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Colorectal cancer is the cancer with the second highest and the third highest

incidence rates for the female and the male, respectively. Colorectal polyps are

potential prognostic indicators of colorectal cancer, and colonoscopy is the gold

standard for the biopsy and the removal of colorectal polyps. In this scenario, one of

the main concerns is to ensure the accuracy of lesion region identifications.

However, the missing rate of polyps through manual observations in

colonoscopy can reach 14%–30%. In this paper, we focus on the identifications

of polyps in clinical colonoscopy images and propose a newN-shaped deep neural

network (N-Net) structure to conduct the lesion region segmentations. The

encoder-decoder framework is adopted in the N-Net structure and the

DenseNet modules are implemented in the encoding path of the network.

Moreover, we innovatively propose the strategy to design the generalized hybrid

dilated convolution (GHDC), which enables flexible dilated rates and convolutional

kernel sizes, to facilitate the transmission of the multi-scale information with the

respective fields expanded. Based on the strategy of GHDC designing, we design

four GHDC blocks to connect the encoding and the decoding paths. Through the

experiments on two publicly available datasets on polyp segmentations of

colonoscopy images: the Kvasir-SEG dataset and the CVC-ClinicDB dataset, the

rationality and superiority of the proposed GHDC blocks and the proposed N-Net

are verified. Through the comparative studies with the state-of-the-art methods,

such as TransU-Net, DeepLabV3+ and CA-Net, we show that even with a small

amountof networkparameters, theN-Netoutperformswith theDiceof 94.45%, the

average symmetric surface distance (ASSD) of 0.38 pix and the mean intersection-

over-union (mIoU) of 89.80% on the Kvasir-SEG dataset, and with the Dice of

97.03%, the ASSD of 0.16 pix and themIoU of 94.35% on the CVC-ClinicDB dataset.
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1 Introduction

Colorectal cancer is the cancer with the second and the third

highest incidence rates for the female and the male, respectively.

Early diagnosis has a huge impact on the survival from colorectal

cancer (Torre et al., 2015). Colorectal polyps are potential

prognostic indicators of the colorectal cancer, and

colonoscopy is the gold standard for the biopsy and the

removal of colorectal polyps (van Toledo et al., 2022).

Research shows that nearly half of the individuals taking the

colonoscopy at the age of 50 are found to be suffered from

colorectal polyps (Lima Pereira et al., 2020). This incidence rate

even increases with the age (Rundle et al., 2008). The accurate

identification of colorectal polyp lesion regions plays a

preliminary role in the medical treatment of colorectal cancers

(Ren et al., 2019; Qadir et al., 2020; Tan et al., 2020). However,

several studies indicate that the missing rate of polyps through

manual observations in colonoscopy can reach 14%–30%,

depending on the types and the sizes of the polyps (Van Rijn

et al., 2006). Thus, the development of accurate colorectal polyp

segmentation methods is critical.

With the rapid development of computer and information

techniques, computer-aided diagnosis methods have been used

in polyp segmentation tasks. However, the techniques of

computer-aided polyp segmentations is still immature,

especially in the cases that some complex and uncontrolled

environmental factors exist. For example, existing computer-

aided diagnosis methods can not effectively deal with factors that

can affect the accuracy of polyp segmentation, such as

intraluminal folds and variations of the polyp textures and

locations. In (Sasmal et al., 2018), the principal component

pursuit (PCP) technique was used in colorectal polyp

segmentations. However, the segmentation performance got

worse in low-light situations. In (Ganz et al., 2012), the

shape-UCM methods were used in colorectal polyp

segmentations, but the polyps with heterogeneous shapes

could not be extracted.

Later, some early machine learning methods were developed

for colorectal polyp segmentations. However, these methods

consumed a lot of computer memory and relied excessively

on handcrafted features, thus were not robust enough. For

example, the machine learning based methods in (Tajbakhsh

et al., 2016; Yu et al., 2017) got constrained segmentation

performance for polyps in the presence of high luminance or

intestinal residues.

In the past few years, the deep learning technology has been

adopted in the segmentations of medical images. Particularly,

Olaf proposed the U-shape artificial neural network (U-Net)

using an encoding-decoding structure (Ronneberger et al., 2015).

In the U-Net, multiple encoding and decoding modules were

included in a symmetrical framework. In addition, the skip

connections were added between the encoding and decoding

paths to enable multi-scale information transmissions. The

encoder-decoder structure of the U-Net has now become the

most commonly used network structure in medical image

segmentations.

