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Subject-specific electromyography (EMG)-driven musculoskeletal models that

predict muscle forces have the potential to enhance our knowledge of internal

biomechanics and neural control of normal and pathological movements.

However, technical gaps in experimental EMG measurement, such as

inaccessibility of deep muscles using surface electrodes or an insufficient

number of EMG channels, can cause difficulties in collecting EMG data from

muscles that contribute substantially to joint moments, thereby hindering the

ability of EMG-driven models to predict muscle forces and joint moments

reliably. This study presents a novel computational approach to address the

problem of a small number of missing EMG signals during EMG-driven model

calibration. The approach (henceforth called “synergy extrapolation” or SynX)

linearly combines time-varying synergy excitations extracted from measured

muscle excitations to estimate 1) unmeasured muscle excitations and 2)

residual muscle excitations added to measured muscle excitations. Time-

invariant synergy vector weights defining the contribution of each measured

synergy excitation to all unmeasured and residual muscle excitations were

calibrated simultaneously with EMG-driven model parameters through a multi-

objective optimization. The cost function was formulated as a trade-off

between minimizing joint moment tracking errors and minimizing

unmeasured and residual muscle activation magnitudes. We developed and

evaluated the approach by treating a measured fine wire EMG signal (iliopsoas)

as though it were “unmeasured” for walking datasets collected from two

individuals post-stroke–one high functioning and one low functioning. How

well unmeasured muscle excitations and activations could be predicted with

SynX was assessed quantitatively for different combinations of SynX

methodological choices, including the number of synergies and categories

of variability in unmeasured and residual synergy vector weights across trials.

The two best methodological combinations were identified, one for analyzing

experimental walking trials used for calibration and another for analyzing

experimental walking trials not used for calibration or for predicting new
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walking motions computationally. Both methodological combinations

consistently provided reliable and efficient estimates of unmeasured muscle

excitations and activations, muscle forces, and joint moments across both

subjects. This approach broadens the possibilities for EMG-driven calibration

of muscle-tendon properties in personalized neuromusculoskeletal models

and may eventually contribute to the design of personalized treatments for

mobility impairments.

KEYWORDS

muscle synergy, EMG-driven model calibration, synergy extrapolation, muscle
excitation, stroke, muscle force

1 Introduction

Muscle force is an important biomechanical variable for both

research and clinical purposes. Knowledge of muscle forces

during a variety of motion tasks could facilitate the

development of more effective treatments for

neuromusculoskeletal disorders such as stroke (Shao et al.,

2009), Parkinson’s disease (Cano-de-la-Cuerda et al., 2010),

and knee osteoarthritis (Kim et al., 2009). Specifically, such

knowledge could lead to an improved understanding of the

control strategies employed by the central neural systems

(CNS) (Contessa and Luca, 2013; Del Vecchio et al., 2018),

internal biomechanical quantities such as joint contact forces

(Correa et al., 2010; Sasaki and Neptune, 2010; Manal and

Buchanan, 2013; Walter et al., 2014; Serrancolí et al., 2016;

Hoang et al., 2019), and external biomechanical quantities

such as joint moments generated by muscles (Manal and

Buchanan, 2003; Buchanan et al., 2005; Sartori et al., 2012;

Meyer et al., 2017). While researchers are seeking to develop

new experimental methods to measure muscle or tendon forces

in vivo during human movement (e.g., Martin et al., 2018), direct

measurement of muscle forces in vivo remains inherently

challenging, costly, and ethically problematic to perform.

This situation has motivated the development of

computational approaches that can estimate muscle forces

from subject movement data. The two primary computational

approaches used for this purpose are static optimization (SO)

and EMG-driven musculoskeletal modeling. Both approaches

typically utilize a geometric musculoskeletal model actuated by

Hill-type muscle-tendon models (Zajac, 1989), where the control

inputs to the muscle-tendon models can be either muscle

excitations (equivalent to processed experimental-

electromyographic (EMG) data) or muscle activations (muscle

excitations after being passed through an activation dynamics

model). SO is used to estimate muscle activations when EMG

data are wholly (Crowninshield and Brand, 1981; Anderson and

Pandy, 2001; Heintz and Gutierrez-Farewik, 2007) or partially

(Sartori et al., 2014; Zonnino and Sergi, 2019) missing from

important modeled muscles. This approach resolves the muscle

redundancy problem by using nonlinear optimization to adjust

the predicted muscle activations such that the sum of squares (or

some other power) of muscle activations is minimized and the

predicted net joint moments match the inverse dynamic net joint

moments (Anderson and Pandy, 2001; Ackermann and van den

Bogert, 2010). In contrast, EMG-driven modeling is used to

estimate muscle excitations when EMG data are wholly or

mostly available from important modeled muscles (Lloyd and

Besier, 2003; Manal and Buchanan, 2003; Amarantini and

Martin, 2004; Shao et al., 2009; Menegaldo et al., 2014; Sartori

et al., 2014; Pizzolato et al., 2015; Meyer et al., 2017). To resolve

the muscle redundancy problem, this approach uses processed

EMG data to define the shapes of the predicted muscle

excitations and then uses nonlinear optimization to adjust

activation dynamics and Hill-type muscle-tendon model

parameter values such that the sum of squares of errors

between predicted and inverse dynamic net joint moments is

minimized. While SO is extremely fast computationally, it can

underestimate muscle activations since co-activation between

agonist and antagonist muscles is minimized (Herzog and

Binding, 1992), and it can produce unrealistic abrupt

activation changes since the optimization process solves each

time frame independently (Vilimek, 2007; Schellenberg et al.,

2015). More importantly, it does not provide a way to calibrate

activation dynamics and muscle-tendon model parameter values

to a subject’s movement data, which can adversely affect the

reliability of the estimated muscle forces (Serrancolí et al., 2016).

While calibration of activation dynamics and muscle-

tendon model parameter values is built into the EMG-

driven modeling process, several practical challenges exist

with collecting EMG data from all muscles that contribute

significantly to a specified movement task (Sartori et al., 2014;

Péter et al., 2019; Zonnino and Sergi, 2019; Ao et al., 2020;

Gurchiek et al., 2020). First, surface electrodes, which are non-

invasive and easily applied, cannot measure EMG signals from

deep muscles that contribute significantly to joint moments.

Common examples are the iliacus and psoas muscles (Sartori

et al., 2014), which significantly contribute to the hip flexion

moment during walking. Second, though fine wire electrodes

can measure EMG signals from deep muscles, they are

invasive, require special skill and significant preparation

time to insert, and may cause the subject discomfort and

pain, limiting their utilization. Third, in some situations, deep
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muscles may not be reachable by any type of electrode. For

example, use of a fine wire electrode may be contraindicated

for safety reasons in subjects who have a cancerous tumor near

an important deep muscle. Fourth, the number of available

EMG channels is often less than that needed to drive a

neuromusculoskeletal model for multi-joint movements

(e.g., typically more than 10 channels per leg for walking

and running). However, human movement labs often have

only eight or 16 channels available for EMG recording. These

challenges are important since missing EMG data from critical

muscles may have a domino effect on the reliability of force

estimates for other muscles that span the same joints

(Pizzolato et al., 2015; Zonnino and Sergi, 2019).

Given the challenges described above, researchers have

sought to develop various computational methods for

estimating missing EMG signals during the EMG-driven

model calibration process. One such method utilizes

Gaussian process regression models to describe the

synergistic relationship between a subset of muscles,

enabling the estimation of unmeasured muscle excitations

using information provided by a subset of measured muscle

excitations (Gurchiek et al., 2020). However, muscle

excitations associated with “unmeasured” muscles must be

known initially to perform the necessary model training

process, making this method infeasible when the

“unmeasured” muscle excitations are truly unmeasurable

due to experimental limitations or safety considerations.

Another method utilizes low-dimension a sets of impulsive

excitation primitives to estimate unmeasured muscle

excitations (Neptune et al., 2009; Sartori et al., 2013;

Pizzolato et al., 2015). Once excitation primitives are

derived from measured muscle excitations, each muscle is

assigned to a module by assessing associated weighting

factors, where muscles without EMG measurements are

assumed to belong to the same module as measured

muscles that share the same innervation and contribute to

the same mechanical action. Pizzolato et al. (2015) also

minimally adjusted primitive-driven excitaitons for

muscles with experimental EMG data to improve joint

moment estimation in EMG-assisted mode. However,

these adjustments masked the omission of active force

generating properties for muscles without EMG data

(i.e., iliacus and psoas), resulting in noticible hip joint

moment prediction errors. Furthermore, none of these

studies evaluated the accuracy of predicted umeasurd

muscle excitations due to the lack of corresponding

experimental EMG data.

