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Ischemic stroke is one of the major contributors to death and disability

worldwide. Thus, there is an urgent need to develop early brain tissue

perfusion therapies following acute stroke and to enhance functional

recovery in stroke survivors. The morbidity, therapy, and recovery processes

are highly orchestrated interactions involving the brain with other tissues.

Exosomes are natural and ideal mediators of intercellular information

transfer and recognized as biomarkers for disease diagnosis and prognosis.

Changes in exosome contents express throughout the physiological process.

Accumulating evidence demonstrates the use of exosomes in exploring

unknown cellular and molecular mechanisms of intercellular communication

and organ homeostasis and indicates their potential role in ischemic stroke.

Inspired by the unique properties of exosomes, this review focuses on the

communication, diagnosis, and therapeutic role of various derived exosomes,

and their development and challenges for the treatment of cerebral ischemic

stroke.
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1 Introduction

Exosomes were first discovered in sheep reticulocytes in 1983 (Zhang et al., 2020a).

Johnstone et al. tracked transferrin receptors during the maturation of reticulocytes and

found that the formation of exosomes is the mechanism for the loss of transferrin

receptors in mature red blood cells (Johnstone et al., 1987). The International Society for

Extracellular Vesicles uses the generic term extracellular vesicle (EV) to refer to particles

that are naturally released from cells, enclosed in a lipid bilayer, and cannot replicate.

Exosomes are considered subtypes of EVs. Some studies have compared EVs recovered

using medium-speed centrifugation (referred to as large oncosomes, ectosomes,
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microvesicles, cell debris, or large or medium EVs) with those

recovered using 100,000 × g ultracentrifugation (referred to as

exosomes in the first four studies or small EVs in the last two);

some of these studies used different density gradients for

separation (Théry et al., 2018). Both prokaryotic and

eukaryotic cells can release exosomes in either normal or

pathological states. When secreted into the extracellular space,

exosomes play a critical role in cell–cell communication by

delivering bioactive substances between source and recipient

cells. They also have targeting abilities and inherit specific

characteristics. Thus, exosomes are of particular interest in

biology because their formation involves a distinct

extracellular regulatory process (Kalluri and LeBleu 2020).

Under the conditions of specific physiological and

pathological processes, some cell-derived exosomes undergo

biological variations that include changes in the expression of

proteins and nucleic acids. These are used to investigate

mechanisms of biodegradation and biosynthesis, pathogenic

injury, organ remodeling, and tissue repair (Sharma et al.,

2019; Cheng et al., 2020). Although purification and

identification of exosomes remain challenging, exciting

discoveries concerning their molecular mechanisms in the

field of stroke have emerged and their potential in diagnostic

and therapeutic functions has been demonstrated (Yang et al.,

2018a; Shin et al., 2020; Zhang et al., 2021a).

Extensive advances in the epidemiology, etiology,

mechanism, and prognosis of stroke have been made;

however, safe and effective treatments have not been

developed for most patients. Disability and death are a huge

burden on patients and their families worldwide (Zhang et al.,

2020b). Cerebral stroke is an acute cerebrovascular disease that

includes ischemic and hemorrhagic stroke. Ischemic stroke is the

main type of cerebral stroke wherein blood cannot flow to the

brain, resulting in the blockage of blood vessels, leading to brain

tissue injury (Liang et al., 2016; Hong et al., 2019). When

thrombogenesis blocks blood flow in the brain, the energy

supply is disrupted, causing damage to the blood vessels and

neuronal death. Blood–brain barrier (BBB) breakdown occurs in

the first few hours after ischemic stroke and influences the

permeability, induces secondary neuron inflammation, and

accelerates the process of ischemic tissue damage (Liebner

et al., 2018; Tuo et al., 2022). Meanwhile, an inflammatory

reaction induced by gliocyte activation could also potentiate

damage to the integrity of the BBB (Walsh et al., 2021).

Primary cerebral ischemic treatment is to restore blood flow

as soon as possible after the onset of symptoms. Alteplase is a

recombinant tissue plasminogen activator (rt-PA) and only

approved to treat cerebral ischemia stroke by the

United States Food and Drug Administration. However, its

therapeutic potential is limited by the hemolytic risk and

short treatment window (4.5 h), with only a few patients

benefitting from its use (Ishiguro et al., 2012; Bruch et al.,

2019; Anfray et al., 2021). Therefore, finding a new

therapeutic strategy against ischemic stroke is crucial.