More recently, some network structures based on the U-Net

were proposed for the medical image segmentations and showed

outstanding performances (Zhou Z. et al., 2018; Chen et al., 2018;

Oktay et al., 2018; Huang et al., 2020; Chen et al., 2021). In

particular, the densely connected convolutional neural network

(DenseNet) strengthened the feature propagation and alleviated

the gradient-vanishing problem, with the correct training

convergences and the good feature extraction performances

ensured (Huang et al., 2017; Wang et al., 2021). Moreover, in

(Alom et al., 2018; Gu et al., 2021; Zhang and Yang, 2021), the

attention mechanisms were also proposed recently, greatly

improving the precision of medical image segmentations.

Additionally, in order to further reduce the training time of

the accelerate the convergence of the network training, the

transfer learning was adopted by scholars (Shao et al., 2015;

He et al., 2020; Rozo et al., 2022).

In addition to the above works, researches showed that

the fine-grained image features could be better captured by

expanding the receptive fields in the multi-scale information

transmissions. In (Zhou L. et al., 2018), L. Zhou et al

connected the encoding and decoding paths with dilated

convolutions, where the receptive fields were expanded.

However, the gridding effects could be introduced in this

case. In order to solve this problem, P. Wang et al proposed

the hybrid dilated convolution (HDC) (Wang et al., 2018).

The HDC was established with cascaded dilated convolutions

and has been adopted for semantic segmentations (Fu et al.,

2019; Cheng et al., 2020; Liu et al., 2020; Ma et al., 2022). For

example, J. Liu et al implemented an HDC based algorithm in

the detection of retinal pigment epithelium defective cells

(Liu et al., 2020). However, the mathematical model of the

strategy of HDC designing was not much described. In

addition, the HDC architecture required all the

convolutional kernel sizes to be equal, with its

implementation flexibility constrained.

In order to overcome the shortcomings of the current

methods and optimize the colorectal polyp lesion region

segmentation performance using colonoscopy images, we

propose a novel N-shaped artificial neural network

(N-Net) structure. It should be specially noted that

although this work focuses on the colorectal segmentation

task, the N-Net structure can be used generally for image

segmentations. The N-Net structure is briefly described in

Figure 1. Compared with state-of-the-art methods through

experiments on two public colonoscopy datasets for polyp

segmentations, the proposed method achieves the best

segmentation performance in the metrics of Dice, average

symmetric surface distance (ASSD) and mean intersection-

over-union (mIoU). The main contributions of this paper are

as follows:
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1) We propose a novel N-shaped artificial neural network

(N-Net) structure to conduct the lesion region

segmentations of polyps in colonoscopy images. The

proposed N-Net is designed based on the encoding-

decoding framework. Within the proposed structure, the

multi-scale information can flow between the encoding

and decoding paths. The pretrained DenseNet modules

based on the ImageNet are implemented in the encoding

path of the N-Net to ensure the fast training convergence and

good feature extraction performance of the entire network

structure.

2) To expand the receptive fields and facilitate the multi-scale

information transmission between the encoding and

decoding paths, we propose a strategy to design the

generalized hybrid dilated convolution (GHDC).

Compared with the existing works related to the dilated

convolutions, the GHDC is established with a more flexible

strategy to design cascaded dilated convolutional layers.

3) Based on the strategy of GHDC designing, four GHDC blocks

are designed to connect the encoding path and the decoding

path. With experiments on two public available datasets: the

Kvasir-SEG dataset and the CVC-ClinicDB dataset, we show

that the GHDC blocks outperform the HDC in (Wang et al.,

2018). Moreover, comparative studies shows that the

proposed N-Net, even with a small amount network

parameters, outperforms the state-of-the-art methods

including TransU-Net, DeepLabV3+ and CA-Net.

2 Methods

2.1 The structure of the N-Net

In this paper, motivated by the U-Net encoder-decoder

framework and the DenseNet modules, we propose a novel

N-shaped architecture. As shown in Figure 2, the proposed

N-Net structure contains four stages both in the encoding

path on the left side and the decoding path on the right side.

In addition, the GHDC blocks are added to connect the encoding

and the decoding paths.

In contrast to the U-Net structure, a “Conv (7 × 7)-BN-

ReLU” operation (i.e. convolution with the kernel size of 7 × 7

followed by a batch normalization and a ReLU) and an

“Maxpool” operation (maximum pooling with the kernel size

of 7 × 7 and the stride of 2) are implemented as the first stage of

the encoding path. With the idea of transfer learning, the three

encoding modules in the encoding path are designed based on

the three dense blocks in the pre-trained DenseNet-121 from the

ImageNet, respectively. Each dense block is composed by certain

dense layers and a transition layer. The pre-trained dense layers

in the three dense blocks and the first two transition layers are

directly transferred. The number of dense layers in the three

dense blocks are 6, 12 and 24, respectively. The number of output

channels from the four encoders are 64, 256, 512 and 1,024,

respectively. The feature map size from the Encoder 1 is 224 ×

224 and is halved after the processing of each encoder.

