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Perinatal derivatives or PnDs refer to tissues, cells and secretomes from

perinatal, or birth-associated tissues. In the past 2 decades PnDs have been

highly investigated for their multimodal mechanisms of action that have been

exploited in various disease settings, including in different cancers and

infections. Indeed, there is growing evidence that PnDs possess anticancer

and antimicrobial activities, but an urgent issue that needs to be addressed is the

reproducible evaluation of efficacy, both in vitro and in vivo. Herein we present

themost commonly used functional assays for the assessment of antitumor and

antimicrobial properties of PnDs, and we discuss their advantages and

disadvantages in assessing the functionality. This review is part of a

quadrinomial series on functional assays for the validation of PnDs spanning

biological functions such as immunomodulation, anticancer and antimicrobial,

wound healing, and regeneration.
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1 Introduction

Perinatal derivatives or PnDs (that include tissues and cells

and secretomes from perinatal, or birth-associated tissues), and

especially mesenchymal stromal cells (MSC) from perinatal

tissues, have been mostly exploited for their applications in

regenerative medicine, substantiated by their ability to

modulate immune responses and/or to act in a pro-

regenerative manner by promoting progenitor/stem cell

differentiation (Silini et al., 2017; Silini et al., 2019). What has

been largely unexplored is the applications of PnDs in other

sectors, such as in oncology.

As a matter of fact, PnDs have only recently been investigated

in vitro and in vivo for their potential as antitumor therapies. In

this context, PnDs have been shown to act multimodally through

complex mechanisms of action (MoA), and to target various

hallmarks of cancer that capture essential features of

tumorigenesis, such as sustaining proliferative signaling,

evading growth suppressors, resisting cell death, enabling

replicative immortality, inducing angiogenesis, activating

invasion and metastasis, reprogramming cellular metabolism,

avoiding immune destruction, tumor-promoting inflammation,

genome instability, and deregulating cellular metabolism

(Hanahan and Weinberg 2011). Treatments that shift the

focus to the systemic level and that target the hallmarks of

cancer are urgently needed and highly relevant.

In the context of cancer, PnDs have been reported to play

opposing roles. Herein we will discuss these studies along with

the in vitro and in vivo assays implemented to obtain a clearer

understanding of the potential applications of PnDs as an

antitumor treatment.

In addition to the potential applications of PnDs in oncology,

several PnDs have been shown to possess antimicrobial

properties (King et al., 2007a; Klaffenbach et al., 2011; Ramuta

et al., 2021a), which is highly relevant in the field of oncology. As

a matter of fact, in the last decade, growing evidence has emerged

demonstrating that microbiota and microbial pathogens have

immense effect on cancer development and treatment (Bhatt

et al., 2017; Raza et al., 2019; Jain et al., 2021).While in 15–20% of

cancer cases microbial pathogens drive tumorigenesis, even a

larger part of malignancies is associated with the altered

composition of commensal microbiota (Bhatt et al., 2017).

Furthermore, bacteria are also able to affect the efficacy of

chemotherapeutic drugs, either by inhibiting or enhancing

their effect (Lehouritis et al., 2015; Roy and Trinchieri 2017).

Namely, the microbiota and pathogens may affect the

pharmacokinetics, antitumor activity and drug toxicity of

chemotherapeutic agents by 1) changing the chemical

structure of the drug (biotransformation) (Haiser and

Turnbaugh 2012; Wilson and Nicholson 2017), 2) decreasing

the absorption of certain drugs (Carmody and Turnbaugh 2014),

or even indirectly by 3) affecting the host’s gene expression and

physiology (e.g., of the local mucosal barrier), which results in

altered metabolism of drugs (Björkholm et al., 2009; Selwyn et al.,

2015; Selwyn et al., 2016; Roy and Trinchieri 2017).

Thus, herein both the anticancer and antimicrobial

properties will be discussed alongside one another to provide

a better understanding of the potential applications of PnDs as

therapeutic strategies in these fields. We briefly summarize the

results obtained using PnDs and then focus on the most

frequently used functional assays for analyzing the antitumor

and antimicrobial effects of PnDs in order to potentially provide

insight into the future development of new functional and/or

potency assays.

This review is part of a series of contributions from the COST

Action (CA17116) entitled “International Network for

Translating Research on Perinatal Derivatives into

Therapeutic Approaches-SPRINT”. This Action is broadly

aimed at establishing consensus for different aspects of PnDs

research. The aim of this review is to provide inputs for the

development of functional and potency assays that can be used to

test PnDs before their oncological and antimicrobial application.

2 The effects of perinatal derivatives
on the hallmarks of cancer

In this section we summarize the most frequently used

in vitro and in vivo assays for analyzing the effects of PnDs

on several hallmarks of cancer such as cell proliferation and

metabolism, cell death and apoptosis, cell migration and

invasion, angiogenesis, and metastasis.

2.1 Investigating perinatal derivatives
actions on tumor cell proliferation

One of the most widely analyzed hallmark of tumor cells is

proliferation. Indeed, in vitro PnDs have been shown to mostly

exert antiproliferative effects on tumor cells (Gauthaman et al.,

2012; Magatti et al., 2012; Liu et al., 2013; Hendijani et al., 2015;

Kalamegam et al., 2019; Ramuta et al., 2020a), but it has also been

shown that they may induce tumor cell proliferation (Kim et al.,

2015; Li et al., 2015).

