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Continuous quantitativemonitoring of the change inmineral content during the

bone healing process is crucial for efficient clinical treatment. Current

radiography-based modalities, however, pose various technological, medical,

and economical challenges such as low sensitivity, radiation exposure risk, and

high cost/instrument accessibility. In this regard, an analytical approach utilizing

electrochemical impedance spectroscopy (EIS) assisted by machine learning

algorithms is developed to quantitatively characterize the physico-

electrochemical properties of the bone, in response to the changes in the

bone mineral contents. The system is designed and validated following the

process of impedance data measurement, equivalent circuit model designing,

machine learning algorithm optimization, and data training and testing. Overall,

the systematic machine learning-based classification utilizing the combination

of EIS measurements and electrical circuit modeling offers a means to

accurately monitor the status of the bone healing process.
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Introduction

Critical-sized bone defects, generally characterized as a bone loss greater than two

times the diameter of the specific bone, pose a significant clinical concern, requiring

therapeutic interventions for proper healing (Nauth et al., 2018; Kobbe et al., 2020). Non-

union bone healing, which often occurs during the treatment of critical-sized bone defects,

is an especially challenging condition, requiring surgical intervention and frequently

causing inefficient bone repair with suboptimal clinical outcomes (Wildemann et al.,

2021). Thus, the management of critical-sized bone defects remains a major clinical
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orthopedic challenge and it requires novel and safe therapeutic

strategies for enhanced bone regeneration.

Bone healing is a highly dynamic process and continuous

monitoring of the efficacy of a therapeutic approach is crucial for

ensuring optimal treatment. One promising strategy is to quantify

the change in mineral content to correlate it with the healing status

in the defect region. To date, however, effective real-time in situ

monitoring systems for bone healing are highly primitive at best and

non-existent at worst (Augat et al., 2014; Rani et al., 2020; Ernst et al.,

2021). Current assessment modalities, including X-ray diagnostic

radiography, photon absorptiometry, quantitative computed

tomography, and magnetic resonance imaging, suffer from many

limitations such as low sensitivity for bone mineral content, high

cost, the requirement of trained personnel, standardization of image

quality/quantification, and radiation overexposure risks (Hak et al.,

2014; Wildemann et al., 2021). Moreover, these endpoint qualitative

assessments are often subjective, and their accuracy is reliant on the

clinician’s expertise (Morshed et al., 2008; Claes and Cunningham,

2009; Schwarzenberg et al., 2020).

In this regard, electrochemical impedance spectroscopy (EIS)

provides a means to non-destructively assess the bone healing

process by characterizing the electrical properties of the tissue.

Several studies have demonstrated the feasibility of utilizing EIS

for determining bone health, where tissue impedance changes at

specific frequencies of the applied alternating current (AC)

potential were well correlated to the radiographically

determined status of bone regeneration (Kozhevnikov et al.,

2016; Afsarimanesh et al., 2016; Dell’Osa et al., 2019a;

Dell’Osa et al., 2019b). Particularly, Lin et al. utilized electrode

implants to longitudinally monitor bone healing in murine

fracture models, where the magnitude of impedance

measurements was proportional to the quantified measures of

bone volume and bone mineral density (Lin et al., 2015). Such

tracking of the longitudinal changes of impedance with respect to

those of non-fractured control samples allowed them to

distinguish good healing as compared to non-union bone

fracture (Lin et al., 2015). This in vivo application of EIS

demonstrates the potential of the electrochemical analysis for

bone fracture monitor and management in the clinic (Lin et al.,

2019). However, this approach is semi-quantitative in nature,

requiring separate control groups to assess the degree of bone

healing.