The decoding path in the proposed N-Net is composed with

four decoding modules. Each of the decoding modules contains a

“Conv (1 × 1)-BN-ReLU-TransposeConv (3 × 3)-BN-Conv (1 ×

1)” procedure (i.e. 3 steps: the first and third steps consist of a

convolution with 1 × 1 kernel and a batch normalization; the

second step consists of a transpose convolution with 3 × 3 kernel

and a batch normalization). The Decoder one contains two

“Conv (3 × 3)” operations and a bilinear interpolation operation.

The encoding and decoding paths in the N-Net structure are

connected with the proposed GHDC blocks, which are designed

based on the novel strategy of GHDC designing in this paper. For

i = 1, 2, 3, the outputs of the Encoder i and the GHDC block i + 1

are concatenated as the input of the GHDC block i. Besides, the

outputs of the GHDC block i and the Decoder i + 1 are point-wise

added as the input to the Decoder i.

With the connections between the encoding path and the

decoding path using the GHDC blocks, the multi-scale features

are deeply exploited with expanded respective fields. The detailed

strategy of GHDC designing and the GHDC blocks are provided

in the remainder of this section.

FIGURE 1
The overview of our proposed N-Net.
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2.2 The strategy of generalized hybrid
dilated convolution designing

In order to achieve sufficient multi-scale information

transmissions, while expanding the respective fields without

the gridding effects, we establish a more general and

simplified strategy to design the cascaded dilated convolutions.

In contrast to the HDC, flexible dilation rates and convolutional

kernel sizes are enabled in the designed operation. Which is

referred to as the generalized hybrid dilated convolution

(GHDC) in this paper.

To explain the strategy of GHDC designing, we first provide a

simple example to design the first three layers in a cascade of

dilated convolutions in Figure 3. The convolutional kernel sizes

for the three layers are denoted as k1, k2 and k3, respectively. The

dilation rates used in the three layers are denoted as r1, r2 and r3,

respectively.

In Figure 3A, the feature map into the first layer, the dilated

convolutional kernel of the first layer and the feature map into the

second layer are shown from down to up, respectively. In Figure 3B,

the feature map into the second layer, the dilated convolutional

kernel of the second layer and the featuremap into the third layer are

shown fromdown to up, respectively. In the featuremap into the first

layer, the darker color suggests that the corresponding pixels are used

for more times during the convolution. In the feature maps into the

second and third layers, the maximum distances between the

neighbored pixels, which are sampled in the dilated convolutions,

are denoted as M2 and M3, respectively. According to Figure 3, M2

and k1 can be used to observe the coverage of the convolutional

kernel in the first layer.

FIGURE 2
The detailed structure of our proposed N-Net.

FIGURE 3
The cascaded dilated convolutional layers: (A) The operation of the first dilated convolutional layer; (B) the operation of the second dilated
convolutional layer.
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In the proposed strategy of GHDC designing, a key point is to

ensure that all of the pixels in the feature map into the first layer

are utilized in the operations in order to avoid the gridding effect.

To meet this constraint, the parameters in the third and second

layers are decided sequentially. For example, ifM3, k2 and r2 takes the

value of 5, 3 and 2, respectively, thenM2 becomes 2. In this scenario,

by taking k1 = 3 and r1 = 1, it can be guaranteed that no holes exist

during the cascaded convolutions.

To be more general, we observe the dilated convolution

operation on the arbitrary lth (l > 0) layer in a dilated

convolution cascade. In this scenario, it can be found that

the sampling positions in this operation are influenced by the

parameters of both the lth and (l + 1)th layers. Let us define

Ml+1 as the maximum distance between neighbored sampled

positions horizontally or vertically on the (l + 1)th (l > 0) layer,

and define rl and kl to be the dilation rate and the

convolutional kernel sizes on the lth layer, respectively.

Then we can estimate Ml by the sliding of the dilated

convolutional kernel on an xOy coordinate system. Due to

the symmetry, there is no harm to simplify the problem by

just observing the movement of the convolutional kernel on

the x-axis.

If we consider kl+1 pixels separated by the distance ofMl+1 on

the feature map into the (l + 1)th layer, then the possible pixels

covered by the convolutional kernel can be represented by: {(ml,irl
+ nl,iMl+1, 0)}, where ml,i ∈ {0,± 1, . . . ,± kl−1

2 } and

nl,i ∈ {0,± 1, . . . ,± kl+1−1
2 } stand for the coefficients to

determine the location of ith pixel covered by the

convolutional kernel. In other words, if Ml+1, kl+1, rl, kl are

determined, the parameter Ml can be derived.

