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One of the surgical treatments for pelvic sarcoma is the restoration of hip

function with a custom pelvic prosthesis after cancerous tumor removal. The

orthopedic oncologist and orthopedic implant company must make numerous

often subjective decisions regarding the design of the pelvic surgery and

custom pelvic prosthesis. Using personalized musculoskeletal computer

models to predict post-surgery walking function and custom pelvic

prosthesis loading is an emerging method for making surgical and custom

prosthesis design decisions in amore objectivemanner. Such predictionswould

necessitate the estimation of forces generated by muscles spanning the lower

trunk and all joints of the lower extremities. However, estimating trunk and leg

muscle forces simultaneously during walking based on electromyography

(EMG) data remains challenging due to the limited number of EMG channels

typically used for measurement of leg muscle activity. This study developed a

computational method for estimating unmeasured trunk muscle activations

during walking using lower extremity muscle synergies. To facilitate the

calibration of an EMG-driven model and the estimation of leg muscle

activations, EMG data were collected from each leg. Using non-negative

matrix factorization, muscle synergies were extracted from activations of leg

muscles. On the basis of previous studies, it was hypothesized that the time-

varying synergy activationswere shared between the trunk and legmuscles. The

synergy weights required to reconstruct the trunk muscle activations were

determined through optimization. The accuracy of the synergy-based method

was dependent on the number of synergies and optimization formulation. With

seven synergies and an increased level of activationminimization, the estimated

activations of the erector spinae were strongly correlated with their measured

activity. This study created a custom full-bodymodel by combining two existing

musculoskeletal models. The model was further modified and heavily

personalized to represent various aspects of the pelvic sarcoma patient, all
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of which contributed to the estimation of trunk muscle activations. This

proposed method can facilitate the prediction of post-surgery walking

function and pelvic prosthesis loading, as well as provide objective

evaluations for surgical and prosthesis design decisions.

KEYWORDS

trunk muscle activations, muscle synergies, estimation of unmeasured muscle
activations, personalized musculoskeletal model, EMG-driven musculoskeletal
model, pelvic sarcoma

Introduction

Pelvic sarcomas account for as much as 10% of osteosarcoma

cases and disproportionately affect individuals under the age of

25 (Morris, 2010). Thanks to advances in medical imaging, limb-

salvaging internal hemipelvectomy surgery (Lackman et al.,

2009) has become common for treating pelvic sarcomas

(Lewis, 2014; Puchner et al., 2017). This surgery involves

removal of the cancerous tumor on the affected side of the

pelvis, which in turn involves removal of the pelvic bone, hip

muscles, and trunk muscles infiltrated by the tumor. In many

cases, the hip joint is also infiltrated, necessitating removal of the

acetabulum and femoral head as well. Planning of internal

hemipelvectomy surgery remains challenging due to the

highly unique characteristics of each patient’s clinical situation.

When the hip joint must be removed, the orthopedic

oncologist typically has two options for surgical restoration of

ambulatory function. The first option involves no reconstruction

of the hip joint. With this option, the surgeon attaches the

proximal femur to remaining pelvic bone using surgical wire.

During recovery, the region is immobilized over a period of

months so that scar tissue can form, creating a pseudo-hip joint

that can bear the patient’s weight and permit ambulation. The

advantages of this option are minimization of complications and

a low risk of revision surgery, while the disadvantages are

abnormal and somewhat limited ambulatory function along

with a significant limb length discrepancy that often produces

low back pain and scoliosis (Wedemeyer and Kauther, 2011). The

second option involves reconstruction of the hip joint using a

custom pelvic prosthesis and total hip replacement. With this

option, an orthopedic implant company provides a custom pelvic

prosthesis that typically recapitulates the removed pelvic bony

anatomy, permitting implantation of a total hip replacement that

restores hip function. The advantages of this option are a more

normal gait pattern with no limb length discrepancy and a

shorter recovery time, while the disadvantages are an

increased risk of complications and revision surgery due to

prosthesis failure (Henshaw and Malawer, 2004; Henderson

et al., 2011).

For these two surgical options, the orthopedic oncologist and

(when relevant) orthopedic implant company must make

numerous decisions related to how the surgery and custom

pelvic prosthesis should be designed so as to maximize post-

surgery ambulatory function while minimizing the risk of custom

prosthesis failure (Guo et al., 2010; Chao et al., 2015). For no

reconstruction surgery, decisions include where to attach the

proximal femur within the remaining pelvic bone and whether to

keep certain muscles (e.g., the psoas) whose retention is surgically

challenging and prolongs time in the operating room. For custom

prosthesis reconstruction surgery, decisions include how the

custom pelvic prosthesis should be designed, where the hip

center should be located in the custom prosthesis (the original

anatomic location may not be the best choice given that

numerous hip and trunk muscles are removed), and where

and how screws should be located to attach the custom

prosthesis to remaining pelvic bone. Despite significant

patient heterogeneity, orthopedic oncologists and orthopedic

implant companies currently use subjective experience to

make these decisions, which raises the possibility that better

functional outcomes could be achieved if these decisions were

made using a more objective approach.

An emerging option for making surgical and custom

prosthesis design decisions more objectively involves the use

of personalized electromyography (EMG)-driven

neuromusculoskeletal computer models. Computational

modeling and simulation technology has reached the point

that personalized neuromusculoskeletal models can be

constructed from a patient’s movement (e.g., video motion

capture, ground reaction, EMG) and imaging (e.g., CT, MR)

data (Valente et al., 2017; Modenese et al., 2018) and used to

predict how planned interventions will affect the patient’s post-

surgery movement function (Pitto et al., 2019; Sauder et al., 2019;

Fregly, 2021). To date, such models have been used to predict the

influence of various orthopedic procedures (e.g., derotation

osteotomy, muscle transfer, muscle release, patellar

advancement) on walking function for individuals with

cerebral palsy (Pitto et al., 2019) and the optimal muscle

functional electrical stimulation design to maximize paretic leg

propulsion for an individual post-stroke (Sauder et al., 2019). To

implement a similar approach for individuals with pelvic cancer,

researchers must be able to predict post-surgery walking function

and custom pelvic prosthesis loading, including artificial hip joint

contact force, for different surgical and custom prosthesis designs

under consideration. Such predictions would in turn require

estimating post-surgery forces generated by muscles spanning

the lower trunk and all lower extremity joints. However,
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predicting trunk and leg muscle forces concurrently during

walking based on EMG data remains challenging, since the

limited number of experimental EMG channels are typically

used to measure the activity of leg muscles, with EMG data

rarely being collected from trunk muscles as well during walking

(Callaghan et al., 1999; White and McNair, 2002; Anders et al.,

2007).

This study develops and performs an initial evaluation of a

computational method for estimating unmeasured trunk muscle

activations during walking using lower extremity muscle

synergies extracted from measured leg muscle EMG data.