Several assays are used to assess the effect of PnDs on tumor

cell proliferation. The investigation of DNA synthesis analyzes

the effects of PnDs on tumor cell proliferation. Incorporation of

radiolabeled DNA precursor 3H-thymidine (Ayuzawa et al.,
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2009; Magatti et al., 2012; Marleau et al., 2012; Yuan et al., 2013;

Riedel et al., 2019; Ramuta et al., 2020b) into new strands of

chromosomal DNA or more recent analogs, BrdU

(bromoeoxyuridin) (Tian et al., 2010; Gauthaman et al., 2012;

Han et al., 2014; Hendijani et al., 2015) and EdU (5-ethynyl-

2 deoxyuridine) (Wang M et al., 2015; Janev et al., 2021), have

been widely used to assess de novoDNA synthesis. 3H-thymidine

detection requires radioactive labeling followed by detection with

a scintillation beta-counter, while BrdU can be easily detected by

antibodies followed by flow cytometry or by

immunohistochemistry. BrdU is mutagenic and can alter the

cell cycle, thus adequate controls should be implemented. In

contrast to BrdU, the newer analog EdU does not require DNA

denaturation by exposing cells to HCl, heat or DNAse, and its

detection is rapid and highly sensitive. BrdU and EdU are

considered reliable assays for a direct index of proliferation.

Other analyses implemented for the analysis of tumor cell

proliferation are Ki67 cell immunolabelling (Lin et al., 2014;

Riedel et al., 2019), and other assays aimed at investigating genes

or proteins involved in cell cycle progression, such as cyclins

(Magatti, De Munari et al., 2012; Riedel, Pérez-Pérez et al., 2019).

The colony forming unit (CFU) assay analyzes the

consequences of external stress signals on the cell’s ability to

proliferate and form a colony. This assay has been widely used to

test the effect of PnDs (Ayuzawa et al., 2009; Liu et al., 2013;

Ciavarella et al., 2015; Li et al., 2015; Wang M et al., 2015; Wang

W et al., 2015) and is especially useful to assess long-term effects.

This method is however time consuming with extended

incubation times, plus colony formation ability differs between

cells. The traditional assay requires weeks for completion and

usually does not allow cell retrieval; however, this can be

circumvented by the use of fluorescent dyes allowing

quantitative, high throughput colony counting and by the use

of specialized agars that allow cell suspension and growth. The

assay can also be used to predict tumorigenicity in vivo.

In vivo objective assessment of tumor growth is a crucial tool

for the advancement of cancer therapies. In vivo, PnDs have been

shown to both inhibit (Ayuzawa et al., 2009; Wu et al., 2013) and

induce (Yang C. et al., 2014; Wang M et al., 2015; Svitina et al.,

2018) tumor growth. These contradictory results could be due to

several variations, either given by the PnDs used (e.g., tissues,

cells, secretomes, homogenates), by the tumor model (e.g., tumor

cells, rodent model and strain), by the different treatment

regimens (e.g., administration route, dosage), or by the

method used to monitor tumor progression (e.g., caliper

measurements, imaging).

Monitoring tumor progression after PnDs treatment has

been performed through the measurement of tumor diameters

(Du et al., 2014; Ma et al., 2015; Bu et al., 2017; Yuan L et al.,

2019) (or volumes deduced from diameters) or tumor weight, but

also through more sophisticated in vivo optical imaging

techniques (Di et al., 2014; Leng et al., 2014; Ciavarella et al.,

2015; Cafforio et al., 2017; Zhang et al., 2017; Yuan Z et al., 2019;

Chetty et al., 2020), which include fluorescence and

bioluminescence studies. Although traditional caliper

measurement is a simple and low-cost method, its major

disadvantages include variability of tumor size measurements

and tumoral heterogeneity. In contrast, optical imaging is a more

accurate, sensitive and specific technique for tumor imaging,

allowing the detection of microscopic tumors. The main

limitation of optical imaging is the need of tumor cells to

express a reporter gene (Puaux et al., 2011). Cell proliferation

is often used as a measure of tumor response, with

immunohistochemistry being the most widely used in vivo

technique.

2.2 Investigating perinatal derivatives
actions on tumor cell metabolism

Altered cell metabolism is another feature of tumor cells,

and proliferating tumor cells hijack their metabolism to fuel

continuous growth. Cell metabolism is commonly measured

through the reduction of substrates to a final product by

intracellular enzyme activity in living cells can be assessed

by colorimetric assays. The degree of color change is not

directly proportional to the number of viable cells, but

rather to enzyme activity. This method permits only a

moderately robust measurement of viability; however, the

ease of use and potential for high throughput analysis in

multiwell plates has made it very popular. The most

frequently used tetrazolium compound (MTT) is reduced

to formazan (Li et al., 2011; Chao et al., 2012; Gauthaman

et al., 2012; Kang et al., 2012; Liu et al., 2013; Lin et al., 2014;

Niknejad et al., 2014; Rolfo et al., 2014; Bonomi et al., 2015;

Lang et al., 2015; Li et al., 2015; Kamalabadi-Farahani et al.,

2018; Mandal et al., 2019; Riedel et al., 2019). A less toxic

alternative, Cell Counting Kit-8 (CCK-8) (Wu et al., 2013; Yan

et al., 2013; Yang C. et al., 2014; Kim et al., 2015; Di Germanio

et al., 2016), has also been used, with a detection sensitivity

higher than tetrazolium salts such as MTT or MTS(Wang W

et al., 2015). Tumor cell oxidative stress, using superoxide

dismutase, intracellular accumulation of reactive oxygen

species (ROS), glutathione peroxidase, hydrogen peroxide

and lipid peroxidation assays have also been investigated

after PnDs treatment (Lin et al., 2014).