More recently, the muscle synergy concept has been

investigated for estimating muscle activations via SO or muscle

excitations via EMG-drivenmodeling (Bianco et al., 2018; Ao et al.,

2020; Michaud et al., 2020; Shourijeh and Fregly, 2020). A muscle

synergy consists of a time-varying synergy excitation (or

activation) and a corresponding time-invariant synergy vector

containing weights that define how the synergy excitation (or

activation) contributes to the excitation (or activation) of all

muscles (Cappellini et al., 2006; Tresch et al., 2006; Ting and

Chvatal, 2010; Banks et al., 2017). Muscle synergies are useful

because they allow a large number of measured or modeled muscle

excitations (or activations) to be represented by a small number of

muscle synergies (typically between 3 and 6) (Tresch et al., 2006;

Ivanenko et al., 2005; Ting and Chvatal, 2010; Banks et al., 2017).

Michaud et al. (2020) and Shourijeh and Fregly (2020) imposed a

synergy structure on muscle activations estimated via SO, which

required solving for muscle activations over all time frames

simultaneously. In both studies, muscle-tendon model

parameter values were not calibrated simultaneously, no

experimental EMG data were used to inform the muscle

activation solutions, and the accuracy of predicted muscle

activations compared to experimental EMG measurements were

no better than from SO. In another recent study, Ao et al. (2020)

used synergy excitations calculated from measured muscle

excitations to predict synergy vector weights for unmeasured

muscle excitations via a simplied EMG-driven modeling

process. To evaluate the feasibility of the approach (which was

termed “synergy extrapolation” or SynX), the authors used an

EMG-driven model whose activation dynamics and muscle-

tendon model parameters were already calibrated to subject

movement data using a complete set of EMG measurements.

Predictions of muscle excitations that were measured

experimentally using fine wire electrodes but treated as

unmeasured for SynX evaluation purposes showed excellent

agreement with corresponding EMG measurements. However,

since a pre-calibrated EMG-driven model was used for the

evaluation, it remains unknown whether SynX can predict

unmeasured muscle excitations reliably when EMG-driven

model calibration is performed simultaneously.

This study extends the capabilities of SynX so that it can

estimate missing EMG signals while simultaneously

calibrating activation dynamics and muscle-tendon model

parameter values in an EMG-driven model. The approach

was developed and evaluated using gait datasets collected

from two subjects post-stroke performing treadmill walking

at self-selected and fastest-comfortable speeds. EMG signals

measured bilaterally from iliopsoas using fine-wire electrodes

were treated as “unmeasured” and used to evaluate the

reliability of the method quantitatively. The computational

approach uses nonlinear optimization to calibrate three

categories of design variables simultaneously: 1) EMG-

driven model parameters, 2) synergy vector weights and

average values for constructing unmeasured excitations for

muscles without associated EMG data, and 3) synergy vector

weights and average values for constructing residual

excitations for muscles with associated EMG data. The cost

function was formulated as a trade-off between joint moment

matching accuracy and unmeasured and residual muscle

activation minimization. Different methodological choices,
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TABLE 1 List of muscles in the model for each subject and which DOF each muscle actuates.

Muscle names Abbreviation DOFs Subject

Adductor brevisa addbrev HipFE/AA/Rot Both

Adductor longusa addlong

Adductor magnus distala addmagDist

Adductor magnus ischiala addmagIsch

Adductor magnus middlea addmagMid

Adductor magnus proximala addmagProx

Gluteus maximus superior glmax1

Gluteus maximus middle glmax2

Gluteus maximus inferior glmax3

Gluteus medius anterior glmed1

Gluteus medius middle glmed2

Gluteus medius posterior glmed3

Gluteus minimus anterior glmin1

Gluteus minimus middle glmin2

Gluteus minimus posterior glmin3

Iliacusa iliacus

Psoasa psoas

Semimembranosus semimem HipFE/AA/Rot KneeFE

Semitendinosus semiten

Rectus femoris recfem

Biceps femoris long head bflh

Tensor fasciae lataea tfl S2

Biceps femoris short head bfsh KneeFE Both

Vastus medialis vasmed

Vastus intermedius vasint

Vastus lateralis vaslat

Lateral gastrocnemius gaslat KneeFE AnklePD/IE

Medial gastronemius gasmed AnklePD/IE

Tibialis anterior tibant

Tibialis posteriora tibpost

Peroneus brevis perbrev

Peroneus longus perlong

Soleus soleus

Extensor digitorum longusa edl S1

Flexor digitorum longusa fdl

aMeasured using fine-wire EMG, electrodes.
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including the number of synergies and variability of synergy

vector weights across trials, were investigated to determine

the best choices for analyzing experimentally measured

walking motions and generating computationally predicted

walking motions. EMG-driven lower extremity models were

calibrated for both subjects using the standard method with

no missing EMG signals and SynX with missing iliacus and

psoas EMG signals. Muscle excitations, activations, forces,

and net joint moments along with EMG-driven model

parameter values produced by the two calibration methods

were compared for the walking trials used in the calibration

process and additional walking trials held back for validation

purposes.

2 Methods

2.1 Experimental data collection and
processing

Previously published walking datasets collected from a high-

functioning hemiparetic subject (S1, male, height 1.70 m, mass

80.5 kg, age 79 years, right-hand hemiparesis, lower extremity

Fugl-Meyer Motor Assessment score of 32 out of a maximum 34)

and a low-functioning hemiparetic subject post-stroke (S2, male,

height 1.83 m, mass 88.5 kg, age 62 years, right-hand

hemiparesis, lower extremity Fugl-Meyer Motor Assessment

score of 25 out of a maximum 34) were used for this study

(Meyer et al., 2017; Li et al., 2020). Video motion capture (Vicon

Corp., Oxford, United Kingdom), ground reaction (Bertec Corp.,

Columbus, OH, United States), and EMG (Motion Lab Systems,

Baton Rouge, LA, United States) data were recorded

simultaneously while subjects walked on a split-belt

instrumented treadmill (Bertec Corp., Columbus, OH,

United States) at their self-selected (0.5 m/s for S1 and

0.45 m/s for S2) and fastest-comfortable (0.8 m/s for S1 and

0.65 m/s for S2) speeds. EMG data consisted of sixteen channels

collected from each leg at 1,000 Hz using a combination of

surface and fine wire electrodes (Table 1), which made EMG

data available for important deep muscles such as iliopsoas. All

experimental procedures were approved by the University of

Florida Health Science Center Institutional Review Board (IRB-

01), and both subjects provided written informed consent before

participation. Raw motion capture and ground reaction data

were low-pass filtered with a cut-off frequency of 7/tfHz, where tf

is the period of the gait cycle, while raw EMG data were high-pass

filtered at 40 Hz, demeaned, full-wave rectified, low-pass filtered

at 3.5/tf Hz, and normalized to maximum values over all

experimental gait cycles (McLean et al., 2005; Meyer et al.,

2017). Henceforth processed EMG data will be referred to as

“muscle excitations.” Thirty-four and thirty-three muscles in

each leg of the model that had either surface or fine-wire

EMG data were kept for analysis for S1 and S2, respectively

(Table 1). Data from ten gait cycles (five cycles per speed) per leg

were randomly selected for EMG-driven model calibration. After

pre-processing, data from each gait cycle were resampled to 101-

time points representing initial heel-strike (0%) to subsequent

heel-strike (100%) of the same foot. Twenty additional time

frames before the start of each gait cycle were retained to account

for a maximum electromechanical delay of approximately

100 ms for each muscle, which made each gait cycle possess

121 time points.

2.2 Musculoskeletal model analyses

In preparation for EMG-driven model calibration, we

performed a sequence of five musculoskeletal model

analyses. First, a generic full-body OpenSim

musculoskeletal model (Rajagopal et al., 2016) was scaled

to match each subject’s anthropometry using OpenSim 4.0

(Delp et al., 2007; Seth et al., 2018). Each leg of the model

possessed six degrees of freedom (DOFs), including hip

flexion/extension (HipFE), hip adduction/abduction

(HipAA), hip internal/external rotation (HipRot), knee

flexion/extension (KneeFE), ankle plantarflexion/

dorsiflexion (AnklePD), and ankle inversion/eversion

(AnkleIE). Second, the locations and orientations of joint

centers and axes, respectively, for the hip, knee, and ankle

of each leg were adjusted via nonlinear optimization such that

surface markers on the OpenSim model tracked

experimentally measured surface marker positions as

closely as possible for isolated joint motion and walking

trials (Reinbolt et al., 2005). Third, inverse kinematic (IK)

analyses were performed with OpenSim using experimental

marker motion data from the walking trials to obtain the time

histories of lower body joint angles. Fourth, inverse dynamic

(ID) analyses were performed with OpenSim using IK joint

angles and experimental ground reaction data for the same

walking trials to calculate lower extremity joint moments.

Fifth, for each muscle-tendon actuator in the model, a set of

surrogate musculoskeletal geometric models was fitted to

approximate the subject’s muscle-tendon lengths, velocities,

and moment arms as a function of lower extremity joint angles

and angular velocities (Menegaldo et al., 2004; Meyer et al.,

2017).