Herein, we demonstrate the detection of bone mineral

contents, a marker for the degree of bone healing, using the

EIS technique empowered by machine learning models. Machine

learning has emerged as an effective and accurate method to

understand complex biological phenomena, especially human

diseases and injuries (Yu et al., 2018; Liang et al., 2019; Tekkesin,

2019; Peng et al., 2021). Several studies have used various

machine learning approaches to develop equivalent circuit

models from EIS data (Tripathi and Maktedar, 2016; Cunha

et al., 2019; Babaeiyazdi et al., 2021), but the application of

machine learning in diagnosing the degree of bone health has not

been attempted. The workflow presented in this study consisted

of four main steps—an EIS impedance measurement, equivalent

circuit modeling and data fitting, principal component analysis,

and machine learning analysis—to gradually build up a bone

composition detection strategy with the purpose of automatically

formulating multiple impedimetric parameters into a recognition

machine that determines the bone mineral content. Three

different machine learning algorithms were compared in

terms of their performance to categorize the mineral content

of rat femur samples. Two types of datasets, one consisting of

impedance data at different frequencies only and the other

consisting of fitted equivalent circuit model parameters in

addition to the impedance values, were used to evaluate the

classification models in order to delineate the importance of the

feature set used for multiclass classifications. We demonstrate

that the machine learning-assisted EIS analysis enables the

prediction of the bone mineral content with high accuracy,

suggesting its potential for a real-time monitoring modality to

assess the bone healing process.

Methods

Bone sample preparation

Femurs were excised from rat cadavers of similar size and

age, surpluses from other non-skeletal studies. Bone samples of

6 mm in length, approximately twice the diameter of the as-

extracted femurs, were prepared from the diaphysis of the femur

by using a diamond saw and both ends were polished with

sandpaper to ensure proper electrical contact between the

electrode and the sample. For demineralization, the femur

samples were incubated in 20% (v/v) Cal-Ex II decalcifier

solution (Fisher Scientific) for varying durations to prepare

samples containing a specific weight percentage of mineral.

Specifically, bone samples having 0, 20, 40, 60, 80, and 100%

of mineral contents (as compared to fully demineralized samples)

were selected to simulate critical-sized bone defects at different

healing stages. The wet weights of the bone samples were

recorded after each treatment, which was used to calculate the

weight percent of minerals remaining in the samples.

Bone mineral content calculation

The bone mineral content, the wt% of mineral present in the

samples after specific durations of demineralization, was

indirectly calculated using the following formula,

WM,lost � ρM × VM,lost � ρM ×
ΔWwet

ρW − ρM

where WM,lost is the weight of mineral lost after decalcifier

treatment, ρM is the density of hydroxyapatite, which makes
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up themineral phase of bone,VM,lost is the volume of mineral lost

after decalcifier treatment, ΔWwet is the change in the wet weight

of the femur sample, and ρW is the density of water. We assumed

that the volume of mineral lost is replaced by the volume of

media since buffer saturation was used to maintain the net

volume.

Surface characterization of bone samples

The morphology of the intact and demineralized bone

samples was characterized using a VEGA3 scanning electron

microscope (SEM) (Tescan Brno, Czech Republic). The bone

samples were subject to a dehydration process for SEM sample

preparation by their exposure to a graded ethanol series,

followed by a graded ethanol-hexamethyldisilane series as

previously described (Nam et al., 2007; Maldonado et al.,

2016).

Bone mineral content visualization

Alizarin red S staining (Sigma) was used to colorimetrically

determine the mineral content in sectioned bone samples under

various demineralization durations as previously described

(Homer et al., 2019). The color intensity was quantified under

each condition using ImageJ software and five slices were used for

quantification for each condition.

Electrochemical impedance
spectroscopic (EIS) measurements

The electrochemical impedance measurements were

carried out using a CH Instruments 604C electrochemical

analyzer (CH Instruments Inc.). A custom-built sample

holder and EIS measurement system, consisting of a mini-

vise and gold-coated stainless steel disc electrodes with

soldered insulated copper wires, was used for EIS signal

acquisition. To maintain high humidity and avoid drying of

the samples during measurement, a humidity chamber was

used to encapsulate the entire measurement assembly. The

bone sample was carefully positioned in between the two

electrodes for uniform electrode-contact without applying

excessive pressure on the sample during clamping. The EIS

measurements were performed at 10 mV AC voltage to

achieve a pseudo-linear system response (Habekost, 2021;

Kretzschmar and Harnisch, 2021), and the impedance (Z)

and phase angle (θ) were measured at sixty different

frequencies in the range from 1 Hz to 100 kHz (10 data

points per decade of frequency). Room temperature was

maintained, and a humid chamber was used to prevent

bone drying during the entire EIS measurement.