2.3 Investigating perinatal derivatives
actions on tumor cell death and apoptosis

Similar to their effects on tumor cell proliferation PnDs have

been shown to have dual effects on tumor cell death and

apoptosis, by either promoting (Chen et al., 2012; Jiao et al.,

2012; Del Fattore et al., 2015; Kalamegam et al., 2018) or

inhibiting (Niknejad et al., 2014) these processes.
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There are several assays used to assess the effect of PnDs on

tumor cell death. For example, annexin V/PI assay and flow

cytometry are the most popular approaches for detection of

apoptosis in tumor cells after PnDs treatment (Gauthaman

et al., 2012; Wu et al., 2013; Yang X. et al., 2014; Niknejad

et al., 2014; Mamede et al., 2015; Lin et al., 2016; Paris et al., 2016;

Shen et al., 2016; Lin H et al., 2017; Chai et al., 2018; Jiao et al.,

2018; Yuan et al., 2018; Khalil et al., 2019; Rezaei-Tazangi et al.,

2020; Silva et al., 2020). The TUNEL assay (Wu et al., 2013;

Niknejad et al., 2014) detects DNA fragmentation in apoptotic

cells in vitro. After staining, cells can be analyzed by light or

fluorescent microscopy. TUNEL staining is fast, accurate and

sensitive but fails in discriminating the different types of cell

death. The assay can also be used to assess the effect of PnDs on

tumor cell death ex vivo. Detection of apoptosis regulators, such

as caspases (Wu et al., 2013; Yang C. et al., 2014; Niknejad et al.,

2014; Mamede et al., 2015; Lin et al., 2016; Kalamegam et al.,

2018; Mandal et al., 2019; Rezaei-Tazangi et al., 2020),

cytochrome c, Bcl-2, Bax, Fas, FasL, Danger Associated

Molecular Proteins (DAMPs), CRT, Hsp90 and Hsp70, etc.

Can be detected at the protein and/or mRNA level using flow

cytometry, multi-detection plate reader (Mamede et al., 2015),

immunoblot (Dzobo et al., 2016; Shen et al., 2016; Yuan et al.,

2018), immunohistochemistry, immunofluorescence (Dzobo

et al., 2016; Lin H et al., 2017), and RT-PCR (Yang X. et al.,

2014). As further progress is made in understanding the

mechanisms of cell death, more accurate and precise

interpretations of the results of these tests will be possible.

Cell death induced by PnDs in animal models has been

mainly analyzed by in situ detection of apoptosis as mentioned

previously regarding the in vitro assays (Dong et al., 2018;

Kamalabadi-Farahani et al., 2018; Chen et al., 2019; Fan et al.,

2020). An alternative approach is the in vivo imaging of

apoptosis, using radiolabeled forms of annexin V for positron

emission tomography (PET) and single photon emission

computed tomography (SPECT) (Iravani and Hicks 2020).

Mitochondria play a key role in response to cellular stress and

injury. For this reason, the evaluation of mitochondrial

membrane potential (MMP) (Mamede et al., 2015; Lin et al.,

2016) could also be used as the marker of cell death. However, the

interpretation should be carefully and critically performed.

Measurement of mitochondrial activity could not only serve

as an alternative to cell viability assays, but also provide

distinct information on the metabolic state, and therefore the

quality of a cell. For the application of therapeutic cells,

knowledge on the mode of energy production can be

important. Mitochondrial activity can be determined by

quantification of the activity of single complexes such as

complex I by measuring the light absorbance of nicotinamide

adenine dinucleotide (NADH), the electron donor for complex I,

at 340 nm (Nelson and Cox 2004). The downside of this method

is that it does not provide any information on the coupling state

of the electron transfer system, and therefore, also not on the

production level of adenosine triphosphate (ATP). Activity of the

entire electron transfer system can be determined, for example,

with a Clark electrode-based measurement (Hütter et al., 2006).

With this method, the oxygen concentration of a solution is

measured as oxygen is reduced at the cathode. The resulting

current is directly proportional to the oxygen concentration of

the solution (Gnaiger 2008). The advantage of this method is that

distinct respiration states can be determined (Gnaiger 2008). By

addition of specific substrates and inhibitors, total oxygen

consumption (routine respiration) can be distinguished from

oxygen consumption with ATP production (oxidative

phosphorylation) and oxygen consumption without ATP

production (LEAK) (Gnaiger 2008). With this method,

mitochondrial respiration can be measured in tissue, tissue

homogenate, cells and isolated mitochondria. To our

knowledge, there are no studies that have evaluated the effects

of PnD on tumor MMP, however, such measurements have

successfully been performed in human amniotic membrane

tissue (Banerjee et al., 2015; Poženel et al., 2019), isolated

human amniotic membrane epithelial cells (Banerjee et al.,

2018a), and human amniotic membrane derived MSC

(Banerjee et al., 2018a; Banerjee et al., 2018b). In addition to

the mitochondrial respiration assay, mitochondrial status can

also be monitored with the membrane permeable dye JC-1. JC-1

is a fluorescent cationic carbocyanine dye that exhibits potential-

dependent accumulation in mitochondria, forming J-aggregates

and diffuses across mitochondria upon depolarisation to form a

monomeric state (Sivandzade et al., 2019). Currently, to our

knowledge, there is only one study that has investigated the

function of amniotic membrane proteins (AMPs) extracted from

hAM against hypoxia-induced H9c2 cardiomyoblast cells

(Faridvand et al., 2019). AMPs have potent cardioprotective

effects in H9c2 cells by inhibiting the Ca2+ overload and the

mitochondrial membrane potential dysfunction during hypoxia

(Faridvand et al., 2019). Furthermore, there are few studies that

evaluated mitochondrial membrane potential in placental

trophoblast cells from patients with preeclampsia (Zhang

et al., 2022). The anticancer effect of PnDs have not yet been

evaluated with the mitochondrial dye JC-1.