Muscle synergies are a low-dimensional representation

(typically four to six signals) of a larger number of

experimentally measured muscle activations (typically eight to

16 signals), where each muscle synergy is composed of a single

time-varying synergy activation plus a corresponding time-

invariant synergy vector containing weights that define how

the synergy activation contributes to the activations of all

muscles (D’Avella et al., 2003; Tresch et al., 2006; Tresch and

Jarc, 2009). Recent walking studies have demonstrated that five

or six synergy activations extracted from 15 leg muscle EMG

signals can be linearly combined to predict reliably the activation

of another leg muscle with missing EMG data (Ao et al., 2020; Ao

et al., 2022). However, this approach has only been applied when

EMG data are available from multiple muscles spanning each

modeled joint. The present study seeks to extend this

computational methodology to a region of the body where no

EMG data are typically available based on the observation that leg

and trunk muscles appear to share common synergy activations

(Ivanenko et al., 2004; Torres-Oviedo and Ting, 2007; Saito et al.,

2021). The methodology was developed using 32 channels of

EMG data (16 channels per side) collected during walking from a

single pelvic sarcoma patient prior to surgery. Fifteen channels

per side were collected from leg muscles and used to calculate

synergy activations, while the remaining channel per side was

collected from a single trunk muscle (erector spinae) and used to

evaluate the proposed computational methodology.

Methods

Experimental data collection

Experimental walking data were collected prior to surgery

from a single subject (sex: male, age: 46 years, height: 1.73 m,

mass: 85 kg) diagnosed with a pelvic sarcoma in the pubic and

acetabular regions of the right hemipelvis. The protocol for data

collection was approved by the institutional review boards of the

University of Texas Health Science Center and MD Anderson

Cancer Center, and the subject provided written informed

consent. The subject completed a static standing trial with feet

pointing forward, followed by a 2-min walking trial on a split-belt

instrumented treadmill with belts tied at their self-selected speed

of 1 m/s. Collected experimental data included video motion

capture (Qualisys AB, Gothenburg, Sweden), ground reaction

(Bertec Corp., Columbus, OH, United States), and wireless

electromyography (EMG) (Cometa, Bareggio, Italy). Twelve

static markers were placed to approximate toe axis, ankle axis,

and knee axis of each leg for model scaling purposes, while

36 dynamic markers (5 on the torso, 2 on each arm, 3 on the

pelvis, 3 on each thigh, 1 on each patella, 4 on each shank, and

4 on each foot) were placed to define the position and orientation

of each body segment during gait motion. EMG data were

collected from the muscles in each leg using 15 channels

(Table 1), and from the erector spinae muscle group using

another channel on each side. We were unable to collect the

EMG signal of the right iliopsoas muscle using a fine-wire

electrode due to its proximity to the tumor tissues. Data from

ten gait cycles were selected for analysis, with each cycle defined

by two consecutive right foot strikes. The subject’s CT imaging

data for the pelvic region was also made available.

Generic musculoskeletal model
development

A full-body musculoskeletal model (henceforth named the

base model, Figure 1) was obtained by combining two commonly

used generic models in OpenSim (Delp et al., 2007; Seth et al.,

2018). The first model (M1) is predominantly used for simulating

gait (Rajagopal et al., 2016) and the second model (M2) for

thoracolumbar spine and rib cage movement (Bruno et al., 2015).

The base model was capable of independently simulating trunk

muscle force generation during gait. The combination process

could be summarized as mainly the transfer of the trunk muscles

fromM2 into M1. There were, however, additional modifications

made to the base model in order to make it more suitable for our

simulation requirements; these modifications are detailed below.

As a result of these modifications, a full-body musculoskeletal

model capable of simulating the force generation of trunk

muscles was developed. This model consisted of 148 rigid

tendon Hill-type MTUs (29 on each side of the trunk and

45 in each leg), which actuated movement in the spine and

lower extremity joint degrees of freedom (DoFs): thoracic

(3 DoFs), lumbosacral (3 DoFs), and each hip (3 DoFs), knee

(2 DoFs), ankle (1 DoF), and subtalar (1 DoF).

Base model muscle modifications
The muscles spanning the lumbosacral joint in M2 were

identified as the trunk muscles needed to be added into the base

model (Figure 1A). The trunk muscles included rectus abdominis

(RA), external oblique (EO), internal oblique (IO), erector spinae

(ES), multifidus (MF), and quadratus lumborum (QL). The

original set of 71 Hill-type muscle-tendon units (MTUs) per

side in M2 (Table 2) was identified for transferal. The transferal

of muscle geometry between the models was completed using
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TABLE 1 List of lower extremity muscles in the musculoskeletal model, the muscle excitation signal sources, and the method used to acquire the
muscle excitation signals.

Muscle Muscle excitation signal
source

Muscle excitation acquisition
method

Adductor brevis Adductor longus Measured EMG

Adductor longus

Adductor magnus distal

Adductor magnus ischial

Adductor magnus middle

Adductor magnus proximal

Gracilis

Biceps femoris long head Bicep femoris long head Measured EMG

Biceps femoris short head

Gemelli Quadratus femoris Synergy Extrapolation

Quadratus femoris

Gluteus maximus superior Gluteus maximus Measured EMG

Gluteus maximus middle

Gluteus maximus inferior

Piriformis

Gluteus medius anterior Gluteus medius Measured EMG

Gluteus medius middle

Gluteus medius posterior

Gluteus minimus anterior

Gluteus minimus middle

Gluteus minimus posterior

Iliacus Iliopsoas Measured EMG

Psoas major superior Synergy Extrapolationa

Psoas major middle

Psoas major inferior

Rectus femoris Rectus femoris Measured EMG

Sartorius Sartorius Synergy Extrapolation

Pectineus

Semimembranosus Semimembranosus Measured EMG

Semitendinosus

Tensor fasciae latae Tensor fasciae latae Synergy Extrapolation

Vastus medialis Vastus medialis Measured EMG

Vastus intermedius

Vastus lateralis Vastus lateralis Measured EMG

Extensor digitorum longus Extensor digitorum longus Synergy Extrapolation

Extensor hallucis longus

Flexor digitorum longus Flexor digitorum longus Synergy Extrapolation

Flexor hallucis longus

Gastrocnemius lateral Gastrocnemius lateral Measured EMG

(Continued on following page)
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nmsBuilder (Valente et al., 2017) and following a codified

workflow (Modenese et al., 2018). The workflow included the

following steps: First, the same set of bony landmarks on the

spine, ribcage and pelvis was identified in both M1 andM2. Next,

the affine transformation used to project the landmarks in M2 onto

those in M1 was determined and then applied to map the muscle

path points from M2 onto the base model. Lastly, adjustments were

made to ensure that the transferred muscle path points in the base

model were positioned accurately. According to previous research, it

was likely that the large number of MTUs in the original set would

complicate any model-based motion prediction as one of the main

reasons of this model customization effort (Meyer et al., 2016; Sauder

et al., 2019). Therefore, an optimization-based model reduction

method (Vega et al., 2022) identified the reduced set of MTUs

with modified peak isometric force that, for a large number of

random poses, would generate joint moments highly comparable

to those generated by the original set. The reduced trunk muscle

group would have only 29 MTUs per side (Table 2).