2.3 EMG-driven model calibration with
SynX

The proposed computational method employing synergy

extrapolation (SynX) to estimate missing muscle excitations

during EMG-driven model calibration involves five steps

(Figure 1), where all steps except the first one are

performed within a nonlinear optimization process. First,
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muscle synergy analysis (MSA) is performed on measured

muscle excitations via principal component analysis (PCA) to

extract time-varying synergy excitations (henceforth referred

to as “measured synergy excitations”) along with time-

invariant synergy vector weights that define how each

measured synergy excitation contributes to all measured

muscle excitations (see details in Extraction of measured

synergy excitations). Second, unmeasured muscle excitations

are constructed by linearly combining the measured synergy

excitations using the current guesses for the unmeasured

synergy vector weights and average values (see details in

Estimation of unmeasured muscle excitations). Third,

residual muscle excitations added to the experimental

muscle excitations are constructed by linearly combining

measured synergy excitations using the current guesses for

the residual synergy vector weights and average values (see

details in Estimation of residual muscle excitations). Fourth,

muscle activations, forces, and net joint moments are

calculated by the EMG-driven musculoskeletal modeling

using experimental joint kinematics and the current guesses

for muscle excitations and muscle-tendon model parameter

values when residual excitations are and are not included in

the calculation of net joint moments (see details in

Formulation of EMG-driven musculoskeletal model). Fifth,

the nonlinear optimization adjusts all synergy and muscle-

tendon model parameters to reduce the multi-objective cost

function (see details in Calibration of EMG-driven

musculoskeletal model). Below we describe each of these

five steps as applied to 10 cycles of gait data for each leg of

the two experimental subjects.

2.3.1 Extraction of measured synergy excitations
Measured synergy excitations were extracted from the

measured muscle excitations (excluding iliopsoas excitations

when using SynX) by performing muscle synergy analysis

(MSA). A previous study explored how methodological

choices involved in MSA affect synergy extrapolation

performance when a pre-calibrated EMG-driven

musculoskeletal model is used (Ao et al., 2020). That

study demonstrated that principal component analysis

(PCA) with five or six synergies consistently predicted

unmeasured muscle excitations accurately, while non-

negative matrix factorization (NMF) could not achieve

acceptable prediction accuracy. Moreover, EMG

normalization did not significantly affect synergy

extrapolation performance. Thus, in this study, measured

muscle excitations were normalized to their maximum values

over all trials, and PCA was selected for performing MSA.

For between four and seven synergies, measured muscle

excitations were decomposed via PCA and represented as:

em � WmHm + μm + εm (1)

FIGURE 1
Flow chart of EMG-driven model calibration with synergy extrapolation (SynX) to estimating missing EMG signals. Orange rectangle boxes
indicate optimization design variables, including activation dynamics model parameters, muscle-tendon model parameters, average values and
synergy vector weights for unmeasured muscle excitations, and average values and synergy vector weights for residual excitations. The design
variables were calibrated simultaneously by solving a nonlinear multi-objective optimization problem, described as “Params + SynX + Res”
calibration. The objective function was formulated as a trade-off between joint moment tracking accuracy (with and without residual excitations
included) and the magnitude of estimated unmeasured and residual muscle activations. Green parallelogram boxes indicate variables that were
measured experimentally. Blue rectangle boxes indicate important intermediate variables generated within the SynX process. MSA stands for muscle
synergy analysis.
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where em stands for measured muscle excitations, Wm for time-

varying measured synergy excitations, and Hm for associated

measured synergy vector weights. εm accounts for the

decomposition residuals that could not be explained by

WmHm + μm, where μm specifies the average value of each

measured muscle excitation.

MSA was performed to extract measured synergy

excitations based on three assumptions about how

measured synergy vector weights vary across trials. First,

measured synergy vector weights were assumed to be trial-

specific, necessitating a separate PCA decomposition for each

trial individually, where em was a ntrial (frames per trial) × k

(measured excitations) matrix. Wm became an ntrial (frames

per trial) × p (synergies) matrix and Hm became a = p

(synergies) × k (measured excitations) matrix. Second,

measured synergy vector weights were assumed to be

speed-specific, where the measured muscle excitations from

trials with the same speed were concatenated such that em
became nspeed (frames per speed) × k (measured excitations).

Thus, Wm became nspeed (frames per speed) × p (synergies)

and Hm became p (synergies) × k (measured excitations).

Third, measured synergy vector weights were assumed to be

subject-specific. For this assumption, PCA was run on a

concatenated matrix of measured muscle excitations over

all trials, where em was nsubject (frames over all trials) by k

(measured excitations). Wm had dimension of nsubject (frames

over all trials) × p (synergies) and Hm had the dimension of p

(synergies) × k (measured excitations). In this study, five trials

were analyzed for each of the two walking speeds, which led

nspeed to be 605 [121 (frames per trial) × 5 (trials per speed)]

and nsubject to be 1,210 [121 (frames per trial) × 10 (trials over

two speeds)]. PCA-based MSAs were performed using the

“pca” command in MATLAB (The Mathworks, Natick, MA).

2.3.2 Estimation of unmeasured muscle
excitations

Following MSA, unmeasured muscle excitations were

constructed from the measured synergy excitations Wm as

shown in Eq. 2 below:

eSynX � WmHSynX + μSynX (2)

where eSynX represents the unmeasured muscle excitations,

HSynX represents the unmeasured synergy vector weights, and

μSynX represents the average value of each unmeasured muscle

excitation. Both HSynX and μSynX were design variables in the

optimization problems formulated within our EMG-driven

calibration approach (see more details in Section 2.3.5).

Unmeasured synergy vector weights were assumed to be trial-

specific, speed-specific, or subject-specific (henceforth referred to

as “categories of unmeasured synergy vector weights”), where

Wm used for reconstruction was consistent with the

corresponding category. More specifically, ten sets of HSynX

and μSynX were generated for the trial-specific category, two

sets ofHSynX and μSynX for the speed-specific category, and only

one set of HSynX and μSynX for the subject-specific category. For

all categories of unmeasured synergy vector weights, HSynX was

of dimensions p (synergies) × q (unmeasured excitations) and

μSynX was 1 × q (unmeasured excitations).

2.3.3 Estimation of residual muscle excitations
Similar to unmeasured muscle excitations, residual

muscle excitations were constructed from the measured

synergy excitations Wm using the following relationship:

eres � WmHres + μres (3)

where eres denotes residual muscle excitations, Hres denotes

residual synergy vector weights, and μres denotes the average

value of the residual muscle excitation. Again, residual synergy

vector weights were assumed to be trial-specific, speed-specific,

or subject-specific specific (henceforth referred to as “categories

of residual synergy vector weights”), where Wm used for

reconstruction was consistent with the corresponding

category. For all categories of residual synergy vector weights,

Hres was of dimensions p (synergies) × q (measured excitations)

and μres was 1 × q (measured excitations). The estimated residual

muscle excitations were added to the measured muscle

excitations to produce adjusted measured excitations:

eresm � em + eres (4)

where eresm refers to measured muscle excitations with residual

excitations included.

2.3.4 Formulation of EMG-driven
musculoskeletal model

Once unmeasured and residual muscle excitations were

constructed, an EMG-driven musculoskeletal model was used

to predict the six lower extremity net joint moments (Lloyd and

Besier, 2003; Manal and Buchanan, 2003; Amarantini and

Martin, 2004; Shao et al., 2009; Menegaldo et al., 2014; Sartori

et al., 2014; Pizzolato et al., 2015; Meyer et al., 2017; Ao et al.,

2020). First, muscle excitations e(t) were scaled by muscle-

specific scale factors sEMG between 0.05 and 1 to reflect the

fact that true maximum excitation levels are likely to be higher

than those observed experimentally. Next, neural activation u(t)
was calculated from muscle excitation e(t) using a published

activation dynamics model (He et al., 1991) that used a first-order

ordinary differential equation to define the relationship between

e(t) and u(t):
du(t)
dt

� (c1e(t − d) + c2)(e(t − d) − u(t)) (5)
c1 � 1/τact − 1/τdact (6)

c2 � 1/τdact (7)
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where τact and τdact are activation and deactivation time

constants, respectively, τdact was assumed to be 4τact (Zajac,

1989; Meyer et al., 2017), and d denotes an electromechanical

time delay. Once neural activation was computed, a nonlinear

function was used to determine the corresponding muscle

activation a(t) (Manal and Buchanan, 2003):

a(t) � (1 − c3)u(t) + c3[ g1

g2(u(t) + g3)g4 + g5
+ 1] (8)

where c3 is an activation nonlinearity constant, g1 to g5 are

constant coefficients determined by fitting published

experimental data from isometric contractions (Manal and

Buchanan, 2003).