Numerous studies have explained the mechanisms of

ischemic stroke and ischemia/reperfusion (I/R) and offered

several strategies for the use of exosomes for their diagnosis

and treatment (Fei et al., 2021; Sun et al., 2021; Zhu et al., 2021).

This review briefly describes exosomal biogenesis, collection

methods, and communication. It investigates the role of

exosomes in the diagnosis, neuroprotection, angiogenesis,

anti-inflammation, and the BBB in ischemic stroke and

focuses on the development of engineered exosomes. It reveals

the mode of communication in various parts of the body in the

ischemic stroke environment and the use of exosomes in repair

or protective mechanisms. This review also reveals the challenges

faced in these studies and provides new strategies for future

research and therapeutic schemes for clinical treatment.

2 Exosomal composition and
communication

2.1 Exosomal biogenesis and composition

Associating an EV with a particular biogenesis pathway

remains extraordinarily difficult unless the EV is captured

during release using live imaging techniques. Furthermore,

using fluorescent exosome labeling and animal imaging

technologies, the acting positions of exosomes can be

dynamically tracked with the aim of providing technical

support for increased accuracy in gene therapy. However,

most studies suggest that exosomes are generated through a

process involving the double invagination of the plasma

membrane and formation of intracellular multivesicular

bodies (MVBs) containing intraluminal vesicles (ILVs) (Théry

et al., 2018). Exosomes are initially formed by endocytosis. The

cell membrane is internalized to generate endosomes. Thereafter,

many vesicles are formed within the endosome by internalizing a

portion of the endosomal membrane. Finally, MVBs fuse with

the cell membrane, releasing the intraluminal endoplasmic

vesicles into the extracellular space to form exosomes

(Gruenberg and van der Goot 2006). During this biogenesis

process, exosomes carry multiple bioactive components,

including proteins, nucleic acids, and lipids, and play a role in

the biological functions especially in cellular communication.

(Théry et al., 2002) (Figure 1). The heterogeneity of exosomes not

only mirrors their size, content, and cellular origin but also

reflects a regulated sorting mechanism. Ongoing technological

and experimental advances are likely to yield valuable

information regarding their heterogeneity and biological

function(s), as well as enhance our ability to harness their

therapeutic and diagnostic potential. Developing more

standardized purification and analytical procedures to study
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exosomes will potentially lead to the uncovering of their

functional heterogeneity (Kalluri and LeBleu 2020).

The exosome membrane is a phospholipid bilayer structure

with a lipid composition, and it contains are similar to the

plasmalemma component of the source cell. (Jeppesen et al.,

2019). Exosomal proteins include membrane and

intramembrane proteins. Membrane proteins are found in

almost all exosomes, such as several tetraspanins (CD9, CD63,

and CD81) and major histocompatibility complex class II (MHC

II). Tetraspanins play important roles in normal (e.g., cell

adhesion, motility, activation, and proliferation) and

pathological conditions (e.g., metastasis and viral infection)

(Yu et al., 2017). By contrast with many other cell surface

proteins, CD9 does not have an obvious receptor function; it

may participate in the organization of surface multiprotein

complexes through association with other transmembrane

molecules, including integrins, ADAMs, and signal receptors,

thereby mediating various cellular and physiological functions

(Liu et al., 2019a). CD63 interacts with many different proteins

either directly or indirectly. Its interaction partners include

integrins (α4β1, α3β1, α6β1, LFA-1, and β2), other

tetraspanins (CD81, CD82, CD9, CD151), cell surface

receptors (MHCII, CD3, FcεRI, and CXCR4), kinases

(phosphatidylinositol 4-kinase and the Src family tyrosine

kinases Lyn and Hck), adaptor proteins (AP-2, AP-3, and AP-

4), and other proteins, including L6 antigen, syntenin-1, TIMP-1,

H, K-ATPase, and MT1-MMP (Pols and Klumperman 2009).