Therefore, in the proposed GHDC model, the design of a

dilated convolution cascade is done in a recursive manner. For

the lth (l > 0) layer, we define Dl = {dl,i}, i = 1, . . . , klkl+1–1 to be a

non-decreasing sequence. Then givenMl+1 and kl+1, rl and kl (l >
1) are determined with the following constraints:

dl,i � ‖ ml,i+1rl + nl,i+1Ml+1( ) − ml,irl + nl,iMl+1( )‖, (1)

where ‖ ·‖ stands for the l-2 norm operation,

ml,i ∈ {0,± 1, . . . ,± kl−1
2 } and nl,i ∈ {0,± 1, . . . ,± kl+1−1

2 }. Then

Ml, which is used to design the parameters of kl−1 and rl−1,

can be determined as follows:

Ml � Max‖dl,i − dl,i−1‖ andM2 ≤ k1. (2)

In addition, it is preferred that the receptive field in the first

dilated convolution layer, which can be calculated using:

F � 1 +∑
l

rl kl − 1( ), (3)

can cover the input feature map to the entire cascaded dilated

convolutions.

For instance, if the kernel sizes of three are used in the

cascaded dilated convolutions, we can get the following

expression using Eqs 1, 2:

Ml � rl, 0<Ml+1 < rl
max rl,Ml+1 − 2rl{ },Ml+1 > 2rl

{ (4)

By recursively solving Eq. 4, we can get a cascade of convolutional

layers, which is consistent with the HDC.

2.3 The GHDC blocks

In the proposed N-Net, the GHDCs are conducted with

four GHDC blocks between the encoding and decoding paths.

As shown in Figure 4, a GHDC block generally consists of a

feature extraction module and a multi-scale fusion module.

The feature extraction module is established with parallel

groups of cascaded dilated convolutional layers, which are

designed according to the strategy of GHDC designing. In the

multi-scale fusion module, the results from the groups of

cascaded dilated convolutional layers are concatenated and

then processed using a “Conv (3 × 3)-BN-ReLU” operation to

keep the output size of each GHDC block consistent with its

input. In addition, to make sure that the feature map

dimensions from the GHDC block i + 1 are consistent

with that from the Encoder i (i = 1, 2, 3), a GHDC

transition layer, consisting of a bi-linear interpolation and

a “Conv (3 × 3)-BN-ReLU” operation, is introduced.

In Table 1, the dilation rates and the convolutional kernel

sizes of the dilated convolutional layers, as well as the

receptive field sizes, are provided for the four GHDC

blocks. The convolutional kernel sizes are odd. Thus,

unique and consistent central pixel locations, as well as

symmetric padding operations, can be guaranteed during

the convolutions. Meanwhile, integer values of ml,i and nl,i
in Eq. 1 are ensured. The detailed structures of the four

GHDC blocks are shown in Figure 5.

3 Experiments and results

3.1 Dataset

In order to verify the proposed N-Net, two publicly

available datasets on polyp segmentations of colonoscopy

images were used in the experiments: 1) the Kvasir-SEG

dataset (Jha et al., 2019); 2) the CVC-ClinicDB dataset

(Bernal et al., 2015). Both the original images and

corresponding masks for the ground truth of the lesion

regions are included in the two datasets. The details of

these two datasets are provided in Table 2. The images

from the Kvasir-SEG dataset and the CVC-ClinicDB

dataset were resized into 256 × 320 and 288 × 384,

respectively, before used in the experiments. We randomly

divided the datasets into the training sets, the test set and the

validation set, according to the ratio of 7:2:1.
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3.2 Implementation details

The proposed N-Net was trained based on the gradient

descent method. The training process was performed with

the Python package PyTorch 1.11.0 + GPU, using a computer

with the Nvidia GTX 3090 GPU, and the RAM size of

32.00 GB. We used the Adaptive Moment Estimation

(Adam) (Kingma and Ba, 2017) to control the learning

rates in the training process, with the initial learning rate,

the weight decay, the batch size and the number of epochs as

10–4, 10–8, 16 and 300, respectively. The sum of the binary

cross-entropy and the soft dice coefficient (Sun et al., 2016)

was used as the loss function in the training process of the

N-Net. The binary cross-entropy and the soft dice coefficient

are defined as:

Lbce � −∑n
i�1
[ŷi0lnyi0 + (1 − ŷi0) ln(1 − yi0)] (5)

and

Ldice � 1 − 2∑n
i�1yi1ŷi1∑n

i�1yi1 + ∑n
i�1ŷi1

, (6)

respectively.

In Eqs 5, 6, n denotes the number of samples in a training data

batch. yim and yim represent the predicted and actual probabilities that

the ith pixel belongs to the class m (m ∈ {0, 1}), respectively.

To verify the performance of the proposed method, the

metrics of Dice, ASSD and mIoU were implemented on the

lesion region segmentation results in the experiments.

The metric of Dice is defined as:

Dice � 2|S ∩ G|
|S| + |G|, (7)

where S and G represent the region segmented by the N-Net and

in the ground truth, respectively.