Two sets of muscle activations were calculated when residual

muscle excitations were and were not included, respectively. The

muscle activations predicted from a combination of unmeasured

muscle excitations (eSynX) andmeasured muscle excitations (em)
were defined as apre, while the muscle activations predicted from

a combination of unmeasured muscle excitations (eSynX) and

measured muscle excitations with residual excitations included

(eresm ) were defined as arespre. Residual muscle activations ares were

then defined as the difference between arespre and apre:

ares � arespre − apre (9)

Next, taking both apre and arespre as inputs, a Hill-type muscle-

tendon model with rigid tendon (Hill, 1938; Zajac, 1989; Meyer

et al., 2017) was used to predict the force generated by a given

muscle-tendon actuator as shown below:

F(t) � FM
o · [a(t) · fl(~lM(t)) · fv(~vM(t)) + fp(~lM(t))] cos α

(10)
where F(t) is the force generated by the muscle-tendon actuator,

FM
o is the maximum isometric force of the muscle, a is the muscle

activation, ~l
M(t) and ~vM(t) are the time-varying normalized

muscle fiber length and velocity, respectively, and α is the

pennation angle of the muscle. fl(~lM(t)) and fv(~vM(t))
define the normalized active muscle force-length and force-

velocity relationships, respectively, while fp(~lM(t)) defines the
normalized passive muscle force-length relationship. ~l

M(t) and
~vM(t) were calculated using the following equations, which

assume a rigid tendon:

~l
M(t) � lMT(t) − lTs

lMo
(11)

~vM(t) � vMT(t)
10 · lMo

(12)

where lMT is muscle-tendon length and vMT muscle-tendon

velocity, lMo is optimal muscle fiber length, and lTs is tendon

slack length. With this muscle-tendon model, muscle forces were

estimated when residual excitations were included (Fres
pre) and not

included (Fpre) during prediction respectively.

Once Fres
pre and Fpre were computed for all muscles in the

model, their contributions to net joint moments M were

calculated using the corresponding muscle moment arms:

M(t) � ∑F(t) · r(t) (13)

where r is muscle moment arm defined as the negative of the

partial derivative of muscle-tendon length lMT with respect to

generalized coordinate θ (An et al., 1984):

r(t) � −zl
MT(t)
zθ

(14)

The negative sign in Eq. 14 was implemented for consistency

with the OpenSim modeling environment. As required by the

cost function for EMG-driven model calibration, net joint

moments were calculated when residual excitations were

(Mres
pre) and were not (Mpre) included in the measured

muscle excitations.

2.3.5 Calibration of EMG-drivenmusculoskeletal
model

Calibration of the EMG-driven musculoskeletal model with

simultaneous estimation of missing iliacus and psoas EMG

signals was performed by using nonlinear optimization to

adjust four categories of design variables: 1) activation

dynamics model parameters consisting of EMG scale factor,

sEMG, electromechanical delay d, activation time constant τact,

and activation nonlinearity constant c3, 2) scaling factors for

muscle-tendon model parameters consisting of optimal muscle

fiber length lMo and tendon slack length lTs , 3) synergy vector

weights HSynX and average values μSynX associated with

unmeasured muscle excitations, and 4) synergy vector weights

Hres and average values μres associated with residual muscle

excitations. To develop and evaluate the performance of our

SynX approach, we formulated three optimization problems

using various combinations of design variables (Table 2).

First, to estimate missing EMG signals, we calibrated EMG-

driven model parameters, synergy vector weights plus average

values for unmeasured muscle excitations, and synergy vector

weights plus average values for residual muscle excitations

(termed “Params + SynX + Res,” see details in Case 1: Params

+ SynX + Res). Second, to explore how SynX performance is

influenced by the inclusion of residual muscle excitations, we

calibrated only EMG-driven model parameters and synergy

vectors weights plus average values for unmeasured muscle

excitations (termed “Params + SynX,” see details in Case 2:

Params + SynX). Third, to evaluate how well important

biomechanical variables (e.g., muscle activations, muscle

forces, and net joint moments) can be estimated using

“Params + SynX + Res” calibration, we calibrated only EMG-

driven model parameters using the complete set of EMG signals

with no muscle excitations predicted by SynX (termed “Params,”

see details in Case 3: Params). For all three optimization
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problems, if unmeasured or residual muscle excitations were

needed, we explored all possible methodological combinations of

the number of synergies, category of unmeasured synergy vector

weights, and category of residual synergy vector weights.

2.3.5.1 Case 1: Params + SynX + Res

EMG-driven model calibration typically adjusts muscle

forces by altering muscle-tendon model parameter values such

that the difference between model-predicted and inverse

dynamic (ID) joint moments are minimized. However,

when unmeasured muscle excitations are estimated via

SynX during EMG-driven model calibration, four terms are

minimized simultaneously: 1) sum of squares of errors

between model-predicted (Mres
pre) and inverse dynamic

(Mexp) joint moments when residual muscle excitations are

included in joint moment calculations, termed JresMom; 2) sum of

squares of errors between model-predicted (Mpre) and inverse
dynamic (Mexp) joint moments when residual muscle

excitations are not included in the joint moment

calculations, termed JMom; 3) sum of squares of

unmeasured muscle activations estimated by SynX (aSynX),
termed JSynXact ; and 4) sum of squares of residual muscle

activations (ares), termed Jresact. Thus, the cost function for

EMG-driven model calibration with SynX was formulated as:

min J ≜ JresMom + JMom + JSynXact + Jresact (15)
where

JresMom � ∑(Mres
pre −Mexp

MAD1
)

2

(16)

JMom � ∑(Mpre −Mexp

MAD2
)

2

(17)

JSynXact � ∑( aSynX
MAD3

)
2

(18)

Jresact � ∑( ares

MAD4
)

2

(19)

All four cost function terms (16–19) were normalized by a

maximum allowable deviation (MAD). A sensitivity analysis was

performed to determine aMADvalue for each cost function term, as

described in the Appendix. Specific details about initial guesses and

upper/lower bounds for each design variable, additional constraints,

and cost function penalty terms can be found in Supplementary

Table S1 in the Appendix and previously published papers (Meyer

et al., 2017; Ao et al., 2020). All optimizations were performed using

MATLAB’s “fmincon” function with the sequential quadratic

programming algorithm.

2.3.5.2 Case 2: Params + SynX

To assess how well unmeasured muscle excitations can be

predicted when no residual muscle excitations are included, we

estimated unmeasured muscle excitations as in Case 1 but

without adding residual muscle excitations to the measured

muscle excitations. For this case, the cost function was:

min J ≜ ∑(Mpre −Mexp

MAD2
)

2

+∑( aSynX
MAD3

)
2

(20)

where Mpre denotes the joint moments calculated from a

combination of measured (em) and unmeasured (eSynX)
muscle excitations.

2.3.5.3 Case 3: Params

To evaluate the performance of our computational approach

for different methodological choices, we performed EMG-driven

model calibration using the full set of EMG signals, where no

EMG signals were treated as “unmeasured,” and only activation

dynamics and muscle-tendon model parameter values were

optimized to match the experimental joint moments from

inverse dynamics:

min J ≜ ∑(Mpre −Mexp

MAD2
)

2

(21)

where Mpre represents model-predicted net joint moments

produced by a complete set of muscle excitations.

2.4 EMG-driven model evaluation

Several common metrics were used to evaluate the outcome

of muscle synergy analysis and the reliability of unmeasured

TABLE 2 Summary of calibration cases, which were named based on categories of design variables included in the optimization problem formulation.

Abbreviation EMG-driven model parameters Unmeasured muscle
excitations

Residual muscle excitations

Calibrated? Values from? Calibrated? Values from? Calibrated? Values from?