Equivalent circuit modeling and data
fitting

An equivalent circuit model was developed based on a

physical interpretation of the electrochemical phenomena

taking place in our electrochemical system. EIS Spectrum

Analyzer software was used to fit the experimental data with

the proposed equivalent circuit model. The Nelder-Mead

algorithm was utilized for the fitting in order to determine the

values of the equivalent circuit model components.

Machine learning algorithms

Machine learning-based classification models were utilized

for further analysis of data in order to set up a bone mineral

content-based detection system. All the machine learning

classifier models were established by the Python based open

source visual programming software Orange toolkit

(Bioinformatics Laboratory, University of Ljubljana). The

detailed algorithm parameters are described in the

Supplementary Material.

Results

The flowchart of our machine learning-assisted EIS strategy

for the quantitative analysis of bone mineral content is shown in

Figure 1. The key points in our approach include, 1)

measurement of impedance data from the bone samples of

defined mineral content, 2) using the measured impedance

data to train and validate a machine learning model, 3) using

the trained model to classify bone samples of unknown mineral

composition. To the best of our knowledge, this approach of

classifying bone samples using a combination of EIS andmachine

learning is the first used to analyze bone mineral contents, a

marker for bone regeneration, potentially offering a non-

destructive, quantitative method to track bone regeneration.

To prepare samples of different mineral contents, rat femurs

were treated with a demineralization solution for various

durations. Fully decalcified bone samples showed a smooth

fibrous structure owing to the remaining organic phase,

mostly collagen in the bone as compared to intact bone

samples (Figures 2A,B). The mineral content linearly

decreased as the duration of the demineralization process

increased, as shown in Figure 2C. This was further confirmed

by alizarin red staining and its colorimetric quantification

(Figures 2D,E). The impedances of bone samples with known

mineral contents were measured in the longitudinal orientation

as shown in Figure 2F. Representative Bode plots and Nyquist

plots for bone samples with various mineral contents are shown

in Figures 2G–I. As expected, EIS measurements showed a strong

frequency dependency; the impedance was considerably higher at
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low frequencies than at high frequencies (Figure 2G). At lower

frequencies, the signals are both resistive and capacitive (slopes of

the curves in the Bode magnitude plot ≈45°, slanted lines), while

at higher frequencies the signals become purely resistive with no

capacitive contributions to the impedance (slopes of the curves

≈0°, parallel to the abscissa). This decrease is associated with a

significant change in the phase shift. The phase is about 60° at low

frequencies and drops to values close to zero when the frequency

increases (Figure 2H). These observations are in agreement with

the results of Balmer et al. (Balmer et al., 2018). The Nyquist plots

also show that the real and imaginary components of the

impedance decreased as the mineral content decreased,

corroborating with the Bode plots (Figure 2I).

An equivalent circuit model was designed to describe the

electrochemical processes of the EIS spectra and to deconvolute

the impedance contributing factors by fitting the measured

impedance data (Figure 3A). Based on the features of the EIS

spectra, i.e., the presence of a single prominent peak in the Bode

phase plots, a two-layer physical model was employed: bulk bone

tissue, and bone surface-metal electrode interface. Rb represents

resistance from bulk bone structure, while RCt and CPE represent

interfacial charge-transfer resistance and non-ideal double-layer

capacitance (constant phase element) at the bone surface-metal

electrode interface, respectively (Figure 3A). The experimental

data were fitted into the proposed equivalent circuit model and

representative fitting results from the bone sample having a

mineral content of 20%, including Bode magnitude, Bode

phase angle, and Nyquist, are shown in Figures 3B–D, where

the robust goodness of fit values, presented as R2 values, has been

achieved. A complete data sets for various mineral contents are

shown in Supplementary Figures S1–S6.