CD81 has an important function in the immune system. Proteins

such as ezrin and the small GTPase Rac1 have been suggested to

interact with the C-terminal domain of CD81, providing a

potential link between tetraspanins and the cytoskeleton (Sala-

Valdés et al., 2006). CD9, CD63, and CD81 are considered

exosome markers. Exosomes are known to display two main

types of MHC molecules: MHC I and II. MHC I is recognized by

CD8+ T-cell and MHC II is recognized by CD4+ T-cell. MHC

molecules can bind both self and non-self peptides. MHC I bind

short (roughly 8–14 residues) peptides derived from intracellular

proteins, such as phosphorylated peptides. MHC II molecules are

FIGURE 1
The biogenesis and contains of exosome.
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primarily expressed in antigen-presenting cells, and bind longer

peptides (roughly 12–25 residues) (Racle et al., 2019). Thus,

interactions of MHC in exosomes with immune cells can provide

novel immunotherapy strategies for ischemic stroke. Moreover,

peripheral surface proteins include Wnt and are rich in

extracellular matrix (ECM) proteins, which play a role in

adhesion and signaling (Zhang et al., 2015; Lerner et al.,

2020). Another class of extracellular factors outside the

membrane includes transforming growth factor (TGF-β). In
addition to external characterization, there is inclusion

characterization, and exosomes contain unique proteins,

including heat shock proteins (HSP70, HSP90), ESCRT

complexes composed of ESCRT-0, ESCRT-1, ESCRT-2,

ESCRT-3, and a class of exosomal scaffolding protein Alix

(Pegtel and Gould 2019).

Exosomal nucleic acids contain DNA, mRNA, and non-

coding RNA. An increasing number of researchers noted the

function of mRNA and non-coding RNA in exosomes. The

mRNA component carried by exosomes has been shown to

enter the plasma membrane and can be translated into

proteins (Valadi et al., 2007). Particularly, specific microRNAs

(miRNAs), approximately 18–25 nucleotides long, are

categorized as small non-coding RNA. They can control the

expression of specific genes by binding to complementary

sequences in the 3′ untranslated regions (UTRs) of target

mRNA transcripts to inhibit or activate mRNA translation

and transcription (Sun et al., 2018a; Isaac et al., 2021).

miRNAs play a vital information transfer role in intercellular

communication by transferring large amounts of biological cargo

encapsulated in recipient cells to regulate posttranscriptional

gene expression. miRNAs are also involved in the

development of neurodegenerative diseases (Kojima et al.,

2018), neuropsychiatric disorders (Xu et al., 2012), and

tumors (Zhao et al., 2020).

2.2 Intercellular communication

Previously, exosomes were considered cellular debris.

However, emerging research results in multiple fields have

shown that it is a critical player in mediating intercellular

communication (Lande et al., 2020). The biological process of

exosomes include initiation, endocytosis, polycystic formation,

and fusion with the plasma membrane; this process is precise at

every step. mRNA, miRNAs, and other cargo in exosomes can be

released by source cells to deliver messages to neighboring cells

and distant cells, thereby regulating the function of recipient

cells. Exosomes allow for the intercellular transport of proteins

and RNA and are also capable of antigen presentation (Chen

et al., 2019). They make contact with target cells in three ways:

firstly, exosomal membrane proteins bind to recipient cell

membrane proteins, activating intracellular signaling pathways

in recipient cells. Secondly, exosomal membrane proteins are

undetected on the source cell membrane. This indicates that, in

an extracellular matrix, the sheared fragments produced by

proteases cleave exosomal membrane proteins and could act

as ligands to combine with receptors on the membrane and

activate intracellular signaling pathways. Thirdly, the exosomal

membrane and that of the recipient cell fuse directly, leading to

the release of proteins, mRNA, and miRNA in their cargo

(Zagrean et al., 2018). Thus, exosomes enable communication

between neighboring cells and between source and distant cells

through humoral circulation without direct contact (Koide et al.,

2022). In several studies, the exosome-mediated transfer of

miRNAs has explained the neurovascular unit (NVU)

interaction in brain remodeling and cerebral ischemic protection.