Params + SynX + Res Yes — Yes — Yes —

Params + SynX Yes — Yes — No 0

Params Yes — No Exp No 0

Exp. means experimental; “Values from” column indicates which values were used if the variables were not calibrated through optimization.
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muscle excitations generated using SynX with all possible

methodological combinations. First, the variance accounted

for (VAF) was computed between experimental and

reconstructed muscle excitations of measured muscles, where

the number of synergies in each leg was determined using a

threshold criterion of 95% VAF (Tresch et al., 2006; Steele et al.,

2013). Next, the EMG-driven model calibration process utilizing

SynX was evaluated in three stages. In the first stage, the influence

of different methodological choices (i.e., number of synergies,

category of unmeasured and residual synergy vector weights) on

SynX performance was investigated, and the choices that

produced the most reliable estimates of unmeasured muscle

excitations were identified. The two “most reliable” SynX

methodological combinations for two distinct situations were

identified by quantifying how well unmeasured muscle

excitations and activations for psoas and iliacus could be

predicted. Root mean square error (RMSE) and Pearson

correlation coefficient r between experimental (from “Params”

case) and estimated (from “Params + SynX + Res” case) muscle

excitations and activations for iliacus and psoas across two speeds

were computed to quantify matching of magnitude and shape,

respectively. Correlation was interpreted quantitatively as weak

(r < 0.35), moderate (0.35 < r ≤ 0.67), strong (0.67 < r ≤ 0.9), or

very strong (r ≤ 0.9) (Taylor, 1990). The first situation involved

predictions made when synergy vector weights and average

values for unmeasured muscle excitations, along with muscle-

tendon model parameter values, were calibrated via SynX. This

situation (called “calibration”) is how the EMG-driven model

would analyze walking trials used in the calibration process,

where synergy vector weights and average values for unmeasured

and residual muscle excitations can be calibrated on a trial-

specific, speed-specific, or subject-specific basis. The second

situation involved predictions made when synergy vector

weights and average values for unmeasured muscle

excitations, along with muscle-tendon model parameter

values, were pre-calibrated via SynX. This situation (called

“validation”) is how the EMG-driven model would be used to

analyze experimental walking trials not used in the calibration

process or to generate computationally predicted walking

motions, where pre-calibrated synergy vector weights and

average values for unmeasured muscle excitations must be

utilized on either a speed-specific or subject-specific basis

(Meyer et al., 2016; Sauder et al., 2019). In the second stage,

muscle activations, forces, and net joint moments from “Params

+ SynX + Res” calibration were compared with those from

“Params” calibration for both subjects using the first “most

reliable” methodological combination applied to 10 calibration

walking trials (five per speed). In the third stage, muscle

activations, forces, and net joint moments from “Params +

SynX + Res” validation were compared with those from

“Params” validation for both subjects using the second “most

reliable” methodological combination applied to 10 validation

walking trials (five per speed) not utilized in the calibration

process. For this stage, unmeasured synergy vectors weights and

average values were fixed at their calibrated values. Mean

absolute errors (MAE) between inverse dynamic and model-

predicted net joint moments were calculated for “Params + SynX

+ Res” and “Params” cases using calibration trials in the second

stage and validation trials in the third stage, respectively.

Variance accounted for (VAF) was computed between

experimental and model-predicted unmeasured muscle

excitations, where the number of synergies in each leg was

determined using a threshold criterion of 95% VAF (Tresch

et al., 2006; Steele et al., 2013).

Multiple statistical analyses were performed to assess

whether the calculated metrics resulting from different SynX

methodological choices were statistically different. To assess

whether methodological choices for MSA had a statistically

significant impact on the reconstruction performance of

measured muscle excitations, we performed a two-factor

ANOVA with a Tukey-Kramer post-hoc analysis on VAF

values. Second, to compare SynX performance among

different SynX methodological choices, we performed a three-

factor ANOVA tests on r and RMSE values across both patients

and all calibration trials, followed by paired t-tests for comparing

categories of synergy vector weights for a given number of

synergies. For example, when we compared the difference

among categories of unmeasured synergy vector weights, we

paired r or RMSE values such that each pair shared the same

category of residual synergy vector weights and number of

synergies when associated with the same leg. Third, to

investigate whether the inclusion of residual muscle

excitations influenced SynX performance, we performed

paired t-tests on r and RMSE values between “Params + SynX

+ Res” calibration with each category of residual synergy vector

weights and “Params + SynX” calibration with no residual

excitations. Fourth, we conducted paired t-tests to compare

the joint moment matching errors (MAE values) between

“Params” calibration and “Params + SynX + Res” calibration,

where residual excitations were used in the calibration process

but not included in the final joint moment calculation. All

statistical analyses were performed in MATLAB, and the level

of statistical significance was set at p < 0.05.

3 Results

3.1 Analysis of experimental muscle
synergies

The two-way ANOVA applied to mean VAF values between

reconstructed and experimental muscle excitations of measured

muscles revealed the main effects of the number of synergies (p <
0.05) and the category of measured synergy vector weights (p <
0.05) on the variance explained by the factorization of measured

muscle excitations. Post-hoc analysis indicated that VAF values
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significantly increased as the number of synergies increased from

four to seven (p < 0.05). Also, with the same number of synergies,

trial-specific synergy vector weights provided the highest VAF

values, while subject-specific synergy vector weights provided the

lowest VAF values for both S1 and S2 (Table 3). Overall, when

using trial-specific synergy vector weights, measured muscle

excitations were predicted with >95% VAF with four synergies

for S1 and S2. When synergy vector weights were shared within

the same speed, six synergies were needed for the left leg of S1,

seven synergies were needed for the right leg of S1 and the left leg

of S2, and four synergies were needed for the right leg of S2. As

synergy vector weights were held constant across all trials, seven

synergies were required for all legs except for the right leg of S2,

where only 5 synergies were needed.

3.2 First stage: Influence of
methodological choices on SynX
performance

In the first stage, the impact of different methodological

combinations (i.e., number of synergies, category of unmeasured

and residual synergy vector weights) on SynX performance was

evaluated using r and RMSE values between predicted and

measured iliopsoas muscle excitations. The three-factor

ANOVA analyses revealed that the category of unmeasured

synergy vector weights, category of residual synergy vector

weights, and the number of synergies significantly affected

both r and RMSE values that characterized SynX performance

(p < 0.05). Several general observations were made by assessing

the results for both psoas and iliacus and both subjects as a whole

(Figure 2 and Supplementary Figure S2). First, without residual

excitations being calibrated through optimization (labeled as

“None” from “Params + SynX” calibration), r values were

significantly lower, and RMSE values were significantly higher

than those for any of the three categories of residual synergy

vector weights (p < 0.05). Second, five and six synergies offered

substantially higher r values and lower RMSE values than did

four and seven synergies (p < 0.05), while no significant

difference was detected between five and six synergies (p =

0.096). r values reached a maximum value, and RMSE values

reached a minimum value at five synergies for the right leg of

S2 or six synergies for both legs of S1 and the left leg of S2. Third,

using speed-specific and trial-specific residual synergy vector

weights yielded significantly better SynX performance than using

subject-specific residual synergy vector weights (p < 0.05).

Furthermore, when using five or six synergies, particularly

trial-specific residual synergy vector weights, higher r and

lower RMSE values were achieved when assuming them

speed-specific. Fourth, with five or six synergies, using trial-

specific synergy vector weights for the reconstruction of

unmeasured muscle excitations provided the greatest r values

and the lowest RMSE values, while subject-specific synergy

vector weights provided the smallest r values and the biggest

RMSE values (p < 0.05).

Two “most reliable” SynX methodological combinations

were identified for “calibration” and “validation” situations,

respectively. As highlighted by oranges boxes in Figure 2 and

Supplementary Figure S2, best SynX performance for both

unmeasured muscled and both subjects was provided with six

synergies, trial-specific unmeasured synergy vector weights, and

speed-specific residual synergy vector weights, which could be

used to analyze walking trials used in the calibration process.

Further results obtained in the second stage for the “calibration”

situation were described in Second stage: Evaluation of

“calibration” situation of the results. As indicated by purple

boxes in Figure 2 and Supplementary Figure S2, to analyze

experimental walking trials not used in the calibration process

or to generate computationally predicted walking motions, a

SynX-performing methodological combination was chosen using

TABLE 3 Mean ± standard deviation of VAF values for the reconstruction of measured muscle excitations with muscle synergy analysis across both
subjects and all calibration trials with four to seven synergies when unmeasured synergy vector weights were assumed to be trial-specific, speed
specific, or subject-specific.

Sub Variability assumption Left Right

Number of synergies Number of synergies

4 5 6 7 4 5 6 7

S1 Trial 96.5 ± 1.5 98.2 ± 0.7 99.3 ± 0.3 99.7 ± 0.1 95.2 ± 2.4 96.8 ± 1.8 98.6 ± 0.9 99.2 ± 0.5
Speed 91.0 ± 3.6 93.7 ± 2.2 96.1 ± 1.5 97.4 ± 1.1 87.7 ± 5.6 92.2 ± 3.8 94.3 ± 2.5 95.5 ± 2.0
Subject 89.2 ± 5.6 92.1 ± 3.3 94.8 ± 2.6 96.2 ± 1.6 84.4 ± 7.1 88.5 ± 3.6 92.2 ± 4.4 95.1 ± 3.3

S2 Trial 95.3 ± 1.8 97.6 ± 1.2 98.8 ± 0.6 99.5 ± 0.2 97.3 ± 1.1 98.6 ± 0.5 99.3 ± 0.3 99.6 ± 0.2
Speed 89.3 ± 4.1 93.2 ± 2.6 93.2 ± 2.6 97.1 ± 0.9 95.3 ± 0.9 96.5 ± 0.9 97.3 ± 0.7 97.9 ± 0.4
Subject 87.8 ± 4.5 91.3 ± 2.7 94.7 ± 1.9 96.0 ± 1.7 93.1 ± 1.4 95.4 ± 0.8 96.3 ± 0.7 97.1 ± 0.8

Sub. means subject bold represents the minimum number of synergies required for the specific leg to achieve a VAF above 95%.
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six synergies and speed-specific synergy vector weights for the

reconstruction of both unmeasured muscle excitations and

residual muscle excitations. Further results obtained in the

third stage for the “validation” situation were

described in Third stage: Evaluation of “validation” situation

of the results.