In this section, we presented an overview of the most

common functional assays that have been used for evaluating

the pro-cell death/proapoptotic activity of PnDs. Each assay has

its advantages and an understanding of strengths and limitations

can allow for the selection of the optimal assay based on a specific

need. No matter how appropriate and well accepted the assay is,

it is recommended that a second assay using a different principle

should be used to confirm the detection of cell-death. In the

future, we should also have in mind that intact efferocytosis, i.e.

the clearance of apoptotic cells, can promote cancer disease

(Vaught et al., 2015). It is therefore important that both

processes, apoptosis and efferocytosis are fine-tuned in specific

tumor microenvironments. Hence, the novel functional assays

for analyzing the influence of PnD on efferocytosis-mediated
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regulation of the tumor microenvironment needs to be

developed/used.

2.4 Investigating perinatal derivatives
actions on tumor cell migration and
invasion

PnDs have been reported to both inhibit (Fong et al., 2011;

Gauthaman et al., 2012; Kalamegam et al., 2018; Li et al., 2019)

and induce (Kim et al., 2015; Li et al., 2015) tumor cell migration.

The spread of neoplastic disease has been described as a

sequential multi-step process, termed the invasion-metastatic

cascade (Martin and Jiang 2009). During migration and

invasion, cells squeeze through tight interstitial spaces, which

includes cellular and nuclear deformation caused by the

confining microenvironment (Kramer et al., 2013). Overall,

during the metastatic cascade, changes in cell-cell and cell-

matrix adhesion are of paramount importance and lead to the

formation of secondary tumors in distant organs and are largely

responsible for the mortality and morbidity of cancer (Martin

et al., 2013). There are several commonly used in vitro assays to

investigate the effects of PnDs on tumor cell migration and

invasion potential. Transwell migration and invasion assay

(Boyden chamber) is the most frequently used approach. In

this assay, a double chamber is filled with two media, one with

an attractant (like FBS) to trigger chemotaxis. Cells are seeded in

the upper well and migrate vertically between the chambers

through a porous membrane (Menyhárt et al., 2016). Migrated

cells can be visualized by cytological dyes or stained fluorescent

and then assessed by flow cytometry, light or fluorescence

microscopy, or lysed and assessed by a plate reader, usually

following treatment with MTT reagent (Gauthaman et al., 2012;

Kim et al., 2015; Li et al., 2015; Kalamegam et al., 2018; Yuan et al.,

2018; Mandal et al., 2019; Silva et al., 2020). By coating the porous

filter with ECM components like type I collagen or a basement

membrane-like matrix (Matrigel (So et al., 2015; Bu et al., 2017;

Meng et al., 2019)) or reduced growth factormatrix (Touboul et al.,

2013), invasive cells can be detected by their ability to degrade the

matrix and move through the membrane to the bottom well.

Parallel measurements with ECM-coated and non-coated assays

allow one to calculate an “invasive index”: the rate of invasiveness

versus migration (Marshall 2011), however this approach is

currently missing in vitro assays investigating migration and

invasion potential of PnDs. The most frequently used method

due to its easy setup is the transwell migration assay. More

sophisticated migration assays using microfluidic migration

devices overcome the limitations of traditional migration assays

and promote a stable diffusion-generated concentration gradient

that is consistently linear and lasts for more than 48 h. These

devices are usually plastic with high optical qualities similar to

those of glass, and are specially designed for video microscopy

assays. At specific time intervals, images of the observation area

can be acquired, allowing real-time monitoring and quantitative

measurements of cell migration and thus could also be used in

investigating PnDs actions on cancer cell migration and invasion.

Investigation into the effect of PnDs on the invasive potential

of cancer cells has been also performed using intact or

decellularized human amniotic membrane or amniochorionic

membrane. These were used in some studies as a natural 3D

scaffold to evaluate tumor cell metastatic and invasion potential

in 3D conditions (Ganjibakhsh et al., 2019) or direct influence of

PnDs on metastatic and invasion behavior of tumor cells

(Touboul et al., 2013; Ramuta T. Z. et al., 2020).

2.5 Investigating perinatal derivatives
actions on the tumor vasculature and
angiogenesis

PnDs have been widely reported to produce angiogenic

factors and induce angiogenesis (Bajetto et al., 2017;

Dabrowski et al., 2017; Komaki et al., 2017; Wu et al., 2022),

yet some studies have described antiangiogenic effects (Faraj,

Stewart et al., 2015), and PnD preparation seems to be a critical

point that can influence this feature (Wolbank et al., 2009).

Quantitative real time polymerase chain reaction is often

performed to detect and quantify the relative expression levels of

angiogenic genes, such as VEGF (Lin D et al., 2017; Mandal et al.,

2019), ANG (Mandal et al., 2019; Yuan L et al., 2019), PDGF

(Yuan Z et al., 2019), FGF-2 (Subramanian et al., 2012), etc.

