rats were sacrificed. Their bladders

were collected. HE staining was performed to observe the

retention of Fe3O4-THP-CS/GP at different time points after

perfusion.

4.6 Examinations of the antitumor activity
of Fe3O4-THP-CS/GP in vivo

The experimental procedure is shown in Figure 8. Thirty-two

female Wistar rats were randomly divided into four groups. All

rats were fed with normal diets supplemented with 0.05% BBN in

tap water at the tumorigenesis stage for 8 weeks. From the 10th

week, all rats were entered into a bladder perfusion period. The

rats in the first group received PBS instillation, the second group

received Fe3O4-CS/GP instillation, the third group received THP

instillation (THP 0.25 mg), and the fourth group received Fe3O4-

THP-CS/GP instillation (THP 0.25 mg). The volume of the

perfusion solution for each rat was 0.1 ml once a week for

6 weeks. The rats of the second and fourth groups were kept

in an external magnetic field of 0.4 T. All rats were evaluated

periodically. Time of death, hematuria, and weight loss were

recorded. Autopsies were carried out immediately if rats died.

After 20 weeks, all the rats were sacrificed to collect bladders,

ureters, and kidneys. The size and number of tumors in the

bladders of each group were compared. Survival data were

estimated by the Kaplan–Meier method. The Mantel–Cox log-

rank test was used for statistical analysis.

4.7 Examinations of the effect of CS on TJ

4.7.1 Transmission electron microscopy
detection

Urothelial carcinoma-bearing rats prepared earlier were

perfused with CS into the bladder for 1 h. The bladder

mucosal tissues were collected, washed by PBS, fixed in 3.7%

paraformaldehyde, fixed in osmium tetroxide, dehydrated using

gradient alcohol baths (25%, 50%, 75%, and 100%), embedded in

Spurr resin, and polymerized at 70°C. Ultra-thin slices were made

with a diamond knife, stained with toluidine blue, and observed

under an optical microscope. The sections with toluidine blue

staining areas were then loaded onto a TEM grid and examined

using a Philips CM10 electron Optics B.V. apparatus at 120 kV

accelerating voltage. TJ structures between adjacent cells were

identified.

4.7.2 Real-time PCR analysis
Monolayer T24 cells were treated with CS to study the effect

of CS on expressions of TJ genes. Total RNA was isolated using

TRI reagents, according to themanufacturer’s instructions. It was

then reverse transcripted into cDNA using random hexamers

and superscript III reverse transcriptase. The Power SYBR Green

PCR Master Mix was used with the Applied Biosystems

7,500 real-time fluorescent quantitative PCR system. There

were three copies per sample and per gene. The primers used

were as follows (Table 2).

4.7.3 Protein extraction and Western blotting
Total protein was extracted to analyze the effect of CS on TJ

expressions. After CS and exogenous recombinant PEDF treatment,

T24 monolayer cells were gently washed twice with ice PBS and then

covered with lysate buffer for 30 min. After centrifugation at

10,000 rpm for 5 min, the supernatant was collected for

subsequent Western blot analysis. The protein concentration was

calculated by the Bradford method. Equivalent protein samples were

separated on 12% SDS-polyacrylamide gel and then transferred to

nitrocellulose membranes. After blocking in 5% skimmed milk in

Tris buffer brine containing 0.05%Tween-20 (TBST), themembrane
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was incubated overnight in a 4 °C blocking buffer containing a diluted

primary antibody, including anti-OCLN, anti-ZO-1, anti-JAMA,

anti-CLDN1, 2, 4, anti-VEGF, and anti-PEDF. Subsequently, the

membrane was washed three times with TBST and then exposed to

appropriate alkaline phosphatase-coupled secondary antibodies,

followed by observation using a chemiluminescent HRP substrate.

ImageJ software (National Institute of Health, Bethesda, MD,

United States ) was used to perform density analysis for specific

bands.

4.7.4 Immunofluorescence staining
T24 cells grown on culture plates were incubated for

30 min with CS before processing for confocal microscopy.

Cells were rinsed with PBS, fixed with methanol, and

permeabilized with PBS containing 0.5% Triton X-100. The

primary antibody employed was anti-OCLN, and the

secondary antibody that we used was Alexa Fluor 594 goat

anti-rabbit. DAPI was used to stain cell nuclei. Fluorescence

images were obtained with a confocal microscope (LSM

510 meta, Carl Zeiss, Jena, Germany).

4.8 Statistical analyses

All experiments were repeated three times, and the results

are presented as the mean ± standard deviation (SD).

Statistical significance was determined by one-way

ANOVA, Student’s t-test, and Mantel–Cox log-rank test, as

FIGURE 8
Schematic diagram of the in vivo antitumor activity of Fe3O4-THP-CS/GP. (A) Schematic diagram of the clinical application of Fe3O4-THP-CS/
GP. (B) Schematic illustration of the rat terrarium. Amagnet above the terrarium attracts Fe3O4-THP-CS/GP to the bladder wall. (C) Animal treatment
protocol.

TABLE 2 Primers of TJ genes for PCR.

Gene name Abbreviation Positive (5’→39) Reverse (5’→39)

Occludin OCLN ACAAGCGGTTTTATCCAGAGTC GTCATCCACAGGCGAAGTTAAT

Zona occludens 1 ZO-1 TTGGCGAGAAACGCTATG TTGGCAGAAGATTGTGATTG

Junctional adhesion molecule A JAMA AAGGAGACACCACCAGACT AGGCATCACTATCCCATC

Claudin-1 CLDN1 ACAGCATGGTATGGCAATAGAATCG GGGACAGGAACAGCAAAGTAGGG

Claudin-2 CLDN2 GCCTCTGGATGGAATGTGCC GCTACCGCCACTCTGTCTTTG

Claudin-4 CLDN4 AGAGTGGATGGACGGGTTTAGAGG TGAAGCGGGTGAGCAGAG

Glyceraldehyde-3-phosphate dehydrogenase GAPDH GCACAGTCAAGGCCGAGAAT GCCTTCTCCATGGTGGTGAA
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appropriate, using GraphPad Prism 8 (Dotmatics, San Diego,

CA, United States ). A p-value <0.05 was considered

significant, whereas p > 0.05 was considered to be non-

significant.

5 Conclusion

In this study, we prepared a novel drug delivery system by

loading THP with the CS thermosensitive gel. After perfused into

the bladder, the Fe3O4-THP-CS/GP mixture was converted into

the gel and attached to the bladder wall. Due to sustained release

and targeting properties, Fe3O4-THP-CS/GP was proved to

possess better antitumor effects by affecting the TJ function.

This result was achieved by enhancing the PEDF expression and

modification of OCLN after using CS.
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