FIGURE 1
Development of the base model from generic models. (A) Transfer of a reduced set of trunk muscles from M2 to the base model. (B)
Modification of psoas to place muscle origins on the spine and splitting the single-head psoas in M1 into the eventual 3 heads (C) Addition of
gemellus, quadratus femoris, and pectineus to the base model (D) Creation of the thoracic joint to simulate scoliosis (E) Modification of knee joint
kinematics and muscles to simulate high flexion activities.

TABLE 1 (Continued) List of lower extremity muscles in the musculoskeletal model, the muscle excitation signal sources, and the method used to
acquire the muscle excitation signals.

Muscle Muscle excitation signal
source

Muscle excitation acquisition
method

Gastrocnemius medial Gastrocnemius medial Measured EMG

Peroneus brevis Peroneus longus Measured EMG

Peroneus longus

Soleus Soleus Measured EMG

Tibialis anterior Tibialis anterior Measured EMG

Tibialis posterior Tibialis posterior Measured EMG

aFine wire EMG, data were available from iliopsoas for only the left leg. data from iliopsoas for the right leg was not possible due to proximity to the cancerous tumor. Themuscle excitations

of the right iliopsoas muscle were estimated using synergy extrapolation instead.
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TABLE 2 Original set of trunkmuscles included in the published OpenSim lumbar spine model (Bruno et al., 2015) and the reduced set included in the
modified OpenSim full-body model. ACSA is anatomical cross-section area in cm2, FMo is peak isometric force in N, lMo is optimal muscle fiber
length in cm, and lTs is tendon slack length in cm. G indicates a linearly scaled generic value, and P indicates a personalized value. Muscles listed in the
first column are rectus abdominis (RA), erector spinae (ES), quadratus lumborum (QL),multifidus (MF), external oblique (EO), and internal oblique (IO).

Original lumbar spine model Reduced full-body model

ACSA ACSA FMo lMo lTs

G P G P P G P G P

RA Original Set Reduced Set

rect_abd 6.62 7.40 rect_abd 6.62 7.50 750 34.11 34.99 9.28 9.33

ES Original Set Reduced Set

IL_L1 1.47 1.68

IL_L2 1.83 2.53 IL_L2 2.95 3.94 394 4.06 3.69 9.20 8.22

IL_L3 2.17 3.10

IL_L4 4.15 5.41 IL_L4 6.68 8.92 892 2.01 1.74 4.55 3.35

IL_R5 0.57 0.30

IL_R6 0.73 0.40

IL_R7 0.88 0.54 IL_R7 2.73 2.57 257 17.89 17.16 18.80 18.01

IL_R8 0.78 0.49

IL_R9 0.96 0.78

IL_R10 1.92 1.68 IL_R10 3.34 3.16 316 15.58 14.52 9.17 8.57

IL_R11 2.35 2.78 IL_R11 2.93 2.77 277 13.66 11.90 6.84 6.11

IL_R12 2.06 2.63 IL_R12 1.25 1.18 118 10.33 8.77 5.17 4.48

LTpT_T7 0.80 0.42

LTpT_T8 1.20 0.76 LTpT_T8 2.94 2.23 223 14.27 13.66 22.54 21.53

LTpT_T9 1.39 0.91

LTpT_T10 1.39 0.96

LTpT_T11 1.15 1.02

LTpT_T12 0.94 1.00 LTpT_T12 3.76 2.85 285 8.78 7.83 14.88 13.04

LTpT_R7 0.80 0.44

LTpT_R8 1.30 0.73 LTpT_R8 3.06 2.39 239 12.21 11.83 24.91 24.28

LTpT_R9 1.11 0.63

LTpT_R10 1.20 0.95

LTpT_R11 1.15 1.22 LTpT_R11 3.45 2.69 269 11.55 10.03 16.45 14.04

LTpT_R12 0.94 1.07

LTpL_L1 1.06 1.35

LTpL_L2 1.08 1.50 LTpL_L2 1.67 2.55 255 7.62 6.72 8.38 7.32

LTpL_L3 1.21 1.73

LTpL_L4 1.52 1.98 LTpL_L4 2.34 3.57 357 4.70 3.89 5.06 4.14

LTpL_L5 1.58 3.14 LTpL_L5 2.44 3.71 371 2.54 4.06 0.05 0.10

QL Original Set Reduced Set

QL_post_I_1-L3 0.76 0.99 QL_post_I1_L3 0.76 1.00 100 3.74 3.85 4.45 3.23

QL_post_I_2-L2 0.37 0.28

QL_post_I_2-L3 0.59 0.77

QL_post_I_2-L4 1.56 2.79 QL_post_I2_L4 2.51 3.87 387 2.38 2.58 2.84 2.10

QL_post_I_3-L1 0.77 0.56

QL_post_I_3-L2 0.56 0.44 QL_post_I3_L2 2.30 1.81 181 4.86 5.22 5.78 4.37

QL_post_I_3-L3 0.96 0.81

(Continued on following page)
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TABLE 2 (Continued) Original set of trunk muscles included in the published OpenSim lumbar spine model (Bruno et al., 2015) and the reduced set
included in the modified OpenSim full-body model. ACSA is anatomical cross-section area in cm2, FMo is peak isometric force in N, lMo is optimal
muscle fiber length in cm, and lTs is tendon slack length in cm. G indicates a linearly scaled generic value, and P indicates a personalized value. Muscles
listed in the first column are rectus abdominis (RA), erector spinae (ES), quadratus lumborum (QL), multifidus (MF), external oblique (EO), and internal
oblique (IO).