However, this method is time and resource consuming, requires

subsequent post-PCR analysis and may provide only limited

information on gene expression that must be followed with

immunoblot or ELISA. Indeed, the latter have been widely

used to detect known angiogenesis activators by immunoblot

or ELISA (Table 1). However, Western blot can produce false-

positive/negative results in the sample of interest and requires a

larger amount of starting material. Immunophenotypic analysis

to measure the expression of major angiogenic proteins, such as

VEGF (Borghesi et al., 2020) can be performed with flow

cytometry. Despite its ability to identify small populations and

quantify the intensity of fluorescence, it still requires complex

instrumentation, and highly trained technical staff to manage

microfluidics, laser calibration and cleaning, as well as ample

experience with the relevant software. In addition, direct and

indirect immunocytochemistry (ICCH) can visualize and localize

the target VEGF protein expression at a cell compartment level

(Subramanian et al., 2012). Indirect ICCH can, however, be more

laborious and time-consuming, with the additional risk of non-

specific binding of the secondary antibody.

Monitoring the proliferation of human umbilical vein

endothelial cells (HUVECs) is often used to evaluate the

developing tumor vasculature. These assays have been used to

estimate antiangiogenic properties of PnDs in the context of early

tumor pre-vasculature. CCK8 (Yuan L et al., 2019) assay offer
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reproducible and easy setups and provide quantifiable data on the

inhibition of endothelial cell proliferation. Alternative methods,

such as Trypan blue analysis (Chen et al., 2012) might be more

difficult to reproduce and validate. Monitoring of electrical

impedance changes (Grzywocz et al., 2018) caused by the

proliferation of HUVECs could be enabled by real-time

systems. In addition, the digital endothelial tube formation

assay-derived images could potentially enable the calculation

of digital angiogenic indices (Alshareeda et al., 2018), covering

the numerical values of tube morphometry, such as extremities,

number of segments, branches and the length of tubes.

To evaluate angiogenesis in vitro, the rat aorta ring assay

(Modaresifar et al., 2017) can be performed with PnDs. In this

assay, aorta rings are dissected from the descending thoracic aorta,

rinsed, and cut into circular sections of several millimeters thick.

These sections are put on cultured cells and the angiogenic potential

is determined by microscopically visualizing endothelial cell

sprouting, polarization, and outgrowth to the periphery. This test

enables evaluation of angiogenic and antiangiogenic effects of PnDs

and is more representative of in vivo angiogenesis than two

dimensional assays.

3 Antimicrobial effects of perinatal
derivatives

One of themost intriguing characteristics of PnDs is their direct

and indirect antimicrobial properties, which have therapeutic

potential. PnDs have been shown to possess antimicrobial

activity against various microorganisms in planktonic form and

also in complex microenvironments. While the precise nature of

antimicrobial action of PnDs is not well understood, it is clear that

more than one mechanism working simultaneously to inhibit

microbe growth and endotoxin activity, contributes to this

activity (Magatti, Vertua et al., 2017). Antimicrobial properties

of PnDs have been investigated in bacteria (Talmi et al., 1991; Mao

et al., 2016; Mao et al., 2017; Tehrani et al., 2017; Mao et al., 2018;

Ashraf et al., 2019; Palanker et al., 2019; Šket et al., 2019; Ramuta

et al., 2020a), fungi (Wang, Xie et al., 2012), bacteria-infected cell

cultures (Ramuta et al., 2021b) and rat in vivomodels (Robson and

Krizek 1973; Yadav et al., 2017). Antimicrobial peptides, such as α
and β defensins, human cathelicidin LL37, lipocalin, elafin and

secretory leukocyte protease inhibitor (SLPI), have been identified

in various PnDs (King et al., 2007a; King et al., 2007b; Ramuta T.Ž.

et al., 2021; Dubus et al., 2022). Furthermore, it was shown that

histones H2A andH2B could also exert an antimicrobial action as a

endotoxin-neutralizing barrier (Kim et al., 2002). Moreover, it was

reported that hemoglobin-derived peptides purified from a human

placenta exhibited antimicrobial activity. These peptides inhibited

the growth of Gram-positive and Gram-negative bacteria and

yeasts in micromolar concentrations, as well they reduced

endotoxin activity by binding to LPS (Liepke et al., 2003; Dubus

et al., 2022). In case of decellularized Wharton’s jelly tissue, the

mass spectrometry analysis showed the release of antimicrobial

molecules involved in the innate immune response but also some

molecules involved in bacterial agglutination such as fibrinogen

beta chain and Fibulin 1 (Dubus et al., 2022). These molecules are

thought to exert a bacteriostatic effect on both Gram-positive and

Gram-negative strain. In this section, we offer an overview of the

most common in vitro and in vivo functional assays that have been

used for evaluating the antimicrobial activity of PnDs against

bacteria and fungi.

The gold standards for antimicrobial susceptibility testing

have been set by the Clinical and Laboratory Standards Institute,

however, due to the versatility of PnDs, the following assays do

not strictly follow the standard protocols, as they had to be

adapted to enable the analysis of various PnDs-derived

preparations in bacterial suspensions.

TABLE 1 Angiogenesis activators produced by PnDs.