3 Extraction and identification of
exosomes

3.1 Method of exosome extraction

Exosomes that occur naturally or that are engineered require

sensitive extraction and analysis techniques for subsequent

research on ischemic stroke. Currently, the gold standard

technique for isolation and purification of exosomes from

biological fluids or cell supernatants is ultracentrifugation or a

combination with ultrafiltration membranes (density gradient

centrifugation) (Yan et al., 2019). Density gradient centrifugation

has been performed on exosomes in a sample enriched with

sucrose in a density range of 1.13–1.19 g/ml by

ultracentrifugation (Wang et al., 2014). Immunomagnetic

extraction is another innovative method of enrichment and

extraction of exosomes. This method uses exosomal

membranes to express specific proteins, which are separated

and enriched based on the specific binding of antigens and

antibodies and the magnetic properties of magnetic beads

(Clayton et al., 2001). Therefore, the exosomes extracted using

the immunomagnetic method are of high purity. This method is

not limited by instruments and reagents and is suitable for use

with urine, blood, cell medium, and other sample types (Cai et al.,

2018). However, specificity is both an advantage and a

disadvantage because exosomes secreted by different cells

differ in the type of membrane protein expression as well.

Specific antibody-modified immunomagnetic beads are not

universally applicable when extracting exosomes from

different cell sources. In experiments, several methods are

often combined to save time and improve purity.

3.2 Physical characterization

Conventional optical microscopes with magnification limits

close to the size of exosomes (a diameter of 30–100 nm) are

important; however, they are not adequate for observation. The
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TABLE 1 Summary of various exosomes in ischemic stroke.

Derived Pre-treatment Cargo Change Outcome References

BMECs OGD/R - - Protect PC12 cells against OGD/R injury Zeng et al.
(2020)

BMECs OGD microRNA-
134

Downregulated Suppressed OLs apoptosis Xiao et al.
(2019)

MECs MCAO mice miR-542-3p Downregulated Prevented ischemia-induced glial cell inflammatory
response

Cai et al. (2021)

OGD TLR4 Upregulated

ASCs OGD/RP miR-22-3p Upregulated Alleviate brain ischemic injury Zhang et al.
(2021b)

Primary stem
cell

OGD/R EA treated miR-146b Upregulated Promotes the differentiation of endogenous neural stem
cells improve neurological injury after ischemic stroke

Zhang et al.
(2020b)

DPSCs - - - Alleviated neurological impairment Li et al. (2020c)

iPSC-NPCs - - - Promoting the survival and growth of neurons Li et al. (2021a)

USC MCAO rats miR-26a - Promoted both proliferation and neuronal
differentiation of NSCs after OGD/R

Ling et al.
(2020)

NSC OGD - - Neuroprotection against experimental stroke Sun et al. (2019)

BV2 Treated with IL-4 miR-137 Upregulated Attenuated neuronal apoptosis decreased infarct volume Zhang et al.
(2021c)

Astrocyte OGD - - Suppress autophagy Pei et al. (2019)

Ameliorate neuronal damage

Astrocyte OGD miR-17-5p Upregulated Improved neurobehaviors Du et al. (2021)

Reduced neuronal apoptosis

Astrocyte OGD/R miR-34c Upregulated Reduces neurological damage Wu et al. (2020)

HUVECs OGD miR-1290 Upregulated Protects neurons by attenuating apoptosis Yue et al. (2019)

HUVECs H/R miR-21-3P Downregulated Inhibited neurons apoptosis Jiang et al.
(2018a)

Serum Young rats CD46 High expression Attenuated synaptic dysfunction and improve post-
stroke functional recovery

Zhang et al.
(2021d)

ECEs Ischemic rats Proteins and
miRNA

Altering miRNAs and target
protein profiles

Promotes axonal growth of cortical neurons Zhang et al.
(2020c)

ADSCs MCAO rat miR-181-5p Upregulated Promote the angiogenesis of BMECs after OGD Yang et al.
(2018a)

BMSCs - miRNA-29-3p - Promoting angiogenesis Hou et al.
(2020)

Suppressing neuronal apoptosis

BMSCs CXCR4 transfect - - Promote the proliferation and tube formation for
angiogenesis

Li et al. (2020d)

Protecting brain endothelial

MSCs - miR-126 Overexpressing Enhance the survival and angiogenic function of H/
R-injured EC

Pan et al. (2019)

MSCs - miR-132-3p Overexpressing Reducing cerebral vascular ROS production, BBB injury,
and brain injury

Pan et al. (2020)

Microglial OGD miR-424-5p Upregulated Cell damage Xie et al. (2020)

Permeability of BMEC

(Continued on following page)
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physical characterization of exosomes, including morphology,

size, and distribution, is often measured by more precise

microscopic techniques (Raposo and Stoorvogel 2013; Hong

et al., 2019). Scanning electron microscopy (SEM),

transmission electron microscopy (TEM), and atomic force

microscopy (AFM) are reliable and widely used techniques.