Original lumbar spine model Reduced full-body model

ACSA ACSA FMo lMo lTs

G P G P P G P G P

QL_ant_I_2-T12 0.45 0.22 QL_ant_I2_T12 0.73 0.57 57 5.81 10.08 11.18 5.33

QL_ant_I_2-12_1 0.28 0.35

QL_ant_I_3-T12 0.85 0.66

QL_ant_I_3-12_1 0.53 0.41

QL_ant_I_3-12_2 0.35 0.27 QL_ant_I3_R12_I2 2.14 1.68 168 5.07 8.57 9.76 4.46

QL_ant_I_3-12_3 0.41 0.32

MF Original Set Reduced Set

MF_m1t_2 0.60 0.54

MF_m1t_3 1.00 0.92 MF_m1t_3 1.59 1.47 147 12.00 9.85 3.60 3.15

MF_m2s 0.54 0.44

MF_m2t_1 0.57 0.47

MF_m2t_2 1.46 1.23

MF_m2t_3 1.61 1.36 MF_m2t_3 4.19 3.52 352 10.69 8.60 3.25 2.82

MF_m3s 0.84 0.70 MF_m3s 3.57 3.10 310 6.39 4.52 2.66 1.95

MF_m3t_1 0.91 0.79

MF_m3t_2 0.91 0.79

MF_m3t_3 0.91 0.79

MF_m4s 1.01 0.92

MF_m4t_1 0.90 0.82

MF_m4t_2 0.90 0.82

MF_m4t_3 0.90 0.82 MF_m4t_3 3.97 3.62 362 9.40 7.34 3.81 3.19

MF_m4_laminar 0.26 0.24

MF_m5s 0.35 0.35

MF_m5t_1 0.35 0.35

MF_m5t_2 0.35 0.35

MF_m5t_3 0.35 0.35

MF_m5_laminar 0.56 0.56 MF_m5_laminar 1.95 1.95 195 3.94 2.53 1.50 0.99

EO Original Set Reduced Set

E0_R10 1.41 1.52 EO10 2.09 2.30 230 10.46 10.47 1.16 1.06

E0_R11 1.41 1.53

E0_R12 1.53 1.66 EO12 2.26 2.49 249 9.26 8.72 1.03 0.88

IO Original Set Reduced Set

IO1 1.96 3.10

IO2 2.02 2.62 IO2 5.90 7.82 782 11.63 11.92 1.29 1.28

IO3 1.92 1.92

IO4 2.33 2.33 IO4 3.29 3.34 334 11.15 11.35 1.24 1.22

IO5 2.04 2.04 IO5 2.89 2.93 293 8.01 8.19 0.89 0.88

IO6 1.80 1.80
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The MTUs representing psoas major muscle group in the

base model were a combination of the psoas muscle

representations (Figure 1B) in M1 and M2. The single-head

psoas muscle in M1 was split into the 11 heads in M2 with their

origins on the spine between L1 and L5. The representation of

psoas wrapping around the anterior part of the pelvic brim and

ending with insertion on the lesser trochanter of the femur in

M1 (geometric path points 2, 3, 4 and wrapping object

PS_at_brim) was maintained and replicated for each of the

11 psoas muscle heads. The volumetric fraction ratio of the

11 muscle heads in M2 was used to divide the total psoas muscle

volume in M1 in order to determine the peak isometric force of

each head. Finally, using the aforementioned model reduction

procedure, we reduced the number of psoas muscle heads in the

initial model to three.

Gemellus, pectineus, and quadratus femoris were added

to the base model (Figure 1C). The origin-to-insertion paths,

tendon slack lengths, and optimal fiber lengths for these

muscles were extracted directly from a model preceding M1

(Arnold et al., 2010) because the musculoskeletal geometry of

the two models was highly similar. The incorporation of

these muscles could enhance the model’s ability to match

inverse dynamic joint moments and provide a more

comprehensive set of loading conditions for the finite

elemental analysis used in the design of a custom

prosthesis implant.

Base model joint modifications
We introduced new and modified existing joint definitions in

the base model to account for clinical observations and simulation

requirements. Resection of the acetabulum and hip abductor

muscles on the operated side is the most common surgical

procedure for pelvic sarcoma patients at the MD Anderson

Cancer Center. To compensate for the loss of abductors, the

patient would likely develop scoliosis at the T8-T9 level following

surgery. Therefore, a thoracic joint with three rotational DoFs was

added between T8 and T9 vertebrae in the model to simulate the

probable scenario of scoliosis (Figure 1D).

The definition of the knee varus-valgus angle was also modified.

Previously, the angle of varus-valgus of the knee was modeled as a

function of the angle of knee flexion (Walker et al., 1985). To

represent varus-valgus at each knee, the knee adduction angle was

introduced as a new degree of freedom. The knee adduction angle

was no longer dependent on the knee flexion angle and could be

adjusted based on the subject’s knee anatomy.

To simulate daily activities involving high flexion of the hip

and knee joints, such as squatting and ascending and

descending stairs, the original model was modified further

(Figure 1E). Knee joint kinematics, knee muscle origin-to-

insertion paths, tendon slack lengths, and optimal fiber

lengths were updated based on a model refined atop M1 to

make it more suitable for simulating high hip and knee flexion

activities (Lai et al., 2017).

FIGURE 2
Image-based modeling approach to create subject-specific musculoskeletal model for the pelvic region. (A) segmenting CT scan images to
obtain pelvis bone geometry. Tumor growth was highlighted by the red boxes (B) Determining the hip joint center (C) Determining the lumbosacral
joint center. (D) Creating personalized muscle geometry.
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Musculoskeletal model personalization

Personalization of pelvis geometry
A subject-specific musculoskeletal geometry was obtained by

using image-based modeling (Figure 2A). CT scan images were

segmented using ITK-SNAP to construct the pelvis geometry

(Yushkevich et al., 2006). It was then repositioned and reoriented

such that its coordinate system aligned with the one in M1. The

articular surface of the hip joint on each side was carefully selected

for the sphere fitting tool inGeomagic (3D Systems,Morrisville, NC,

United States) to determine the hip joint center location (Figure 2B).

The location of lumbosacral joint was identified as the posterior

point of the articular surface of the joint (Figure 2C).

The base model was scaled to match the subject

anthropometrically using the OpenSim Scale Model tool. With

the exception of the pelvis, the dimensions of various body

segments were scaled based on the marker data collected during

the static standing trial. The pelvis was manually scaled using pre-

calculated scale factors to ensure that the hip and back joint centers

in the scaled model coincide with those found in the subject-specific

pelvis geometry previously. The average varus-valgus angle for each

knee during the static standing trial was set as the default knee

adduction angle and locked during subsequent analyses.

The musculoskeletal geometry of the pelvis in the scaled base

model was replaced by the subject-specific geometry. Firstly, the

right and left hemipelvis geometries scaled from generic geometry

were replaced by the corresponding image-based geometries. The

generic sacrum bone geometry was retained and aligned with the

image-based sacrum using the Geomagic global registration tool.

The resulting sacrum bone geometry closely matched the image-

based geometry in shape and maintained a comparable sacroiliac

joint angle as the subject. Secondly, after the replacement of bone

geometry, the muscle attachments and path points defined in the

proximity of the right or left hemipelvis were updated (Figure 2D)

using the previously described muscle transferal workflow (Base

Model Muscle Modifications Section). Bony landmarks on the

generic hemipelvis geometry were mapped to those on the

image-based geometry to determine the affine transformation.

Separately, the muscle attachments and path points defined in

close proximity to the sacrum, were updated by applying the

transformation used to register the generic sacrum geometry

onto the image-based geometry. All the muscle attachments were

carefully adjusted so that they remained on the surface of the

subject-specific pelvis and sacrum bone geometry.