In order to better understand and confirm the physical

meanings of the proposed circuit model, the relationship

between each equivalent circuit model parameter and

corresponding mineral content was further investigated. As

expected, the bulk bone structural resistance, Rb, decreases

with a decrease in bone mineral content (Figure 3E). Cortical

bone mostly contains a mineral phase, which has large resistance,

and hence demineralization results in a resistance drop. The

interfacial resistance, RCt, only drops after about 20%

demineralization (or 80% mineral content) and then reaches a

steady-state value, signifying that the interfacial resistance solely

depends on the bone/electrode interfacial electrochemical effects

and not on bone structural degradation (Figure 3F). In contrast,

the CPE value increases slightly after about 20% mineral removal

and then stabilizes, which is similar to the observation by Wang

et al., where the capacitance slightly decreased with increased

apatite growth (Figure 3G) (Wang et al., 2003). The impedance

values at different frequencies were combined with the fitted

equivalent circuit parameters to test a simple regression model.

Figure 3H shows the performance of the logistic regressionmodel

in predicting the bone mineral content, where the classification

accuracy of 52.4% with a precision of 43.4% was observed.

To improve the prediction accuracy, various machine

learning algorithms were employed. In order to establish an

appropriate machine learning classification model and evaluate

its performance, the original dataset was divided into a training

set and a testing set, where the training set was used to establish

prediction models and the testing set was used to verify the

validity of the models (Figures 4A,B). A dataset of ninety-one

measured impedance signals, corresponding to at least fifteen

signals per mineral content category (0, 20, 40, 60, 80, 100 wt%),

frommultiple samples was prepared. Seventy data instances were

randomly selected from the dataset, representing all the six

classification categories, as the training dataset, and the

remaining twenty-one measurements were utilized as the

FIGURE 1
Schematic of machine learning-assisted electrochemical impedance spectroscopy (EIS) for the quantitative analysis of bone mineral content.
PCA: Principal Component Analysis; v-SVM: Support Vector Machine.
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testing dataset. This dataset splitting ratio was chosen to ensure

optimal classification performances of machine learning models

(Xu and Goodacre, 2018; Thien and Yeo, 2021).

To avoid problems of overfitting, confusing the algorithms,

and high computation cost, we first performed dimensionality

reduction on the data using principal component analysis (PCA),

instead of directly feeding the original data to the machine

learning algorithms. As shown in Figure 4C, the first principal

component contributed nearly 90% of the explained variance,

and thus was chosen to represent the data with minimal loss of

information. Scatter plot analysis of the principal components

showed that the six classes of mineral content cannot be clearly

distinguished due to the overlapping boundaries by PCA alone

(Supplementary Figure S7). Hence, projections of all data

features onto the first principal component dimension were

then used as the input data for the machine learning models.

In order to find the best algorithm for the bone mineral

content prediction, three different machine learning algorithm

models—variant of support vector machine (v-SVM), neural

network (NN), and random forest (RF) were trained based on

the PCA-transformed dataset and compared, based on the

classification accuracy and precision of correctly assigning

FIGURE 2
Characterization of bone mineral content and electrochemical impedance spectroscopy (EIS) at different levels of mineralization. Scanning
electron microscopy (SEM) images of (A) intact (B) demineralized bone samples (C) Bonemineral content as a function of demineralization duration
(D) Bone cryosection and alizarin red staining at 0, 20, 40, 60, 80, and 100 wt% bonemineral content (E)Quantified alizarin red staining intensity as a
function of bone mineral content (n = 5, * and ** denote statistical significance of p < 0.05 and p < 0.01, respectively, analyzed by one-way
ANOVA with Tukey’s posthoc test.) (F) Schematic showing an experimental setup for the measurement of EIS spectrum of a bone sample.
Representative bone EIS spectra shown as (G) Bode magnitude (H) Bode phase angle, and (I) Nyquist plots.
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FIGURE 3
Equivalent circuit modeling for the factor deconvolution of electrochemical impedance spectroscopy (EIS) data (A) Equivalent circuit model
used for fitting the bone EIS spectra. Rb = resistance from bulk bone structure, RCt = bone surface-metal electrode interfacial charge-transfer
resistance, CPE = non-ideal double-layer capacitance (constant phase element) at the bone surface-metal electrode interface or contact region.
Representative fitting results (20%) shown as (B) Bode magnitude (C) Bode phase angle, and (D) Nyquist plots. Equivalent circuit model-
parametric characterization of bone samples at different levels of demineralization. Plots showing variation of (E) Rb (F) RCt, and (G)CPE as a function
of bone mineral content (H) Classification performance of a logistic regression discrimination model using impedance data and fitted equivalent
circuit element data for training [n (total) = 70; n (0 wt%) = 12, n (20 wt%) = 12, n (40 wt%) = 12, n (60 wt%) = 12, n (80 wt%) = 9, n (100 wt%) = 13] and
testing [n (total) = 21; n (0 wt%) = 4, n (20 wt%) = 4, n (40 wt%) = 4, n (60 wt%) = 3, n (80 wt%) = 3, n (100 wt%) = 3] datasets.