Activator PnDs

VEGF Placenta-based somatic stem cells (Zhang et al., 2015)

Placental-derived adherent stromal cells (Allen et al., 2018)

Umbilical cord MSCs (Bajetto et al., 2017; Lin D et al., 2017; Ciavarella et al., 2015)

Wharton jelly MSCs (Kalamegam et al., 2019; Mandal et al., 2019; Subramanian et al., 2012) Umbilical cord MSCs (Dabrowski FA
et al., 2017); Amniotic membrane MSCs (Dabrowski FA et al., 2017)

FGFS Umbilical cord MSCs (Ciavarella et al., 2015)

Wharton jelly stem cells (Kalamegam et al., 2019)

MMPs Placenta derived MSCs (Choi et al., 2016)

Placental-derived adherent stromal cells (Allen et al., 2018)

TIMPs Umbilical cord MSCs (Ciavarella et al., 2015)

Human amniotic membrane (Modaresifar et al., 2017)

ANG Umbilical cord MSCs (Bajetto et al., 2017)

EGF Umbilical cord MSCs (Ciavarella et al., 2015; Dabrowski FA et al., 2017); Amniotic membrane MSCs (Dabrowski FA et al., 2017)
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3.1 Investigating the antimicrobial effects
of perinatal derivatives in bacterial
suspension

A broth (micro)dilution assay is a simple and inexpensive

method which is consequently often used to test the

susceptibility of bacterial isolates to various antimicrobials.

PnDs (often at various dilutions) are added to liquid broth

media, which are then inoculated with bacterial suspensions.

Following incubation (the length of which can vary from a

couple of hours to several days), bacterial growth is evaluated

based on turbidity by using visual or spectrophotometric

methods (Jorgensen and Ferraro 2009; Sung et al., 2016; Šket

et al., 2019; Dubus et al., 2020; El-Mahdy et al., 2021).

Furthermore, bacterial growth can be also quantified by

plating serial dilutions of bacterial suspensions incubated

with the antimicrobial agent and counting the colony

forming units (CFU) (Thadepalli et al., 1977; Mao et al.,

2017; Šket et al., 2019). The broth microdilution method is

often used to determine the minimum inhibitory concentration

(Wiegand et al., 2008; Kim et al., 2012; Yadav et al., 2017) of an

antimicrobial agent, which is the lowest concentration that will

inhibit the visible growth of a microorganism after overnight

incubation. The advantages of using the broth (micro)dilution

test are the generation of a quantitative result and high

reproducibility, while the main shortcoming is that it is less

sensitive and more time-consuming (Jorgensen and Ferraro

2009) than some of the other functional assays for

determination of the antimicrobial effects of PnDs.

Furthermore, the presence of dead bacteria in the presence

of PnDs cannot be determined.

A similar method is a disk diffusion assay. Namely, a bacterial

inoculum is plated onto the surface of the agar plate and

subsequently PnDs (often at various dilutions) are applied to

the inoculated agar surface. After incubation of the agar plates the

inhibition zones around the site of application of the PnDs

antimicrobials are measured (Talmi et al., 1991; Kjaergaard

et al., 2001; Jorgensen and Ferraro 2009; Tehrani et al., 2013;

Tehrani et al., 2017; Šket et al., 2019; Ramuta et al., 2020b;

Ramuta T.Ž. et al., 2021). The shortcoming of this method is its

inability to precisely determine the minimum inhibitory

concentration of the antimicrobial agent.

3.2 Investigating the antimicrobial effects
of perinatal derivatives in complex
(micro)environments

The antimicrobial properties of PnDs have been evaluated

in complex (micro)environments, such as biofilms and

bacteria-infected epithelia. The effect of PnDs on biofilms

has been evaluated by the biofilm formation assay (Dubus

et al., 2020; El-Mahdy et al., 2021). The antiadhesive and

antifouling properties of PnDs such as Wharton’s jelly were

mainly attributed the presence of hyaluronic acid and its

composites (Drago et al., 2014; Marcuzzo et al., 2017).

Biofilm is defined as a bacterial community which is

metabolically heterogeneous and embedded in a self-

produced extracellular matrix, causing a critical virulence

factor responsible for treatment failure and chronicity in

medical device-related infections. The (micro)plates are

inoculated with fresh bacterial cell suspensions and

subsequently the PnDs are added. The biofilms are grown

for several hours to days. After staining with crystal violet,

the effect of the PnDs on biofilm is quantified

spectrophotometrically. This is an inexpensive and easy

method which can directly evaluate the biofilm formation on

several surfaces (i.e., titanium alloys, calcium phosphate,

polymers, etc). However, there are a few shortcomings of the

biofilm formation assay. Firstly, it is not possible to distinguish

whether the antimicrobial effect can be attributed to killing of

planktonic bacteria before the biofilm forms or to the specific

antibiofilm effects, because the antimicrobial agent is added to

the bacterial suspension before the biofilm is formed.

Furthermore, the crystal violet stains the whole biomass

(bacteria and exopolymers) and not only the living bacteria,

hence it is not possible to determine the ratio of alive vs. dead

bacteria in the biofilm (Haney et al., 2018). To get

comprehensive insight into how PnDs affect biofilms,

additional experiments should be performed also on pre-

formed biofilms (Segev-Zarko and Shai 2017). To determine

the metabolically active cells in the biofilm, resazurin staining

(Yadav et al., 2017) is used. To evaluate the viability of the cells,

forming the biofilm, the live/dead bacterial viability kit (El-

Mahdy et al., 2021; Dubus et al., 2022) is used. To evaluate the

morphology of the biofilm, most frequently confocal

microscopy or scanning electron microscopy are used (Yadav

et al., 2017; Mao et al., 2018; El-Mahdy et al., 2021).