The metric of ASSD is defined as:

ASSD �
∑

m∈Pa

d m, Pb( ) + ∑
n∈Pb

d n, Pa( )
|Pa| + |Pb| , (8)

where Pa and Pb denote the set of boundary points segmented

by the convolutional neural network (CNN) and in the ground

truth, respectively. d(u, Pb) � min
v∈Pb

‖u − v‖ represents the

minimum Euclidean distance from the point u to Pb.
The metric of mIoU is defined as:

FIGURE 4
The Overview of the Proposed GHDC block.

TABLE 1 The arguments for the GHDC blocks in the proposed N-Net.

GHDC blocks The number of Layers i
i = 1, 2, 3, 4, 5

Dilation Rate
[r1, r2, . . . ,ri]

Kernel Size
[k1, k2 . . . ,ki]

Respective Fields

GHDC block4 i = 2 [1,2] [3,3] 7

GHDC block3 i = 3 [1,2,5] [3,3,3] 17

GHDC block2 i = 4 [1,2,5,7] [3,3,3,5] 45

GHDC block1 i = 5 [1,2,5,7,9] [3,3,3,5,5] 81
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mIoU � 1
2

TP

FN + FP + TP
+ TN

FP + FN + TN
( ), (9)

where TP, FP, TN and FN represent the numbers of pixels

with true positive, false positive, true negative

and false negative decisions for the lesion regions,

respectively.

3.3 Results

3.3.1 Ablation studies on the proposed GHDC
blocks of the N-Net

In order to verify the effectiveness of the N-Net structure and

analyze the contributions of the GHDC blocks to the network

FIGURE 5
The detailed structure of the GHDC block.
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performance, we first performed the ablation experiments with

the GHDC blocks on the two datasets. The results of the

experiments are shown in Table 3. In that table, the U-Net

structure with the encoding path transferred from the first four

stages of the DenseNet-121 is denoted as the baseline. By

observing the results from the networks with only a single

GHDC block included, we can find that the GHDC blocks

greatly help in the segmentation performance improvement

in terms of the Dice, ASSD and mIoU values. In particularly,

this contribution increases sequentially from the GHDC

block four to the GHDC block 1. Moreover, it can also be

observed that by integrating more GHDC blocks into the

network structures, the segmentation performances of the

resulting networks can be further improved, as the multi-

scale information can be transmitted more sufficiently in

these cases. At the end of Table 3, we can see that the

N-Net, where all of the four GHDC blocks are included,

achieve the best lesion region segmentation performance on

both of the two datasets.

TABLE 2 The two publicly available colorectal polyp segmentations
datasets used in experiments.

Dataset Images Train Validation Test

Kvasir-SEG 1,000 715 104 189

CVC-ClinicDB 612 429 60 123

TABLE 3 Ablation Study Results of the GHDC Blocks on the Two Public Datasets of Colorectal Polyp Segmentations (The best results and the second
best results are marked in red bold and blue bold fonts, respectively).

Results on the Kvasir-SEG Dataset.

Baseline GHDC block i Dice (%) ASSD (pix) mIoU (%)

√ × 92.06 (±4.74) 0.51 (±0.20) 85.92 (±4.63)

√ i = 4 92.23 (±5.02) 0.49 (±0.43) 86.08 (±7.14)

√ i = 3 92.26 (±3.64) 0.49 (±0.70) 86.19 (±3.63)

√ i = 2 92.43 (±4.31) 0.48 (±0.67) 86.34 (±4.69)

√ i = 1 92.97 (±3.86) 0.46 (±0.42) 86.60 (±5.53)

√ i = 4, 3 92.53 (±3.05) 0.46 (±0.36) 86.48 (±4.00)

√ i = 4, 2 92.70 (±3.66) 0.45 (±0.47) 86.61 ± 5.26)

√ i = 4, 1 93.15 (±4.28) 0.44 (±0.53) 86.83 (±4.37)

√ i = 3, 2 92.62 (±4.35) 0.47 (±0.49) 86.56 (±6.01)

√ i = 3, 1 93.24 (±7.68) 0.43 (±0.35) 87.07 (±4.49)

√ i = 2, 1 93.53 (±3.66) 0.42 (±0.17) 87.24 (±4.03)

√ i = 4, 3, 2 93.84 (±5.30) 0.40 (±0.20) 87.93 (±7.03)

√ i = 3, 2, 1 94.22(±3.57) 0.41(±0.26) 89.42(±3.80)

N-Net 94.45(±1.48) 0.38(±0.21) 89.80(±2.56)

Results on the CVC-ClinicDB Dataset.