FIGURE 4
Machine Learning-based detection of bonemineral content (A,B)Data sets with different bonemineral contents, used for training and testing of
machine learning models (C) Representative PCA scree plot showing the number of components used (blue line) along with proportion of variance
explained. Classification performance of the three types of discrimination models when (D) only impedance data were used for training and testing,
and (E) both impedance data and equivalent circuit-fitted element data were used for training and testing (F–H)Confusion matrix for (F) v-SVM
(G) Neural Network, and (H) Random Forest algorithms for bone mineral content classification when both impedance data and equivalent circuit-
fitted element data were used for training and testing.
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categories to the instances in the testing. To further test the

importance of the type of data used for model training, one

dataset was prepared with only EIS impedance-frequency data,

and another dataset contained a combination of fitted equivalent

circuit model parameters and EIS impedance-frequency data.

The predicting performances of v-SVM, NN, and RF

classification algorithm models were compared, when only

impedance values at 60 different frequencies in the range of

1 Hz–100 kHz were used as the features of the training and

testing datasets (Figure 4D). Results showed that v-SVM

exhibited the highest accuracy and precision scores as

compared to the other algorithms; while the v-SVM predicted

the mineral composition categories with 81% accuracy and 84.5%

precision, the accuracy of prediction by the NN and the RF was

66.7% for both. The precision for NN and RF was 73.6 and 52.8%,

respectively. Interestingly, when the values of the fitted

equivalent circuit model parameters were used in addition to

the impedance values as the feature set of training and testing

datasets, the performance of the v-SVMmarkedly increased with

classification accuracy reaching approximate 91% with a

precision of about 92% (Figure 4E). In the case of the NN,

the classification accuracy remained the same at 66.7% with a

comparatively lower precision of 70.8%, while for the RF model,

the accuracy dropped to 61.9% with the same precision of 52.8%.

Therefore, among the three supervised algorithmmodels, v-SVM

exhibited superior accuracy and precision to the other two

methods as it can better identify the six classes of bone

samples with different mineral levels, especially when the

equivalent circuit modeling was employed. It should be also

noted that there was a significant improvement in accuracy and

precision by all these machine learning algorithms as compared

to the logistic regression discrimination model (Figure 3H,

Figures 4D,E). Figures 4F–H shows the confusion matrices for

v-SVM, NN, and RF, respectively, where each row represents the

actual mineral content of samples, and each column represents

the predicted mineral content by the respective classification

models. The detected values under the v-SVM method

corresponded best to the raw data as compared to the other

algorithm methods.

Discussion

Treatments of the critical-sized bone defect are

challenging due to the frequent surgical intervention and

the high risk of causing non-union bone healing (Roddy

et al., 2018; Stewart, 2019). To ensure optimal therapeutic

treatment, monitoring the bone healing process is crucial.

X-ray diagnostic radiography is one of the most used

diagnosing and monitoring techniques in clinical settings

(Wong et al., 2012). Limitations such as low accuracy, poor

quantification, and radio safety, however, still exist.

Quantitative computed tomography (QCT), on the other

hand, provides a means to assess bone healing by providing

high-resolution images and quantitatively measuring the bone

mineral content (Augat et al., 1997). However, large signal

noise, high cost, and limited accessibility have prevented its

further application in the continuous monitoring of bone

therapy.

In this regard, EIS provides a means to non-destructively assess

bone healing process by characterizing the electrical properties of

the tissue in relation to bonemineral content.We showed a decrease

in the magnitude of impedance with the decrease in mineral

content. In addition, the single peak in the Bode phase plots

spreads over a wider frequency range with decreased mineral

contents. The shift of this “peak”, corresponding to a time

constant (R||C) of the system, indicates that the electrochemical

process becomes faster during the progress of demineralization due

to the removal of the resistive mineral phase. The observation of the

raw impedance values of the bone to assess the mineral content,

however, is still semi-quantitative, leading to inaccurate prediction

of the mineral content from the overall impedance dataset.