To evaluate the antimicrobial effect of PnDs in bacteria-

infected epithelia, the following cellular in vitro models have

been established. Cells are grown to confluence using antibiotic-

free medium and then inoculated with bacteria. The number of

viable bacteria in culture medium are quantified by plating

serial dilutions of bacterial suspensions and counting the CFU

(Josse et al., 2014; Sung et al., 2016; Dubus et al., 2020; Ramuta

et al., 2021a; El-Mahdy et al., 2021). Next, the permeabilization

agent is used to release the intracellular bacteria, which are then

quantified by plating serial dilutions of bacterial suspensions

and counting the CFU. (Josse et al., 2014; Dubus et al., 2020; El-

Mahdy et al., 2021). Moreover, the effect of bacteria and PnDs

on eukaryotic cells are evaluated by quantifying the number and

viability of eukaryotic cells and also the intracellular localization

of bacteria is assessed by using various methods of light,

confocal and electron microscopy (Josse et al., 2014; Ramuta

et al., 2021b; El-Mahdy et al., 2021). To gain better

understanding of the effect of PnDs in bacteria-infected
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TABLE 2 Summary of assays used to detect antitumor and antimicrobial effects of PnDs.

Anti-microbial
effects

Functional assays References

Tumor cell proliferation
and metabolism

Incorporation of radiolabeled DNA precursor 3H-thymidine into the new strands of chromosomal DNA

Incorporation of a synthetic nucleoside analog BrdU or EdU into the new strands of chromosomal DNA

Immunolabeling of cell cycle-related proteins (e.g., Ki67, cyclins)

Colony forming unit (CFU) assay

Ayuzawa et al. (2009)
Magatti et al. (2012)
Marleau et al. (2012)
Yuan et al. (2013)
Riedel et al. (2019)
Ramuta et al. (2020c)
Tian et al. (2010)
Gauthaman et al. (2012)
Han et al. (2014)
Hendijani et al. (2015)
Wang M et al. (2015)
Janev et al. (2021)
Lin et al. (2014)
Riedel et al. (2019)
Magatti et al. (2012)
Ayuzawa et al. (2009)
Liu et al. (2013)
Ciavarella et al. (2015)
Li et al. (2015)
Wang M et al. (2015)
Wang W et al. (2015)

Colorimetric assays for metabolism analysis MTT assay

Cell Counting Kit-8

Li et al. (2011)
Chao et al. (2012)
Gauthaman et al. (2012)
Kang et al. (2012)
Liu et al. (2013)
Lin et al. (2014)
Niknejad et al. (2014)
Rolfo et al. (2014)
Bonomi et al. (2015)
Lang et al. (2015)
Li et al. (2015)
Kamalabadi-Farahani et al.
(2018)
Mandal et al. (2019)
Riedel et al. (2019)
Wu et al. (2013)
Yan et al. (2013)
Yang et al. (2014a)
Kim et al. (2015)
Di Germanio et al. (2016)

Annexin V/PI assay and flow cytometry Gauthaman et al. (2012)
Wu et al. (2013)
Niknejad et al. (2014)
Yang et al. (2014b)
Mamede et al. (2015)
Lin et al. (2016)
Paris et al. (2016)
Shen et al. (2016)
Lin D et al. (2017)
Chai et al. (2018)
Jiao et al. (2018)
Yuan et al. (2018)
Khalil et al. (2019)
Rezaei-Tazangi et al. (2020)
Silva et al. (2020)

Tumor cell death TUNEL assay Wu et al. (2013)
Niknejad et al. (2014)

Detection of apoptosis regulators (e.g., caspases, Bcl-2,
DAMPs)

Flow cytometry
Multi-detection plate reader

Rezaei-Tazangi et al. (2020)
Wu et al. (2013)
Lin et al. (2016)
Kalamegam et al. (2018)
Mandal et al. (2019)

(Continued on following page)
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TABLE 2 (Continued) Summary of assays used to detect antitumor and antimicrobial effects of PnDs.

Anti-microbial
effects

Functional assays References

Immunoblot

Immunohistochemistry,
Immunofluorescence
RT-PCR

Mamede et al. (2015)
Dzobo et al. (2016)
Shen et al. (2016)
Yuan et al. (2018)
Dzobo et al. (2016)
Lin H et al. (2017)
Yang et al. (2014a)

Evaluation of mitochondrial membrane potential (MMP) Mamede et al. (2015)
Lin et al. (2016)

Evaluation of the mitochondrial status by membrane permeable dye JC-1 Faridvand et al. (2019)

Evaluation of the activity of the entire electron transfer system Banerjee et al. (2015)
Poženel et al. (2019)
Banerjee et al. (2018b)

Tumor cell migration and
invasion potential

Transwell migration and invasion assay (Boyden chamber) Gauthaman et al. (2012)
Kim et al. (2015)
Li et al. (2015)
Kalamegam et al. (2018)
Yuan et al. (2018)
Mandal et al. (2019)
Silva et al. (2020)

Evaluation of the metastatic and invasion potential of cancer cells on intact or decellularized human
amniotic membrane- or amniochorionic membrane-derived scaffolds

Ganjibakhsh et al. (2019)
Touboul et al. (2013)
Ramuta et al. (2020a)