Personalization of lower extremity muscles
An enhanced EMG-driven model calibrated the muscle-tendon

model parameters for each muscle in the lower extremities of the

geometry-personalized musculoskeletal model (Table 1), where the

experimentally unmeasured muscle excitations were predicted by

“synergy extrapolation” (Meyer et al., 2017; Ao et al., 2020; Ao

et al., 2022). The EMG-driven model took inputs of both

measured and unmeasured muscle excitations, residual muscle

excitations, and joint kinematics from OpenSim inverse kinematics

analysis, where unmeasured muscle excitations and residual muscle

excitations (being only applied to measured muscle excitations), were

constructed by linearly combining unknown synergy vector weights

and time-varying synergy excitations extracted frommeasuredmuscle

excitations. A multi-objective optimization simultaneously calibrated

the activation dynamics model parameters (EMG scale factor,

electromechanical delay, activation time constant, and activation

non-linear shape factor), the Hill-type muscle-tendon model

parameters (optimal muscle fiber length and tendon slack length)

for each muscle-tendon unit in the lower-extremity model, and

synergy vector weights associated with unmeasured and residual

muscle excitations such that the EMG-driven joint moments at

6 low-extremity DoFs (3 for hip, 1 for knee and 2 for ankle joints)

would primarilymatch theOpenSim inverse dynamics jointmoments

as closely as possible. The optimization problem was formulated as a

trade-off between prediction accuracy of joint moments and

magnitude minimization of unmeasured and residual muscle

excitations. Prediction of residual muscle excitations applied to

measured muscle excitations was included during optimization to

improve the predictive accuracy of unmeasured muscle excitations.

After the EMG-driven model was calibrated, it was used to estimate

the activations and forces of all the muscles in the lower extremities.

Personalization of trunk muscles
Three Hill-type muscle tendon model parameters for the

58 trunk muscles in the model were personalized. Firstly, the

peak isometric force of each trunk muscle was personalized using

published regressionmodels (Anderson et al., 2012). Using inputs of

the subject’s gender, age, height and mass, the anatomical cross-

sectional areas (ACSAs) of the subject’s trunk muscle groups at

vertebral levels between T6 and L5 were estimated by the regression

models. Individual MTU’s ACSA was calculated using the method

used to develop subject-specific models from M2 (Bruno et al.,

2017). The total ACSA for each trunk muscle group was distributed

to theMTUs representing themuscle group in the reduced set based

on the ACSA fraction ratio between the MTUs in the reduced set.

The ACSA for each trunkMTU in the reduced set wasmultiplied by

the maximum muscle stress of 100 N/cm2 (Bruno et al., 2015) to

obtain the peak isometric force (Table 2). Secondly, the tendon slack

length and optimal fiber length of each trunk MTU were adjusted

(Table 2) so that the normalized length of the MTU during gait was

slightly less than 1 for close-to-optimal force generation

(Supplementary Figure S1).

Trunk muscle activation estimation

Lower extremity muscle synergy analysis
The lower extremity muscle activations were decomposed to

find a lower-dimensional set of time-varying synergy activations

and corresponding time-invariant synergy vectors (Meyer et al.,

2016). The algorithm used for the synergy extraction was non-
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negative matrix factorization (NMF), which was implemented

usingMATLAB “nnmf” function (MathWorks, Natick, MA). For

each of the 10 selected gait cycles, the lower extremity muscle

activations in each leg were decomposed into 5, 6, 7, and

8 synergies because there was evidence that 5 muscle

synergies were sufficient during gait (Ivanenko et al., 2004).

Our goal was to investigate whether increasing the number of

synergies could affect the estimation of trunk muscle activations.

Each synergy activation was normalized by its maximum such

that each normalized synergy activation had a maximum

value of 1.

Optimization formulation
A nonlinear optimization problem estimated the trunk

muscle activations constructed from lower extremity synergy

activations such that the three resulting lumbosacral joint

moments closely matched those calculated from inverse

dynamics (Figure 3). The synergy activations extracted from

ipsilateral lower extremity muscles were assumed to be shared by

ipsilateral trunk muscles (Ivanenko et al., 2004; Saito et al., 2021).

The only remaining unknowns for estimating the trunk muscle

activations were the synergy vector weights for the trunkmuscles.

As a result, the synergy vector weights for the trunk muscles were

iteratively adjusted within the optimization until the optimal

solution for the trunk muscle activations was found.

The optimization problem described below searched for

optimal trunk muscle activations, which was carried out using

the MATLAB “fmincon” function.

min
west

J � JM + Ja + Ja dev + Jw dev

subject to bounds west ≥ 0 and linear inequality

constraints 0≤ aest ≤ 1
Where west is the vector of design variables, the synergy

vector weights of the trunk muscles, and aest is the vector of

estimated trunk muscle activations. Expanding each of the terms

in the objective function,

JM � 1
nPt · nDoF ∑nPt

i�1
∑nDoF
j�1

Mest i,j −MIDi,j

AllowΔM
( )2

where, Mest is the model-estimated lumbosacral joint torques

produced by the 58 trunk MTUs, MID is the inverse dynamic

lumbosacral joint torques excluding contributions by the psoas,

nPt is the number of time instants analyzed, and nDoF is the

number of DoFs. This cost term penalizes the difference between

the estimated and inverse dynamic lumbosacral joint moments,

FIGURE 3
Overview of the computational framework used to estimate trunk muscle activations and forces. From lower extremity muscle activations,
muscle synergies were extracted and of which, the synergy activations were then combined with synergy vector weights of the trunk muscles that
were searched iteratively by the optimization until the optimal solution of trunk muscle activations was found.
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especially when the difference is greater than the acceptable

value AllowΔM.

Ja � 1
nPt · nMusc

∑nPt
i�1

∑nMusc

j�1

aesti,j
Allowa

( )2

where aest is the model-estimated muscle trunk activations, and

nMusc is the number of trunk muscles. This term seeks to

minimize the estimated trunk muscle activation. The cost

associated with this term becomes more severe when aest is

above the activation threshold Allowa.

Ja dev � ∑nGrp
i�1

1
nPts · nMiGrp

∑nPts
j�1

∑nMiGrp

k�1

aest j, i,k( ) − �aestGrpj,i
AllowΔa

( )2⎡⎢⎢⎣ ⎤⎥⎥⎦
where the trunk MTUs were grouped into 6 large muscles

(RA, EO, IO, ES, MF, and QL, see Table 2 aest j,(i,k) is the

activation of the kth head of the ith large muscle, and �aestGrpj,i
is the mean activation across the heads of the ith muscle, both

computed at the jth time instant, nMiGrp is the number of heads

for the muscle. This term penalizes the difference between the

activations of individual muscle head and the mean across the

muscle heads. Penalties become especially steep when the

differences are larger than the allowable value AllowΔa.

The allowable value for each cost term was determined using

the following logic. AllowΔM was set to 5 Nm comparable to the

errors found in the estimated lower extremity joint moments

(Meyer et al., 2017; Ao et al., 2020; Ao et al., 2022).Allowa was set

to 1.00, 0.75, 0.50, and 0.25 to create four cases to investigate how

muscle activation cost term could affect the performance of

estimation. The AllowΔa and AllowΔw were both set to 0.05 so

that the various heads of the same muscle have comparable

activations and synergy structures.