Baseline GHDC block i Dice (%) ASSD (pix) mIoU (%)

√ × 95.15 (±2.01) 0.32 (±0.40) 90.63 (±2.96)

√ i = 4 95.20 (±2.52) 0.30 (±0.31) 90.92 (±4.30)

√ i = 3 95.41 (±1.94) 0.29 (±0.29) 91.04 (±5.37)

√ i = 2 95.83 (±2.42) 0.27 (±0.33) 91.16 (±6.61)

√ i = 1 96.02 (±5.28) 0.26 (±0.27) 91.32 (±4.72)

√ i = 4, 3 95.49 (±5.45) 0.28 (±0.43) 91.20 (±6.20)

√ i = 4, 2 95.98 (±3.26) 0.26 (±0.28) 91.37 ± 3.65)

√ i = 4, 1 96.13 (±6.20) 0.24 (±0.19) 91.73 (±4.01)

√ i = 3, 2 96.05 (±6.07) 0.25 (±0.20) 92.09 (±3.84)

√ i = 3, 1 96.29 (±5.32) 0.23 (±0.39) 92.56 (±5.28)

√ i = 2, 1 96.46 (±5.00) 0.21 (±0.09) 92.89 (±6.25)

√ i = 4, 3, 2 96.62 (±7.08) 0.19 (±0.10) 92.01 (±2.02)

√ i = 3, 2, 1 96.91(±5.34) 0.18(±0.21) 94.13(±4.60)

N-Net 97.03(±0.82) 0.16(±0.06) 94.35(±1.49)
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Besides, we also conducted experiments to verify the

advantage of the GHDC blocks compared the HDC on the

two public colorectal polyp segmentation datasets. In

particular, we compared the networks integrating the GHDC

block 1 and/or the GHDC block 2 with the cases where the

corresponding GHDC block(s) were/was replaced with the

HDC(s). The HDCs in the experiments were implemented as

proposed in (Wang et al., 2018) (i.e. the maximum number of

cascaded convolutional layers was n = 4; the dilation rates and

convolutional kernel sizes of the layers were taken as R1 = 1, R2 =

2, R3 = 5, R4 = 9 and k1 = k2 = k3 = k4 = 3, respectively). The

experimental results are shown in Table 4.

From Table 4, we can observe that the networks integrating

the GHDC blocks outperform the corresponding networks using

the HDC on both of the two datasets, in terms of Dice, ASSD and

mIoU values. As the receptive fields of both the GHDC block two

and the GHDC block 1 are larger than that of the HDC, especially

the receptive field generated by the GHDC block 1 is even more

FIGURE 6
Visualization of the feature maps from the GHDC blocks on the Kvasir-SEG dataset.
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than twice that of the HDC, the proposed GHDC blocks are able

to exploit more features, resulting in more powerful networks.

3.3.2 Visual inspection of the feature maps
obtained by GHDC blocks

In order to obtain a deeper understanding of the GHDC

benefits, we analyzed the feature maps from the proposed GHDC

blocks by visual inspection. In the proposed N-Net, the feature

maps from the GHDC blocks 1, 2, 3 and 4 contain 64, 256,

512 and 1,024 channels, respectively. As The channels from the

feature map of a GHDC block get similar features, four

channels are randomly picked from the feature map from

each GHDC block as representative channels. Results from

two representative colonoscopy images in the testing set are

shown in Figure 6, 7 for each of the two publicly available

datasets, respectively.

From Figures 6, 7 we can observe that the feature map

extracted by the GHDC blocks gets gradually richer details

from the GHDC block 4 to the GHDC block 1. Compared to

the GHDC blocks 3 and 4, the GHDC blocks 1 and 2 are able to

capture more fine-grained features and generate feature maps

with higher resolutions. Moreover, it is worth mentioning that

the feature maps from all of the 4 GHDC blocks (not only the

GHDC blocks 1 and 2) are highly correlated to the final

segmentation results. This in turn illustrates that the semantic

information exploited by each stage of the proposed N-Net is

sufficiently utilized and that the transmission of multi-scale

information is facilitated with the proposed GHDC blocks.

3.3.3 Comparative studies between the
proposed N-Net and the state-of-the-art
methods

Finally, we conducted comparative lesion region

segmentation studies between the proposed N-Net and the

state-of-the-art methods to verify the advantage of the

proposed method. The experiments were conducted on the

above publicly available polyp segmentation datasets on

colonoscopy images. A variety of the state-of-the-art methods,

including the U-Net (Ronneberger et al., 2015), the DeepLabV3+

(Chen et al., 2018), the U-Net++ (Zhou Z. et al., 2018), the

U-Net+++ (Huang et al., 2020), Attention U-Net (Oktay et al.,

2018), TransU-Net (Chen et al., 2021),OCR-Net (Wang et al.,

2021) and CA-Net (Gu et al., 2021) were selected for comparison.

The experimental results are shown in Table 5.