FIGURE 2
Synergy extrapolation performance for different methodological combinations when using the proposed EMG-driven calibration framework.
(A) Pearson correlation coefficient r values and (B) root mean square error (RMSE) values for different methods of reconstructing psoas muscle
activations across all calibration trials. (C) Pearson correlation coefficient r values and (D) rootmean square error (RMSE) values for different methods
of reconstructing iliacus muscle activations across all calibration trials. Unmeasured (bottom) and residual (side) synergy vector weights were
categorized as either trial-specific, speed-specific, or subject-specific. Within the columns for 6 synergies, Orange boxes indicate the best SynX
methodological combination (trial-specific unmeasured and speed-specific residual synergy vector weights) for calibration. The purple boxes
indicate the best SynX methodological combination (speed-specific unmeasured and speed-specific residual synergy vector weights) for validation.
Residual synergy vector weights categorized as “None” indicate calibration results for “Params + SynX” where no residual muscle excitations were
predicted. These results suggest that “Params + SynX” calibration should be rejected due to unacceptable SynX performance.
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3.3 Second stage: Evaluation of
“calibration” situation

For “Params + SynX + Res” calibration, the most reliable

estimates of unmeasured muscle excitations and activations

were achieved using six synergies, trial-specific unmeasured

synergy vector weights, and speed-specific residual synergy

vector weights (Figure 3). Compared to the results from the

“Params” calibration, unmeasured muscle excitations (left

two columns) were predicted with strong correlations for the

left leg of S1 and both legs of S2 and with moderate

correlations for the right leg of S1. The corresponding

unmeasured muscle activations (right two columns) were

strongly correlated with those from “Params” calibrations for

both legs of S1 and the left leg of S2 and moderately

correlated for the right leg of S2. SynX-estimated muscle

excitations and activations were predicted with low RMSE

values (<0.071) across all legs.
Compared with MAE values between model-predicted and

experimental ID joint moments from “Params” calibrations,

the MAE values were slightly lower but statistically

comparable (p > 0.05) for all joints from “Params + SynX +

Res” calibrations when residual excitations were calibrated but

not used for joint moment calculation (Figure 4). However, the

joint moment errors were significantly lowered (p < 0.05) when

including residual muscle excitations in the prediction process

(Supplementary Table S2 in the Appendix). On average,

measured muscle activations generated from “Params + SynX

+ Res” calibration remained close to the those from “Params”

calibration (Figure 5), where the greatest deviations were

observed for the muscles that spanned the hip joint (e.g.,

glmed2). In addition, for measured and unmeasured muscles,

muscle forces estimated from “Params + SynX + Res” calibration

were in excellent agreement with those estimated from “Params”

calibration in terms of both shape and magnitude (Figure 6).

Moreover, in general, EMG-driven model parameter values were

similar between “Params + SynX + Res” calibration and

“Params” calibration (Figure 7). However, when additional

variables (i.e., unmeasured muscle synergy vector weights and

residual synergy vector weights) were tuned simultaneously, the

pattern defined by the parameter magnitudes over all muscles

was still retained for each model parameter.

FIGURE 3
SynX-predicted muscle excitations and activations for psoas constructed with the best methodological combinations for the “calibration”
situations (trial-specific unmeasured and speed-specific residual synergy vector weights with six synergies). Lines represent mean curves across
calibration trials, and shaded areas represent ±1 standard deviation. r and RMSE values for muscle excitations and activations were calculated
between “Params + SynX + Res” calibration (in pink) and “Params” calibration (in blue). “Params” calibration was performed using a complete set
of EMG signals, where nomuscle excitations were predicted. Data are reported for the complete gait cycle, where 0% indicates initial heel-strike and
100% indicates subsequent heel-strike for each leg of both subjects (right leg: paretic, left leg: nonparetic). SynX-predicted muscle excitations and
activations for iliacus were of similar accuracy.
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3.4 Third stage: Evaluation of “validation”
situation

Best SynX methodological choices to analyze

experimental walking trials not used in the calibration

process or to generate computationally predicted walking

motions was a combination of speed-specific unmeasured

synergy vector weights speed-specific residual vector weights

and with 6 synergies (Figure 2). From “Params + SynX + Res”

calibrations with this method, estimated muscle excitations

for “iliopsoas” (left two columns) were correlated with the

results from “Params” calibration strongly for left legs of

both subjects and moderately for right legs of both subjects

(Figure 8). There was strong correlations between

muscle activations for “psoas” (right two columns)

from “Params + SynX + Res” calibrations and the ones

from “Params” calibrations for both legs of S1 and left

leg of S2, while the correlation was moderate for right

leg of S2. As for magnitude, the highest errors

(RMSE = 0.1) occurred in the muscle activations for right

leg of S2.

“Params + SynX + Res” calibrations with this methodological

combination were able to capture experimental joint moments

with reasonable accuracy (Table 4 and Figure 9A). With respect

to the range of variation assumed by the average experimental

joint moments, averageMAE values were 0.09 for HipFE, 0.10 for

HipAA, 0.22 for HipRot, 0.11 for KneeFE, 0.07 for AnklePD and

0.21 for AnkleIE. Moreover, calibrated EMG-driven models and

speed-specific unmeasured synergy vector weights were capable

of predicting prediction joint moments for validation trials with

comparable accuracy (Table 4 and Figure 9B). Compared with

the joint moments estimated from “Params”, “Params + SynX +

Res” calibrations matched the ID joint moments slightly better at

three hip DOFs and slightly worse at knee DOF and two ankle

DOFs for both calibration trials and validation trials, whereas the

difference were not statistically significant (p = 0.092, Table 4 and

Figure 9), Additionally, for both calibration and validation trials,

“Params + SynX + Res” calibration using this methodological

combination could provide similar estimates of muscle

activations (Supplementary Figure S5) or muscle forces

(Supplementary Figure S6) to the results predicted from

“Params” calibration case in terms of both shape and magnitude.

FIGURE 4
Average joint moments across calibration trials and subjects from inverse dynamics (in red), “Params” calibration (in blue), and “Params + SynX +
Res” calibration (in yellow). The results for “Params + SynX + Res” calibration were generated with the best methodological combination for
calibration conditions (trial-specific unmeasured and speed-specific residual synergy vector weights with 6 synergies). For “Params + SynX + Res,”
residual excitations were calibrated to improve the prediction of unmeasured muscle excitations but not used to calculate joint moments. Data
are reported for the complete gait cycle, where 0% indicates initial heel-strike and 100% indicates subsequent heel-strike.
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4 Discussion

In this paper, a novel computational approach was presented

to address the problem of a small number of missing EMG signals

during EMG-driven model calibration (Figure 1). SynX was

employed to predict unmeasured muscle excitations by

linearly combining synergy excitations extracted from

measured muscle excitations, where the contribution of each

synergy excitations to an unmeasured muscle excitation was

determined by a set of unmeasured synergy vector weights.

Meanwhile, residual muscle excitations constructed as a linear

combination of measured synergy excitations were added to

measured muscle excitations. We explored the influence of

several important SynX methodological choices on prediction

accuracy of unmeasured muscle excitations and muscle

activations. We then identified two SynX methodological

combinations to analyze experimental walking trials used in

the calibration process and not used in the calibration process.

First, a combination of trial-specific unmeasured synergy vector

weights, speed-specific residual synergy vector weights and six

synergies should be hired for analyzing experimental walking

motions included in the calibration process. This methodological

combination can not only provide accurate and reliable missing

muscle excitations and activations, but estimates of muscle forces

and joint moments that stayed close to the ones obtained from

“Params” calibration for both subjects. Second, with a

combination of speed-specific unmeasured synergy vector

weights, speed-specific residual synergy vector weights and six

synergies, we were still capable of estimating these important

biomechanical quantities with reasonable accuracy. More

importantly, these methods permitted us to analyze

experimental walking trials not used in the calibration process

or generate computationally predicted walking motions.