Evaluation
Two metrics were used to assess the activation and force

estimates of the trunk muscles. First, the root mean squared error

(RMSE) between the lumbosacral joint moments generated by

the estimated trunk muscle forces and those from inverse

dynamics (excluded psoas contribution) was calculated. The

second comparison was between the estimated muscle

activations of ES and its measured and processed muscle

excitations. The second metric was determined by calculating

the Pearson correlation coefficient r between the average curves

of the estimated ES activations and the electromechanically

delayed ES excitations. Electromechanical delay (EMD) was

implemented to bridge the temporal gap between muscle

excitations and activations. EMD values for ES were found to

be affected by the rate of force generation and electrode

placement, with a mean and standard deviation of 133.1 and

29.8 ms at L1 and 135.1 and 32.8 ms at L2 (van Dieën et al., 1991).

To account for the reported range of EMD values and the

uncertainty in electrode placement during experimental data

collection, a range of EMDs from 100 to 165 ms with a 5 ms

increment was applied to the measured muscle excitations of ES,

and the EMD value of ES was allowed to vary between sides. A

post-analysis evaluation would identify the highest correlation

between the estimated activations and the electromechanically

delayed muscle excitations.

The trunk muscle activations and forces were also estimated

using a commonly formulated static optimization that

minimized the sum of the squares of muscle activations

(Anderson and Pandy, 2001; Shourijeh and Fregly, 2020). For

more information on the formulation, please see the

Supplementary Material. The static optimization results were

compared to our estimates.

Results

When the number of synergies was 7, the estimated

activations of the erector spinae right (ES R) and left (ES L)

correlated strongly (r > 0.7 (Moore et al., 2015)) with the

measured muscle excitations (Table 3). Moreover, when

Allowa was set to 0.50 in the optimization, the correlation

TABLE 3 The Pearson correlation coefficient, r, between the mean
curves of the estimated activations and the measured muscle
excitations of the erector spinae of the left side (ES L) and the right
side (ES R) across the 10 gait cycles selected for analysis. Two
estimationmethodswere compared, the proposed synergy-based
approach (SYN) using 5–8 muscle synergies per side and static
optimization (SO). Allowa indicated the allowable activation value
used in the optimization formulation to minimize activation
(Optimization Formulation Section).

Method Number of
synergies

r

ES L ES R

SYN 5 Allowa � 1.00 0.69 0.59

Allowa � 0.75 0.66 0.62

Allowa � 0.50 0.64 0.66

Allowa � 0.25 0.54 0.78

6 Allowa � 1.00 0.44 0.59

Allowa � 0.75 0.50 0.59

Allowa � 0.50 0.64 0.63

Allowa � 0.25 0.56 0.75

7 Allowa � 1.00 0.77 0.74

Allowa � 0.75 0.79 0.80

Allowa � 0.50 0.78 0.90

Allowa � 0.25 0.71 0.87

8 Allowa � 1.00 0.82 0.36

Allowa � 0.75 0.77 0.45

Allowa � 0.50 0.72 0.63

Allowa � 0.25 0.64 0.81

SO Allowa � 1.00 0.62 0.75
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between the mean curves of the estimated and the measured

activations for ES R was the highest (r = 0.90), and the

correlation for ES L was also strong (r = 0.78) (Table 3;

Figure 4). When the number of synergies increased from

7 to 8, and Allowa remained at 0.5, the correlation for both

ES R and ES L decreased. In the case of static optimization (SO),

the correlation between estimated and measured muscle

activity was moderate (r = 0.62) for ES L and strong (r =

0.75) for ES R (Table 3; Figure 4).

Both the number of synergies and the Allowa value used in the

optimization affected themeanRMSEvalues between the experimental

and model-estimated lumbosacral joints (Table 4). The mean RMSE

values for a fixed Allowa decreased as the number of synergies

increased from 5 to 8. When the number of synergies remained

constant, a smaller Allowa increased the mean RMSE values for the

estimated moments in lumbosacral extension-flexion and lateral

bending but decreased that for lumbosacral rotation.

Examination of the synergy vector weights of all gait cycles using

7 synergies with Allowa value of 0.50 revealed that trunk muscles

minimally recruited at least one synergy (vector weights <0.01) on
each side of the body (synergy activations marked in Supplementary

Figures S4A,B). This characteristic is evident in synergies 1 and 7 on

the right side, as well as synergy 6 on the left, during the 10th gait cycle

(Supplementary Figures S5A,B).

Discussion

This study proposed a novel computational method, named

SYN, for estimating trunk muscle activations during gait and

conducted an initial evaluation using pre-operative data collected

from a patient with pelvic sarcoma. A full-body subject-specific

musculoskeletal model was developed based on the patient’s pre-

operative data to facilitate the computation method. A calibrated

EMG-driven lower extremity musculoskeletal model was used to

estimate the activations of the lower extremity muscles, from which

synergy activations were extracted. SYN estimated trunk muscle

activations by multiplying synergy activations extracted from the

ipsilateral leg muscles by the synergy vectors found through

optimization. It was found that using 5 to 8 muscle synergies

extracted from the muscle activations in each leg could reasonably

estimate the activations of ipsilateral trunk muscles. Increasing the

number of lower extremity muscle synergies extracted from each leg

decreased the RMSE between experimental and model-estimated

FIGURE 4
Comparison of estimated andmeasuredmuscle activity of erector spinae left (ES L) and right (ESR). Mean and standard deviation of muscle activations
across the 10 analyzed gait cycles were represented by the curve and the shaded area respectively. The activations were estimated by two methods: 1. the
synergy-basedmethod proposed in study (SYN Est., shown in the first row), using 7 synergies and Allowa � 0.50; 2. the static optimizationmethod (SO Est.,
shown in the second row). For the purpose of display and comparison, themean of standard deviation ofmeasuredmuscle excitations (represented by
the black curve and grey shaded area) were both electromechanically delayed and scaled to minimize the difference with the estimated activations. The
correlations between the mean curves of estimated and measured muscle activity were displayed at the top left corner.
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jointmoments.When sevenmuscle synergies weremade available for

recruitment to the ipsilateral trunk muscles, a strong correlation was

found between estimated andmeasured muscle activity of the erector

spinae. Despite the presence of 7 synergies, at least one muscle

synergy on each side was minimally recruited by the trunk

muscles in the 10 gait cycles we analyzed.

The estimation accuracy of the ES activations varied based on the

number of muscle synergies and the Allowa value used in the

optimization formulation. Reconstruction with 7 synergies

outperformed the other numbers of synergies evaluated as the

measured and estimated activity for both ES R and ES L were

strongly correlated for all Allowa values in the optimization

(Table 3), whereas reconstruction with 5 or 6 synergies produced

mostly moderate correlation, and reconstruction with 8 synergies

could only achieve strong correlation for ES on one side. For each

number of synergies evaluated, the effect of varying Allowa on the

estimation performance was not consistent. At 7 synergies, decreasing

Allowa from 1.00 to 0.50 produced the highest correlation for ES R

and a comparable correlation for ES L. Overall, 7 synergies and the

Allowa = 0.50 provided the most accurate estimation (Table 3;

Figure 4). The correlation between estimated ES activations using

the SYN method with seven synergies and the measured ES muscle

excitations was greater (>0.15), compared to estimates using the static

optimization method (Table 3; Figure 4).