They are different in the manner in which they analyze

exosomes. TEM allows for observation of the internal

TABLE 1 (Continued) Summary of various exosomes in ischemic stroke.

Derived Pre-treatment Cargo Change Outcome References

BV2 IL-4 miR-26a Upregulated Promoted the tube formation Tian et al.
(2019)

ADSCs - miR-30d-5p Overexpressing Suppression of autophagy Jiang et al.
(2018b)

Reduced the OGD-innduce inflammatory response

ADSCs Hypoxic pre-treated circ-Rps5 Upregulated Improved cognitive function by reducing neuronal
damage

Yang et al.
(2022a)

SCs - - - Ameliorate brain injury cause by cerebral I/R Zhang et al.
(2021e)

BMSCs Hypoxia
preconditioning

- - Alleviating OGD/R-induced injury Yu et al. (2021)

Promoting the anti-inflammatory polarization of
microglia

BMECs - - - I/R injury-induced M1-polarized microglia could be
shifted toward M2 phenotype

Liu et al. (2021)

BMSCs Hypoxic pre-treated - - Neuroprotective effects against NLRP3 inflammasom-
mediated pyroptosis

Kang et al.
(2021)

hUCMSCs miR-26b-5p - Repress M1 polarization of microglia by targeting
CH25H to inactivate the TLR pathway

Li et al. (2020a)

hWJ-MSC - - - Reduced microglia-mediated neuroinflammation Thomi et al.
(2019)

Plasma melatonin-treated - The miRNA profiles changed Decreased the infarct volume Wang et al.
(2020)

Reduces the secretion of inflammatory cytokines

Alleviate inflammation

Microglial GW4869 treated - - Reversed ischemia-induced microglial activation,
inflammatory response

Gao et al. (2020)

Cortical
neurons

OGD miR-181c-3p Downregulated Decreased astrocyte expression of CXCL1 and
inflammatory factors

Song et al.,
2019a

BV2 Treated with IL-4 miR-124 Knockdown Attenuated ischemic brain Song et al.,
2019b

Promoted neuronal survival

bEnd.3 OGD Protein and
miRNA

Changes of exosomal miRNA
and surface protein profiles

Provide new therapeutic targets for BBB protection in
ischemic stroke

Yang et al.
(2021b)

Macrophage - - - Cross the BBB Yuan et al.
(2017)

Deliver BDNF to the brain

Neuron - miR-132 - Maintain brain vascular integrity Xu et al. (2017)

ECFCs - - - Increased TJ protein expression Gao et al. (2018)

Contribute to BBB integrity

MSCs - - - Improve BBB integrity Williams et al.
(2020)

NSCs - - - Protect the integrity of the blood–brain barrier Webb et al.
(2018)
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structure. SEM primarily allows observation of the morphology

and has a stereoscopic sense; however, it is limited to the surface

structure of exosomes (Pascucci et al., 2014; Tegegn et al., 2016).

The advantage of AFM is that the samples are intact, and the

requirements for sample analysis can be readily met compared

with those of SEM and TEM, as exosomes can be directly

analyzed in atmospheric and liquid environments. Dynamic

light scattering can calculate the drug encapsulation rate of

exosomes and test their stability in different environments

before and after encapsulation. Furthermore, nanoparticle

tracking analysis (NTA) allows simultaneous analysis of

particle size and concentration of exosomes, and when the

concentration is too low, NTA can satisfactorily perform the

detection. Compared with other techniques, NTA guarantees the

original state of the exosomes and has faster detection.

The most commonly used method for determining exosome

purity is the quantification of the total protein amount and total

particle number. and lipid amounts and the total number of

particles. Thus, ratios of proteins: particles, lipids: particles or

lipids: protein should be reported along with global

quantification estimation estimates as a measure of purity and

thus reliability of the quantity measure (Théry et al., 2018).