Synergy extrapolation (SynX) has been an emerging

approach to predict unmeasured muscle excitations by the use

of muscle synergy information extracted from measured muscle

excitations (Bianco et al., 2018; Ao et al., 2020). Bianco et al.

investigated the theoretical feasibility of using synergy excitations

extracted from a group of eight “included” muscle excitations

treated as measured to construct muscle excitations for a group of

eight “excluded” muscle excitations treated as unmeasured

(Bianco et al., 2018). To take a step forward, a previous paper

from the author has shown that SynX could provide accurate

estimates of unmeasured muscle excitations, where unmeasured

FIGURE 5
Average muscle activations across calibration trials and subjects from “Params” calibration (in blue), and “Params + SynX + Res” calibration (in
yellow). Results for “Params + SynX + Res” calibration were generated using the best methodological combinations for analyzing experimentally
measured walking motions (trial-specific unmeasured and speed-specific residual synergy vector weights with six synergies). Here, residual
excitations were calibrated but not used to calculate muscle activations for “Params + SynX + Res.” Data are reported for the complete gait
cycle, where 0% indicates initial heel-strike and 100% indicates subsequent heel-strike.
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synergy vector weights were identified through non-linear

optimizations by incorporating a well-calibrated EMG-driven

model (Ao et al., 2020). However, the “well-calibrated” EMG-

driven model was obtained with the knowledge of muscle

excitations being treated as unmeasured. Thus, this paper had

achieved to implement SynX without demands of EMG data that

were sought to be predict, which marked the feasibility of SynX in

practical applications. Moreover, EMG-driven model calibration

with SynX was formulated such that both unmeasured muscle

excitations and EMG-driven model parameters were defined

simultaneously, which provided advantages for both EMG-

driven model personalization and missing muscle excitation

prediction.

Calibration of synergy-structured residual muscle excitations

were included in the proposed framework to improve the

accuracy of SynX-predicted unmeasured muscle excitations

(Figure 1). Noted that even though we performed a sequence

of steps to improve model correctness and subject-specificity

prior to EMG-driven model calibration, there were still some

resources of errors that affected accuracy of joint moment

estimation, such as marker location errors, soft tissue

movement errors, and surface EMG measurement errors

(Lloyd and Besier, 2003; Manal and Buchanan, 2013; Meyer

et al., 2017). Therefore, when unmeasured muscle excitations

became design variables that were iteratively adjusted within

EMG-driven model calibration for SynX, they inclined to deviate

from experimental muscle excitations such that joint moment

matching errors were minimized (see “Params + SynX”

calibrated results in Figure 2 and Supplementary Figure S2

which were labeled as “None” for the category of residual

synergy vector weights). Residual muscle excitations were

introduced to account for joint moment matching errors,

which facilitated to prevent predicted missing muscle

excitations from excessively compensating for joint moment

prediction inaccuracy through optimization and becoming

inaccurate as a consequence.

Even though residual muscle excitations were needed to

predict within “Params + SynX + Res” optimization, our

EMG-driven model calibration method could still generate

two sets of joint moments, depending on whether residual

muscle excitations were included or not for joint moment

calculation. To illustrate the discrepancy in results between

“Params + SynX + Res” and “Params” calibrations, we

consistently presented the muscle activations (Figure 5),

FIGURE 6
Averagemuscle forces across calibration trials and subjects from “Params” calibration (in blue) and “Params + SynX + Res” calibration (in yellow).
Results for “Params + SynX + Res” calibration were produced using the best methodological combinations for analyzing experimentally measured
walking motions (trial-specific unmeasured and speed-specific residual synergy vector weights with six synergies). Here, residual excitations were
calibrated but not used to calculate muscle forces for “Params + SynX + Res.”Data are reported for the complete gait cycle, where 0% indicates
initial heel-strike and 100% indicates subsequent heel-strike.
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muscle forces (Figure 6) and joint moments (Figure 4) calculated

without inclusion of residual muscle excitations. However, joint

moment prediction errors could be substantially reduced (by

averagely 3 Nm) when including residual muscle excitations for

joint moment calculation (Supplementary Table S2). Thus, joint

moments outputted from our framework could be highly

dependent on the actual demands, where residual muscle

excitations could be included in the prediction of joint

moments, if the difference between model-predicted and

experimental joint moments are required to be as low as possible.

As a follow-up step of “Params” calibration, we calibrated

the residual excitations needed for all the muscles (including

psoas and iliacus) to match joint moments from inverse

dynamics better (termed “Res” calibration), where the

EMG-driven model parameters were held constant with the

values obtained through “Params” calibration. We found that

joint moment tracking accuracy was significantly improved by

including synergy-structured residual excitations (p < 0.05),

where the extent of improvements were dependent on the

category of residual synergy vector weights (Supplementary

Figure S3). More interestingly, we observed that within the

regions of gait cycle where SynX-predicted muscle excitations

and activations from “Params + SynX + Res” calibration could

not match well with the ones from “Params” calibration, they

showed good agreement with the ones from “Res” calibrations

(Supplementary Figures S8, S9). Therefore, we believed that

SynX-predicted muscle excitations and activations within our

framework were likely superposition of “experimental”

muscle activities and corresponding synergy-structured

residual muscle activities needed for psoas and iliacus to

improve joint moment matching.

For several important reasons, synergy structures were

imposed on both unmeasured muscle excitations and residual

muscle excitations in our framework. First, unlike SO that solved

a time frame of muscle activation at a time (Anderson and Pandy,

2001; Ackermann and van den Bogert, 2010; Sartori et al., 2014;

Zonnino and Sergi, 2019), unmeasured and residual synergy

vector weights were time-invariant, which opened the possibility

of a single-layer optimization process to simultaneously achieve

EMG-driven model personalization and missing muscle

excitation prediction. Second, muscle excitation-activation

relationships were defined by a set of differential equations

(Meyer et al., 2017), synergy-structured excitations could be

resolved over all time frames at a time, which allowed us to

perform reconstruction at level of muscle excitations and thus to

decrease the search space for the optimization in comparison

with SO-based approaches. Third, the problem of finding

unknown time-varying activations was reduced to a problem

FIGURE 7
Average EMG-driven model parameters of both subjects from “Params” calibration (in blue) and “Params + SynX + Res” calibration (in orange)
Results for “Params + SynX + Res” calibration were produced using the best performing methodological combinations for analyzing experimentally
measured walking motions (trial-specific unmeasured and speed-specific residual synergy vector weights with six synergies). The upper and lower
bounds for each of the four activation dynamics model parameters during optimization have been indicated by green vertical dash-sot lines,
where the upper and lower bounds for the scaling factors of optimal fiber lengths and tendon slack lengths were [0.6, 1.4] for all muscles.
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FIGURE 8
SynX-predicted muscle excitations and activations for psoas constructed with the best methodological combinations for the “validation”
situations (speed-specific unmeasured and speed-specific residual synergy vector weights with six synergies). Lines represent mean curves across
calibration trials, and shaded areas represent ±1 standard deviation. r and RMSE values for muscle excitations and activations were calculated
between “Params + SynX + Res” calibration (in pink) and “Params” calibration (in blue). “Params” calibration was performed using a complete set
of EMG signals, where nomuscle excitations were predicted. Data are reported for the complete gait cycle, where 0% indicates initial heel-strike and
100% indicates subsequent heel-strike for each leg of both subjects (right leg: paretic, left leg: nonparetic). SynX-predicted muscle excitations and
activations for iliacus were of similar accuracy (not shown).

TABLE 4 Mean absolute error (MAE) values calculated between joint moments found from inverse dynamics and either “Params” calibration or
“Params + SynX + Res” calibration.

Joint Calibration case Calibration Validation

S1 S2 S1 S2

Left Right Left Right Left Right Left Right

HipFE Params 7.14 6.82 5.75 6.14 6.68 6.37 5.92 6.30
Params + SynX + Res 6.17 5.72 5.46 5.91 6.00 6.63 5.65 5.26

HipAA Params 6.88 7.24 7.46 5.55 6.31 7.62 7.50 6.35
Params + SynX + Res 5.91 6.05 5.20 4.41 5.53 7.05 7.20 5.28

HipRot Params 5.97 5.71 2.62 2.00 5.25 6.17 3.40 1.88
Params + SynX + Res 4.79 4.25 2.40 1.96 4.25 5.69 3.27 2.12

KneeFE Params 6.01 4.06 5.03 4.81 5.88 4.82 5.56 4.35
Params + SynX + Res 6.54 4.40 5.77 5.15 6.69 5.08 5.52 5.35

AnklePD Params 7.77 6.04 5.42 4.98 7.78 6.10 5.53 5.29
Params + SynX + Res 8.11 6.30 5.60 5.26 7.08 6.27 6.37 5.33

AnkleIE Params 4.80 2.83 7.11 1.84 4.16 2.29 6.60 2.01
Params + SynX + Res 5.11 3.34 7.12 1.94 4.71 3.41 7.02 2.21

The results for “Params + SynX + Res”were produced using the best methodological combinations for validation (speed-specific unmeasured synergy vector weights with 6 synergies). MAE

values reported for “Params + SynX + Res” were derived when unmeasured synergy vectors weights and average values were fixed at their calibrated values.
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of finding a smaller number of unmeasured and residual synergy

vector weights, which significantly decreased the search space for

the optimization in comparison with SO-based approaches.