The joint moment matching performance of SYN was

dependent upon both the number of muscle synergies and the

Allowa value in the optimization objective function. As the

number of synergies used for estimation increased from 5 to

8, the mean RMSE of the estimated joint moments decreased,

indicating that the performance of moment matching improved

(Table 4). By increasing the number of muscle synergies, the

number of design variables in the optimization, synergy vector

weights, was also increased, allowing for greater flexibility to

better track the experimental joint moments. For each number of

synergies evaluated, reducing the Allowa value would increase

the mean RMSE of the estimated joint moments in lumbosacral

extension and bending while notably decreasing the mean RMSE

in lumbosacral rotation (Table 4). Reducing Allowa would

increase the weight of the activation minimization term

relative to the moment tracking term in the optimization. It

was therefore anticipated that the optimizer would reduce

activations further at the expense of moment matching

quality. Even though the mean RMSE for lumbosacral

rotation was lower, it might not have been enough to offset

the increase in the mean RMSEs for lumbosacral extension and

bending because the optimizer minimized error in joint moment

matching for all three DoFs collectively. Therefore, 8 synergies

andAllowa = 1.00 provided the best overall performance for joint

moment matching.

The two metrics used to evaluate the performance of SYN

provided relatively different information regarding the optimal

number of synergies and Allowa. Despite the fact that the mean

RMSE of the estimated lumbosacral joint moments was lower with

8 muscle synergies than with 7 muscle synergies, the higher

TABLE 4 The average and standard deviation of the root-mean-square error (RMSE) in the lumbosacral joint moments estimated using 5–8 muscle
synergies per side across the 10 gait cycles selected for analysis. Allowa indicated the allowable activation value used in the optimization
formulation to minimize activation (Optimization Formulation Section).

Number of synergies RMSE (Nm)

Lumbar extension Lumbar bending Lumber rotation

5 Allowa � 1.00 4.04 ± 1.03 5.22 ± 0.90 2.46 ± 0.62

Allowa � 0.75 4.05 ± 1.02 5.24 ± 0.89 2.45 ± 0.60

Allowa � 0.50 4.12 ± 0.99 5.31 ± 0.88 2.42 ± 0.56

Allowa � 0.25 4.28 ± 0.97 5.64 ± 0.86 2.40 ± 0.47

6 Allowa � 1.00 3.22 ± 0.50 4.36 ± 0.62 2.00 ± 0.61

Allowa � 0.75 3.30 ± 0.53 4.40 ± 0.60 1.97 ± 0.61

Allowa � 0.50 3.40 ± 0.59 4.51 ± 0.58 1.94 ± 0.61

Allowa � 0.25 3.66 ± 0.66 4.80 ± 0.60 1.96 ± 0.53

7 Allowa � 1.00 2.87 ± 0.33 3.45 ± 0.71 2.19 ± 1.48

Allowa � 0.75 2.90 ± 0.32 3.51 ± 0.70 2.12 ± 1.31

Allowa � 0.50 3.00 ± 0.35 3.67 ± 0.68 2.04 ± 1.07

Allowa � 0.25 3.29 ± 0.46 4.05 ± 0.74 1.91 ± 0.60

8 Allowa � 1.00 2.14 ± 0.41 2.66 ± 0.56 2.30 ± 1.46

Allowa � 0.75 2.21 ± 0.41 2.77 ± 0.54 2.20 ± 1.27

Allowa � 0.50 2.36 ± 0.41 2.97 ± 0.54 2.05 ± 0.98

Allowa � 0.25 2.70 ± 0.45 3.43 ± 0.58 1.83 ± 0.57

Frontiers in Bioengineering and Biotechnology frontiersin.org13

Li et al. 10.3389/fbioe.2022.964359

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.964359


correlation between the measured and estimated muscle activity of

ES with 7 muscle synergies should be viewed as more important

given that the objective of the study was to estimate realistic trunk

muscle activations. The more accurate estimates for a key trunk

muscle might outweigh the small improvement (the difference in

mean RMSE was within 1 Nm for all 3 lumbosacral DoFs) in

matching the experimental joint moment with the 8 synergies. The

Allowa of 0.5 was superior to the other values tested because of the

highest overall correlation it produced with 7 synergies (Table 4;

Figure 4). For the purposes of this study, sevenmuscle synergies and

a value of 0.50 for Allowa were deemed the best-case scenario.

The desired activation estimation performance with seven

synergies is probably due to the more uniform spacing between

synergy activations throughout a gait cycle. Muscle synergy

activation peaks are more likely to be distributed throughout the

gait cycle as the number of synergies increases (Supplementary

Figures S4A,B). This increases the likelihood that a muscle synergy

emerges in unison with one or more trunk dynamical events. These

distinct synergies would be recruited by the trunk muscles in an

attempt to reproduce the dynamic events. For example, lumbosacral

extension joint moments were required at the beginning and end of

the gait cycle. Synergies 4 and 5 in the representative gait cycle had

peak activations at those points (Supplementary Figure 5A). The two

muscle synergies were both recruited by the lumbar extensors ES

and MF. This observation was also consistent with the reported

activation of ES during footstrikes (White and McNair, 2002). Due

to the emergence of such synergies, trunk muscles no longer needed

to recruit all the synergiesmade available to them by lower extremity

muscles. We observed minimal recruitment of at least one synergy

on each side of the body by the ipsilateral trunk muscles

(Supplementary Figures S4A,B). This observation brings our

result closer to the published data indicating that muscle activity

during gait could be explained by five activation patterns (Ivanenko

et al., 2004).

SYN demonstrated several advantages over SO in addition to its

superior estimation of ES activations (Figure 4). Firstly, SYN

underestimated activation levels for trunk muscles EO, ES, MF,

and RA less frequently than SO. SO did not recruit these muscles

during the majority of the ipsilateral leg’s stance phase (Figure 5),

which may not be desirable for maintaining posture control and

joint stability (Lee et al., 2006; Rosa et al., 2014). Secondly, the SYN

estimates of trunk muscle activation were smooth curves with

gradual changes, while the SO estimates permitted abrupt

activation changes to match the experimental joint moments,

which may not be physiological. SO estimated three consecutive

activation peaks formuscles IO4 (L), EO10 (L), and EO12 (L) during

FIGURE 5
Estimates of trunk muscle activations by the proposed synergy-based method (SYN) and by the static optimization method (SO) for a
representative gait cycle. For SYN, the activations were estimated with 7 muscle synergies per side and Allowa � 0.50. The name above each subplot
indicates an individual muscle head, and the larger muscle to which each muscle head is associated is listed in Table 2.
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the stance phase (Figure 5). This may be due to the nature of SO,

which solves one frame at a time and sometimes provides little

continuity between successive time frames (Shourijeh and Fregly,

2020). In contrast, SYN simultaneously solves all time frames, and

muscle activation curves take on the smooth shapes typical of

synergy activations. Thirdly, unlike SO, the structure of SYN

causes muscle heads to have a similar pattern and magnitude.