TABLE 4 Experimental Results of GHDC and HDC Implementations Based on the Two Public Datasets of Colorectal Polyp Segmentations (The best
results are marked in red bold font).

Results on the Kvasir-SEG Dataset

Network Dilated Convolution Settings RF Dice (%) ASSD (pix) mIoU (%)

Dilation Rate Kernel Size

Baseline \ \ \ 92.06 (±4.74) 0.51 (±0.20) 85.92 (±4.63)

Baseline + GHDC 2 [1,2,5,7] [3,3,3,5] 45 92.43(±4.31) 0.48(±0.67) 86.34(±4.69)

Baseline + HDC [1,2,5,9] [3,3,3,3] 35 92.25 (±3.14) 0.49 (±0.50) 86.31 (±5.23)

Baseline + GHDC 1 [1,2,5,7,9] [3,3,3,5,5] 81 92.97(±3.86) 0.46(±0.42) 86.60(±5.53)

Baseline + HDC [1,2,5,9] [3,3,3,3] 35 92.54 (±4.30) 0.48 (±0.22) 86.59 (±6.02)

Baseline + GHDC 2 + GHDC 1 − − − 93.53(±3.66) 0.42(±0.17) 87.24(±4.03)

Baseline + HDC + HDC − − − 92.97 (±4.51) 0.45 (±0.29) 86.91 (±4.60)

Results on the CVC-ClinicDB Dataset

Network Dilated Convolution Settings RF Dice (%) ASSD (pix) mIoU (%)

Dilation Rate Kernel Size

Baseline \ \ \ 95.15 (±2.01) 0.32 (±0.40) 90.63 (±2.96)

Baseline + GHDC 2 [1,2,5,7] [3,3,3,5] 45 95.83(±2.42) 0.27(±0.33) 91.16(±6.61)

Baseline + HDC [1,2,5,9] [3,3,3,3] 35 95.71 (±3.30) 0.28 (±0.44) 91.09 (±8.30)

Baseline + GHDC 1 [1,2,5,7,9] [3,3,3,5,5] 81 96.02(±5.28) 0.26(±0.27) 91.32(±4.72)

Baseline + HDC [1,2,5,9] [3,3,3,3] 35 95.94 (±6.01) 0.27 (±0.45) 91.24 (±6.66)

Baseline + GHDC 2 + GHDC 1 − − − 96.46(±5.00) 0.21(±0.09) 92.89(±6.25)

Baseline + HDC + HDC − − − 96.17 (±4.68) 0.22 (±0.34) 92.79 (±7.05)
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Through the segmentation performance comparisons on the

Kvasir-SEG dataset, it is important to mention that the N-Net can

guarantee the best segmentation performance with the parameter

amount minimized. The reduction of the parameters in turn greatly

improves the efficiency of the algorithm. From Table 5, we can also

observe that the performance of DeepLabV3+ is the closest to the

N-Net with the above three metrics. However, the parameter size of

39.6 M is needed for the DeepLabV3+, while only 20.6 M is needed

for the N-Net. Compared with the N-Net, themetrics of Dice, ASSD

and mIoU for the U-Net+++ gets worse by 5.25%, 0.35 pix and

8.29%, respectively, though the size of its parameters is increased

by 6.4 M.

From Table 5, we can also observe that the N-Net shows the

best segmentation performance on the CVC-ClinicDB dataset

with the metrics of Dice, ASSD and mIoU reaching 97.03%,

0.16 pix, and 94.35%, respectively, with the smallest

computational parameter amount.

To be more intuitive, we also compared the lesion region

segmentation results of the above networks. Some representative

comparison results are shown in Figures 8, 9, respectively. The

segmentation results from the colonoscopy images are marked in

yellow. From those figures, we observe that the segmentation

results with the proposed N-Net method is the closest to the

ground truth. Moreover, the isolated false predictions by the

proposed N-Net are also minimized. This is because the

proposed N-Net is able to utilize the multi-scale features

sufficiently, with the receptive fields ensured during the multi-

scale information transmissions.

4 Discussion

In this paper, we propose a new N-shaped deep neural network

(N-Net) structure to conduct the lesion region segmentations of the

colorectal polyps from colonoscopy images. To facilitate the multi-

scale information transmissions, we propose a strategy of

generalized hybrid dilated convolution (GHDC) designing which

enables flexible dilation rates and convolutional kernel sizes to

facilitate transmission of the multi-scale information. Based on

the proposed strategy of GHDC designing, we design four

GHDC blocks to connect the encoding path and the decoding

path of the N-Net.

The proposed method was evaluated on two publicly available

colonoscopy image datasets for polyp segmentations: the Kvasir-

SEG dataset and the CVC-ClinicDB dataset. The advantages of the

proposedGHDCblocks were demonstrated throughmultiple sets of

TABLE 5 Performance Comparison of the proposed N-Net to the State-of-the-art Methods on the Two Public Datasets of Colorectal Polyp
Segmentations.