Fourth, due to inherent constraints of dependence between

time frames, synergy-structured residual excitations showed

predictably worse joint moment matching performance than

did SO-based residual activations (Supplementary Figure S3).

However, they could still lower joint moment matching errors by

significant amount, especially when using trial-specific synergy

vector weights (Supplementary Figure S3). When both

unmeasured muscle excitations and residual excitations were

consistently constructed using synergy concepts, the joint

moment matching errors that resultant unmeasured muscle

excitations could potentially over-compensate for would be

sufficiently accounted for by the resultant residual excitations.

An optimization problem was formulated within our EMG-

driven modeling method that minimized four primary cost terms

(Eq. 15) simultaneously, where a combination of maximum

allowable deviation (MAD) values needed for normalization of

cost values was determined through a series of sensitivity tests

such that satisfactory SynX outcomes were consistently generated

across legs of both subjects (Supplementary Figure S1). On the

one hand, joint moment tracking errors were minimized when

residual muscle excitations were (Eq. 16) and were not (Eq. 17)

used for joint moment calculation. Both terms were included

such that residual excitations for measured muscles were

estimated with reasonable accuracy and EMG-driven model

parameters for measured muscles stayed as close as possible

to the ones derived from “Params” calibration. On the other

hand, unmeasured and residual muscle activations were

minimized such that the optimization did not incline to

converge to a set of overestimated solutions. Here, we

implemented minimization at the activation-level instead of

excitation-level, because muscle activations were more

consistent in terms of magnitudes across muscles and subjects,

which facilitated finding a consistent set of maximum allowable

deviation values (MAD) that could provide acceptable outcomes

across legs of both subjects.

There were a number of methodological choices required to

make during muscle synergy analysis (MSA) that could influence

the results of extracted measured synergy excitations and

corresponding synergy extrapolation performance, such as

EMG normalization methods, number of synergies, matrix

decomposition algorithm (Ivanenko et al., 2005; Tresch et al.,

2006; Steele et al., 2013; Oliveira et al., 2014; Banks et al., 2017;

Shuman et al., 2017; Ebied et al., 2018; Gallina et al., 2018; Ao

et al., 2020) In a previous study (Ao et al., 2020), the author

reported that PCA provided more accurate, reliable, and efficient

estimates of unmeasured muscle excitations than NMF when

using a well-calibrated EMG-drivenmodel. A similar observation

was made in this study that when the number of synergies and

categories of unmeasured and residual synergy vector weights

FIGURE 9
Average joint moments across trials and subjects for (A) calibration trials and (B) validation trials from inverse dynamics (in red), “Params”
calibration (in blue), and “Params + SynX + Res” calibration (in yellow). Results for “Params + SynX + Res” calibration were produced using the best
methodological combinations for generating computationally predicted walking motions (speed-specific unmeasured and residual synergy vector
weights with six synergies). Here, residual excitations were calibrated but not used to calculate joint moments for “Params + SynX + Res.” Data
are reported for the complete gait cycle, where 0% indicates initial heel-strike and 100% indicates subsequent heel-strike.
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were matched, NMF could not produce estimates of unmeasured

muscle excitations and activations from “Params” calibration as

accurately as was PCA (Supplementary Figure S7). As

highlighted in the previous paper, the reasons PCA

outperformed NMF for SynX could be due to nonnegativity

constraints for NMF and extra design variables for PCA, both of

which could make the feasible search space of NMF more

restricted than that of PCA. Beyond these, PCA was especially

advantageous in our framework because it allowed residual

excitations to be both positive and negative, which could be

beneficial to achievement of lower joint moment errors.

The principal methodological decisions explored in this

study were the number of synergies and variability of synergy

vector weights across trials. With an increasing number of

synergies, SynX performance exhibited non-monotonic

behavior for both subjects, where six synergies provided the

generally best SynX performance and EMG-driven model

calibration outcomes for both legs of S1 and left leg of

S2 and five synergies provided the best overall results for

right leg of S2. The results were in great agreement with the

findings reported in (Ao et al., 2020). Additionally, based on

the assumptions about the variability of synergy vector weight

across walking trials, we categorized them associated with

unmeasured and residual muscle excitations as trial-specific,

speed-specific, and subject-specific, respectively, while

different concatenation strategies were used to extract

corresponding synergy excitations. We evaluated the results

with all possible methodological combinations (Figure 2 and

Supplementary Figure S2), and it was indicated that with

matched number of synergies, trial-specific unmeasured

synergy vector weights and speed-specific residual synergy

vector weights generated the best SynX performance for most

legs. For both measured (Table 3) and unmeasured (Figure 2

and Supplementary Figure S2) muscle excitations, a small

number of synergies (e.g., <5) or subject-specific synergy

vector weights may not be sufficient to account for their

variance. As the number of synergies or the variability of

synergy vector weights across trials increased, the additional

degrees of freedom in the optimization allowed the optimizer

to lower the joint moment matching errors (Supplementary

Figure S4). However, when the flexibility determined by the

number of synergies and category of synergy vector weights

was above a certain level, the joint moment tracking errors

dropped below those achieved by calibration with a complete

set of EMG data (“Params” calibration), where the prediction

of unmeasured muscle excitations and activations becoming

less accurate as a consequence. Another important merit of

using speed-specific residual synergy vector weights was that

computational cost would be drastically reduced because we

normally have way more channels of measured EMGs than

channels of unmeasured EMGs when using our framework.

Even though we suggested employing six synergies, which

provided the most accurate predictions for most legs, the overall

SynX andmodel calibration performance peaked at five synergies

for the right leg of S2 (Figure 2 and Supplementary Figure S2).

The underlying reason for this inconsistency could be that

subject S2 was a low-functioning post-stroke subject, whose

right leg was paretic. Clark et al. reported that post-stroke

subjects had fewer muscle synergies which could result from

the merging of the synergies observed in healthy controls due to

impaired locomotor coordination and the reduced independence

of neural control signals (Clark et al., 2009). We made a

consistent observation within our MSA results that the right

leg of S2 had generally higher VAF values when the number of

synergies and category of synergy vector weights were matched.

Also, when assuming synergy vector weights speed-specific and

subject-specific, the right leg of S2 required four or five synergies

to account for over 95% of the variability in measured muscle

excitations, while the left leg of S2 and both legs of S1 needed six

or seven synergies. Therefore, it is reasonable to speculate that for

the paretic leg of S2, five synergies were sufficient for SynX when

hiring our framework, while six synergies could introduce

additional degrees of freedom to the optimization problem

and influence the SynX performance adversely.

This study possessed several limitations that could help

inform future research efforts. First, this study validated the

performance of our framework using gait datasets from two

subjects post-stroke who had a complete set of EMG data from

muscles in the lower extremities. Broader investigations need to

be done in diverse subject populations of larger sample sizes.

Second, our framework was validated in cases where EMG data

from only one important hip muscle group (iliopsoas) was

assumed to be missing at a time. The approach should be

evaluated more extensively in cases where more important

deep muscles are assumed to be unmeasured individually or

concurrently. Third, we developed the framework using walking

data with two representative speeds. We are planning to explore

the framework’s feasibility for other types of dynamic movement

conditions and experimental scenarios, such as stair climbing

and running. Lastly, to achieve the purpose of computational

prediction for the trials withheld from calibration, we suggested

assuming unmeasured and residual synergy vector weights

speed-specific for walking. When our framework is applied

for diverse motion tasks, it is worthwhile exploring the

feasibility of making a hybrid assumption about the

variability of synergy vector weights, such as speed-specific

synergy vector weights mixed with task-specific synergy

vector weights.

5 Conclusion

In conclusion, we have presented a novel computationalmethod

that can address the problem of a small number of missing EMG

signals during EMG-driven model calibration. Within this method,

synergy excitations extracted from measured muscle excitations
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using PCA were linearly combined to reconstruct unmeasured

muscle excitations (termed “synergy extrapolation” or “SynX”)

and residual muscle excitations for measured muscles. The

unmeasured and residual synergy vector weights defining the

contribution of each measured synergy excitation to all muscle

excitations were identified simultaneously with EMG-driven model

parameters through a multi-objective optimization. The study also

assessed how SynXmethodological choices (i.e., number of synergies

and category of unmeasured synergy vector weights and residual

synergy vector weights) influenced SynX performance. By

comparing with results from EMG-driven model calibration

using a complete set of EMG signals, we identified two SynX

methodological combinations for the purposes of analyzing

experimental walking trials used in the calibration process and

not used in the calibration process, respectively. Both

methodological combinations consistently provided accurate,

reliable, and efficient estimates of both SynX-relevant quantities

(i.e., missing muscle excitations and activations) and biomechanical

variables (i.e., muscle forces and joint moments). This

computational approach opens up possibilities for the

personalization of EMG-driven musculoskeletal models when

difficulties exist with collecting EMG signals from important

muscles.
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