Despite belonging to the same muscle group (IO), SO activated

IO2, IO4, and IO5 during different gait cycle phases (Figure 5). We

compared SYN and SO because SO is commonly used to estimate

muscle activation in the absence of muscle EMG measurement.

Even though SO performed better than SYN in matching the

experimental joint moment, SYN may be more suitable for

estimating trunk muscle activations, which was set as the

primary objective of this study.

Our proposed computational framework for estimating trunk

muscle activations required a full-body musculoskeletal model that

included lower extremity and lower trunk muscles (Figure 3).

Though full-body OpenSim models with lower extremity and

trunk muscles already existed (Raabe and Chaudhari, 2016;

Schmid et al., 2020; Favier et al., 2021), we decided to create our

own model based on M1 (Rajagopal et al., 2016) and M2 (Bruno

et al., 2015) for the following reasons: First, both models would

permit customization of muscle strength using the subject’s readily

accessible height and mass data. Using such data from the subject,

the volume and peak isometric force of the 35 lower extremity

muscles in M1 can be calculated (Handsfield et al., 2014). ACSA of

torso muscles, used to estimate the muscle peak isometric force

parameter, could be estimated using regressions based on the

gender, age, height, and mass of the subject (Anderson et al.,

2012). Second, the EMG-driven lower extremity musculoskeletal

model used in this study (Ao et al., 2022) was developed using the

M1 model. Third, the lower extremity model developed to simulate

high hip-knee flexion activity (Lai et al., 2017) was also based onM1.

The pre-existing full-body OpenSim models mentioned above were

not derived from M1 or M2. Therefore, we decided to combine the

M1 andM2musculoskeletalmodels tomeet the requirements of our

clinical application for pelvic sarcoma (Figure 1).

Model personalization improved the model’s ability to

accurately represent the subject’s kinematics and kinetics in

multiple ways, generating more subject-specific data for

estimating trunk muscle activations. First, the image-based

modeling approach provided a possibly more accurate

representation of the pelvic region’s musculoskeletal system. The

centers of the hip and lumbosacral joints were placed more precisely

than amarker-based scalingmethod could have. The sacroiliac angle

was personalized to be representative of the subject’s anatomy.

Muscle attachments were placed at the appropriate locations

based on the pelvic bone geometry of the subject. As a result, the

subject-specific model produced more accurate results of joint

kinematics, muscle-tendon lengths, and muscle moment arms,

which were required for estimating trunk muscle activations and

forces. TheHill-typemusclemodel parameters for the trunkmuscles

were also personalized. The majority of trunk muscles in the model

gained strength (Table 2) and operated at more optimal lengths for

force generation (Supplementary Table S1, Supplementary Figure

S1). Without these model modifications, trunk activations of much

greater magnitude would be expected to generate joint moments.

Lastly, the performance of SYN depended heavily on the synergies

extracted from the activations of the muscles of the lower

extremities. Our comprehensive EMG-driven model (Ao et al.,

2022) provided reliable estimates of lower extremity muscle

activations (moment mean absolute error 5.5 Nm) using

measured muscle excitations while predicting unmeasured muscle

excitations (Supplementary Figure S2).

This study has severalmajor limitations due to its definite scope.

First, this study only included data from a single subject, meaning

that the findings may not be applicable to other subjects with

comparable or dissimilar pathology. Nonetheless, it is

encouraging to see that the essential methodological components,

such as a suitable model, model personalization techniques, and

computational algorithm, have been developed and can facilitate the

analysis of data collected from future subjects recruited. Due to the

scarcity of available datasets and the difficulty in recruiting more

patients and acquiring a dataset of this extent, this study is limited to

data from a single subject. This study’s extensive dataset included

medical imaging and a large number of EMG recordings from the

leg and trunk, including fine wire recordings of deep muscles and

motion and ground reaction data for multiple gait cycles. The

availability of such a dataset represents a rare opportunity to

develop a subject-specific musculoskeletal model. Second, only

one task’s movement data was analyzed. Future research could

expand on the current study by incorporating additional daily

activities, such as squatting and stair ascending and descending.

Third, our trunk musculoskeletal model is simplified. The spine is

partially articulated, with joints at L5-S1 and T8-T9, and is actuated

by a reduced set of muscles. The reason for the simplification is that

the large number of body segments, joint degrees of freedom, and

muscles in a more detailed lumbar spine model would likely

complicate model-based motion predictions, which is our

ultimate research objective. Due to the limited range of motion

of the spine during gait, we believe the partially articulated spine

model is justifiable for at least gait motion. Fourth, we used non-

negative matrix factorization (NMF) to decompose the lower

extremity muscle activations for synergy extraction, as it provides

the most accurate reconstruction of measured muscle activations or

excitations during walking compared to other matrix factorization

algorithms (Rabbi et al., 2020), and non-negative synergy activations

and synergy vector weights were deemed more physiological.

However, NMF is frequently unable to provide a unique solution

(Shourijeh et al., 2016), which may introduce uncertainty into our

computational method. As we discovered that the quality of our

estimation was dependent on the extracted synergies, it would be

advantageous to consider alternative factorization techniques, such

as principal component analysis, independent component analysis,

and factor analysis, for future research. Fifth, we have validated our
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estimation of trunk muscle activations using only experimental

measurements for one trunk muscle, ES. Because ES is one of

the most studied trunk muscles (van Dieën et al., 2003) and one of

the primary agonists for lumbar extension and lateral bending, it was

selected for EMG measurement. If, in the future, additional EMG

channels become available for recording, wewill measure the activity

of other trunk muscles for additional validation.

In conclusion, this study presented a novel computational

method for estimating trunk muscle activations using muscle

synergies extracted from lower extremity muscle activations.

Preliminary studies performed on the gait data of a pelvic

sarcoma patient have returned generally realistic estimates of

trunk muscle activations, demonstrating the feasibility and

effectiveness of the proposed method. The proposed method can

be utilized to address a variety of research issues. From a practical

standpoint, our proposed method can address a common problem

when insufficient EMG channels prevent simultaneous

measurement of trunk and lower extremity muscle activity. From

the perspective of improving the standard of care for patients with

pelvic sarcoma over the long term, the knowledge gained from the

activation and force of trunk muscles can be useful for a number of

clinical applications involving pelvic sarcoma. One of the primary

research objectives of the authors is to use the activations and

synergy structures identified in this study to develop subject-specific

synergy-driven models (Meyer et al., 2016; Sauder et al., 2019) of

pelvic sarcoma patients in order to predict postoperative functional

outcomes. The prediction will be used to evaluate and optimize

surgical treatment designs in order to maximize functional

outcomes following surgery. The other primary objective of the

authors’ research is to develop load cases for stress analysis of custom

prosthesis designs using muscle force estimates, whichmay enhance

the performance and durability of such designs.
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