Therefore, equivalent circuit modeling was employed to

extract the individual contributing factors from the impedance,

including the electrical components of bulk bone tissue and the

bone-electrode interfaces. For the purpose of the equivalent circuit

modeling, the cortical bones can be assumed to exhibit mostly a

resistive behavior and that the bone/electrode phase boundaries

result in the appearance of an interfacial capacitance,

uncharacteristic of bulk bone tissue (Bauerle, 1969; Mercanzini

et al., 2009; Jiang et al., 2016). Furthermore, since the cortical bone

samples under study are mostly composed of an inorganic phase,

which exhibits low relative permittivity <10, the capacitive

behavior of the samples can be neglected for simplicity

(Asgarifar, 2012). Apart from the capacitive behavior at the

bone-electrode interface, which is typically seen at lower

frequencies (<100 kHz), another capacitive contribution to the

impedance spectra could result from the stray capacitance of the

measurement system at higher frequencies (>100 kHz). However,

since the range of frequencies used in this study was from 1 Hz to

100 kHz and precautions were taken to carefully insulate the

measurement setup, stray capacitive contributions to the

impedance spectra were neglected. In addition, bone tissues can

be considered as an inhomogeneous composite material that

contains a less conductive mineral phase (hydroxyapatite) and

a more conductive hydrated organic phase (mostly collagen).

Therefore, the justifications for using CPE instead of a

capacitor are two-fold: 1) the inhomogeneity of bone

composition coupled with contact-surface roughness, leading to

pseudocapacitive behavior at the interface, and 2) a better fit of the

simulated data with the experimental data. The conductive charge

carriers in the electrochemical system under study are ions and

electrons. Thus, the bone/electrode interfacial phenomena are

represented by a parallel combination of RCt and CPE, which is

then connected in series to the bulk bone structural resistance, Rb.

The interfacial charge transfer resistance RCt is the resistance for
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the electron to change the phase, i.e., from the electrode into the

hydrated tissue. The equivalent circuit model we designed

successfully deconvolute the impedance contributing factors, yet

the prediction accuracy solely based on these deconvoluted values

remains low due to sample variability. This is especially true if

outliers are present in the overall dataset, often observed in the

clinical datasets. These experimental error-based subtle

ambiguities in the overall dataset cannot be resolved by simple

classifiers like regression models as shown in Figure 3H.

In this regard, we utilized the machine learning algorithm

models, due to their automation and robustness, as an analytical

solution for categorizing bone samples of different mineral

contents with multiple impedimetric parameters. The

impedance values and their deconvoluted factors obtained

from the equivalent circuit model were processed using

various algorithm models and the best prediction accuracy

was achieved when using the v-SVM, as compared to the

other algorithms, including neural network, and random

forest. Although small errors still exist due to a relatively

small sample size of data being used for training and testing,

our approach of random extraction, training, and prediction of

the testing data showed that the differences among the data

obtained from each group had little effect on the overall results.

These results thus indicate that an appropriate equivalent circuit

model and an optimal machine learning approach are both

necessary for the adaptability and accuracy in bone mineral

content detection, providing a means to accurately monitor

the healing process of bone.

In this brief research report, we have developed an analytical

method combining EIS andmachine learning for the quantitative

assessment of bone mineral content. We demonstrate that the

electrochemical parameters of the bone tissue correlated well

with its composition. The classification ability of various

algorithms using the EIS data was compared. The results

show that the best comprehensive performance is obtained by

SVM when equivalent circuit model data were incorporated into

raw impedance data. By incorporating multiple impedimetric

parameters, the machine learning model enables the accurate

determination of bone mineral content. Due to the advantages in

adaptability, automation, and accuracy, we anticipate that the

method established in this study will find various applications in

bone defect management. These results might help further

progress on the rapid and longitudinal monitoring of bone

healing status and could even be used for the detection and

analysis of bone defects. Moreover, this work proves the

application potential of machine learning tools in

electrochemical research.
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