Results on the Kvasir-SEG Dataset.

Network Parameter Size Dice (%) ASSD (pix) mIoU (%)

U-Net 39.4 M 87.10 (±1.84) 0.82 (±0.15) 78.41 (±2.71)

U-Net++ 47.2 M 88.16 (±3.72) 0.78 (±0.18) 80.12 (±5.40)

Attention U-Net 34.5 M 88.60 (±2.37) 0.81 (±0.31) 80.60 (±3.39)

U-Net+++ 27.0 M 89.20 (±3.01) 0.73 (±0.30) 81.51 (±4.65)

CA-Net 44.4 M 89.58 (±3.40) 0.71 (±0.44) 82.17 (±5.19)

TransU-Net 133.4 M 91.84 (±3.44) 0.52 (±0.84) 85.71 (±5.41)

OCR-Net 70.4 M 92.24 (±2.85) 0.46 (±0.47) 86.26 (±4.52)

DeeplabV3+ 39.6 M 94.07(±1.73) 0.39(±0.22) 89.08(±2.85)

N-Net 20.6 M 94.45(±1.48) 0.38(±0.21) 89.80(±2.56)

Results on the CVC-ClinicDB Dataset.

Network Parameter Size Dice (%) ASSD (pix) mIoU (%)

U-Net 39.4 M 91.58 (±1.99) 0.68 (±0.16) 85.29 (±3.04)

U-Net++ 47.2 M 91.64 (±1.63) 0.71 (±0.25) 85.78 (±2.44)

Attention U-Net 34.5 M 93.53 (±1.78) 0.70 (±0.28) 88.39 (±2.88)

U-Net+++ 27.0 M 94.70 (±1.31) 0.47 (±0.28) 90.30 (±2.16)

CA-Net 44.4 M 94.58 (±2.51) 0.47 (±0.43) 90.20 (±4.15)

TransU-Net 133.4 M 94.98 (±1.43) 0.33 (±0.15) 90.27 (±2.35)

OCR-Net 70.4 M 95.35 (±1.44) 0.39 (±0.19) 91.42 (±2.46)

DeeplabV3+ 39.6 M 96.87(±0.75) 0.19(±0.06) 94.14(±1.36)

N-Net 20.6 M 97.03(±0.82) 0.16(±0.06) 94.35(±1.49)
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ablation experiments. In addition, the interpretability of the

proposed GHDC blocks was analyzed through the visualization

of the feature maps. Moreover, through comparative studies, the

proposed N-Net was shown to outperform the state-of-the-art

CNNs, including DeepLabV3+, TransU-Net and CA-Net, with

the metrics of Dice, ASSD and mIoU as 94.45%, 0.38 pix and

89.80% on the Kvasir-SEG dataset and 97.03%, 0.16 pix and 94.35%

on the CVC-ClinicDB dataset, respectively.

In this paper, the research was conducted on two publicly

available datasets of polyp segmentations for colonoscopy

images, the Kvasir-SEG dataset and the CVC-ClinicDB

dataset, where consistency were shown in the results. As

the patient amount included in the two datasets was still

limited, additional datasets (Vázquez et al., 2017; Misawa

et al., 2020; Sánchez-Peralta et al., 2020; Li et al., 2021;

PIBAdb, 2022) can also be considered in the algorithm

FIGURE 7
Visualization of the feature maps from the GHDC blocks on the CVC-ClinicDB dataset.
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FIGURE 8
Segmentation results of the N-Net and the state-of-the-art methods on representative images of the Kvasir-SEG dataset.

FIGURE 9
Segmentation results of the N-Net and the state-of-the-art methods on representative images of the CVC-ClinicDB dataset.
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development and validations in our future work. In addition,

we will also explore to implement the proposed GHDC theory

and the designed blocks in other biomedical image

segmentation tasks in our future work.

5 Conclusion

In this work, we proposed an N-Net structure based on the

encoding-decoding structure to conduct the polyp lesion region

segmentations of colonoscopy images. In the proposed N-Net,

the pre-trained DenseNet module was transferred as the

encoding path of the network. In particular, we proposed a

strategy of generalized hybrid dilated convolution (GHDC)

designing to facilitate transmission of the multi-scale

information and expand the respective fields. Based on the

strategy of GHDC designing, four GHDC blocks were

designed to connect the encoding path and the decoding path

of the N-Net. Experiments were performed on two publicly

available colorectal polyp lesion region segmentation dataset:

the Kvasir-SEG dataset and the CVC-ClinicDB dataset. The

advantages of the GHDC blocks were verified. Moreover,

experimental results also showed that the proposed N-Net

outperforms with a small amount of parameters, compared

with the state-of-the-art methods.
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