Angiogenesis Quantitative RT-PCR for detection of angiogenic genes (e.g., VEGF, ANG, PDGF) Lin D et al. (2017)
Mandal et al. (2019)
Yuan L et al. (2019)
Subramanian et al. (2012)

Immunodetection of factors affecting tumor cell angiogenesis Immunoblot, ELISA

Flow cytometry
Immunocytochemistry

Zhang et al. (2015)
Allen et al. (2018)
Bajetto et al. (2017)
Lin H et al. (2017)
Ciavarella et al. (2015)
Kalamegam et al. (2019)
Mandal et al. (2019)
Subramanian et al. (2012)
Choi et al. (2016)
Modaresifar et al. (2017)
Bajetto et al. (2017)
Dabrowski FA et al. (2017)
Borghesi et al. (2020)
Subramanian et al. (2012)

Monitoring proliferation of human umbilical vein
endothelial cells

Cell Counting Kit-8
Trypan blue assay
Monitoring of electrical impedance
changes

Yuan Z et al. (2019)
Chen et al. (2012)
Grzywocz et al. (2018)

In vivo assessment of
tumor response

Rat aorta ring assay
Measurements of tumor diameters

Optical imaging techniques

Modaresifar et al. (2017)
Du et al. (2014)
Ma et al. (2015)
Bu et al. (2017)
Yuan L et al. (2019)
Di et al. (2014)
Leng et al. (2014)
Ciavarella et al. (2015)
Cafforio et al. (2017)

(Continued on following page)
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epithelia, special attention must be given to establishment of

physiologically-relevant in vitro models. For example, a

multilayered biomimetic porcine urothelial model that has

been shown to react differently to pathogenic vs. non-

pathogenic E. coli strains has been used for evaluating the

antimicrobial properties of PnDs (Ramuta T.Ž. et al., 2021;

Predojević et al., 2022). Similar complex in vitro models have

been established to study the host-pathogen interactions in the

airway mucosa (Marrazzo et al., 2016; Hasan et al., 2018),

intestine (Pearce et al., 2018; García-Díaz et al., 2022) and

skin (Bolle et al., 2020), but have not yet been used for

evaluation of PnDs.

The antimicrobial properties of PnDs have also been

evaluated in vivo using several different methods. These

studies have assessed the antimicrobial activity by

quantifying bacteria in the spleen or blood or indirectly by

measuring antimicrobial cytokines. For example, PnDs have

been shown to protect against experimental sepsis (murine

cecal ligation and puncture model of sepsis) (Parolini et al.,

2014; Laroye et al., 2019) and E. coli-induced acute lung injury

(Sung et al., 2016).

Conclusion

PnDs have demonstrated contradictory effects in the field of

oncology. Various factors that include the specific PnD tissue of origin,

the type and size of tumor, the PnD injection route, the treatment

regimen and interactions with the host appear to play a role in

determining whether PnD exert pro-tumorigenic or antitumorigenic

properties. To facilitate the translation of PnDs towards the clinic, it is

crucial to standardize procedures for evaluating the properties

of PnDs and to define the criteria that distinguish each PnDs as

suitable for clinical use. PnDs-derived preparations are a very

versatile group, ranging from cells and their conditioned media

to tissue-derived scaffolds. This must be taken into account

when selecting methods and defining criteria for validating the

multimodal functions of PnDs to be used in oncological and

antimicrobial applications. Another challenge is the

development of assays that can efficiently and reproducibly

measure the anticancer and antimicrobial properties of PnDs in

vitro and in vivo models of cancer and infection.

In summary, there is a growing awareness that PnDs possess

precisely tuned anticancer and antimicrobial activities. In this review,we

TABLE 2 (Continued) Summary of assays used to detect antitumor and antimicrobial effects of PnDs.

Anti-microbial
effects

Functional assays References

Zhang et al. (2017)
Yuan Z et al. (2019)
Chetty et al. (2020)

Bacterial growth Broth (micro)dilution assay

Disk diffusion assay

Jorgensen and Ferraro (2009)
Sung et al. (2016)
Dubus et al. (2020)
El-Mahdy et al. (2021)
Thadepalli et al. (1977)
Mao et al. (2017)
Šket et al. (2019)
Wiegand et al. (2008)
Kim et al. (2012)
Yadav et al. (2017)
Kjaergaard et al. (2001)
Talmi et al. (1991)
Jorgensen and Ferraro, (2009)
Tehrani et al. (2013)
Tehrani et al. (2017)
Šket et al. (2019)
Ramuta et al. (2021a)
Ramuta et al. (2020b)

Evaluation of biofilms Biofilm formation assay

Determination of metabolically active cells by resazurin staining
Live/dead bacterial viability

Morphology evaluation by light and electron microscopy

Dubus et al. (2020)
El-Mahdy et al. (2021)
Yadav et al. (2017)
El-Mahdy et al. (2021)
Dubus et al. (2022)
Yadav et al. (2017)
Mao, et al. (2018)
El-Mahdy et al. (2021)

Evaluation of antimicrobial activity in a complex (cellular) microenvironment Josse et al. (2014)
Sung et al. (2016)
Dubus et al. (2020)
El-Mahdy et al. (2021)
Ramuta et al. (2021c)
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therefore present the most commonly used functional assays (Table 2)

with their advantages and disadvantages in assessing the anticancer and

antimicrobial functionality of PnDs. This must be considered in future

research and in the development of more effective PnDs therapies.
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