4 Pathogenesis and potential
therapeutic role of exosomes in
ischemic stroke

Ischemic stroke is caused by reduced cerebral blood flow and

insufficient supply of oxygen to the brain tissue due to vascular

embolism. The longer the condition persists, the more serious the

brain damage. However, while treatments reopen the occluded

cerebral vessels, the pathological damage to the ischemic tissues,

blood vessels, and the nervous system is often further aggravated

or even irreversible, and the clinical symptoms worsen, causing

cerebral I/R injury. Exosomes are also part of this physiological

process, allowing critical intercellular communication.

Numerous researchers found that exosomes could cross the

BBB and communicate using proteins, mRNA, or miRNA in

the NVU to maintain the homeostasis of the central nervous

system (CNS) (Forró et al., 2021). Furthermore, various derived

exosomes repair injured tissues and exhibit anti-apoptotic, anti-

inflammatory, and protection on nerves and vasculature. Table 1

summarizes the relevant studies on various derived exosomes in

ischemic stroke.

4.1 Neuroprotection and nerve
regeneration

A stroke is among the leading causes of death, and post-

stroke neurological disorders are the leading cause of disability

worldwide (Liang et al., 2017). Following the onset of ischemic

stroke, nerve injury worsens with prolonged ischemia. Moreover,

the effect of cerebral I/R injury on neurological damage and brain

dysfunction is severe. Stem cells have multiple differentiation

potentials and differentiation and developmental plasticity. In

previous studies, conditioned medium derived from various stem

cells was shown to be effective in treating I/R injury (Mathew

et al., 2019; Li et al., 2020a; Lee et al., 2021; Tian et al., 2021).

Studies have indicated that bone marrow mesenchymal stem cell

(BMSC)-derived exosomes could increase neuron viability in

oxygen-glucose deprivation/reperfusion (OGD/R) by reducing

NLRP3 inflammatory vesicle-mediated scorch death via the

promotion of AMPK-dependent autophagic flux (Zeng et al.,

2020). In a study, the level of miRNA-134 from BMSC-derived

exosomes decreased while brain microvascular endothelial cells

(BMECs) were disposed of with OGD. Thereafter, the OGD-

disposed oligodendroglia cells (OLs) were treated with BMECs.

The results showed that miR-134 inhibitors exacerbated the

changes in the expression of the procaspase-8- and caspase-8-

cleaved product proteins, which was caused by ODG (Xiao et al.,

2019). Mesenchymal stem cells (MSCs) can directly affect the

function of brain parenchymal cells via MSC-exos (Cai et al.,

2021); and Zhang et al. showed that when adipose-derived MSC

(ASC)-exos and neurons were co-cultured, miR-22–3p in ASC-

exos increased, thus increasing neuron viability in vitro and

alleviating nerve injury (Zhang et al., 2021a). In addition, tail

vein injections of several types of stem cell-free derived exosomes

for treatment of middle cerebral artery occlusion (MCAO)/R in

mice could promote neural function recovery (Sun et al., 2019;

Zhang et al., 2020c; Ling et al., 2020; Li et al., 2021a; Li et al.,

2021b; Zhang et al., 2021b). Moreover, the level of astrocyte-

derived exosomes, including miR-3c and miR-17–5p, could be

used to target TLR7 and BINP2, further decreasing neuronal

damage, reducing apoptosis and oxidation, increasing neuronal

activity, and improving neurobehaviors (Pei et al., 2019; Wu

et al., 2020; Du et al., 2021). Endothelial cell-derived exosomes,

such as those from human umbilical vein endothelial cells

(HUVECs) and brain-derived endothelial cells (bEnd.3), could

influence I/R injury. The miRNA expression of hypoxia/

reoxygenation (H/R)-treated HUVECs changes considerably,

in that 249 and 104 miRNAs were downregulated and

upregulated, respectively. Further studies suggested that miR-

12–3p via HUVEC-exos could protect neurons against H/R

apoptosis (Jiang et al., 2018a). Through the proteomics

analysis of exosomes, a study found that pro-inflammatory

mediators (C1q, C3a, and C3b) in serum exosomes increase

whereas the exosomal levels of CD46, a C3b/C4b-inactivating

factor, decrease with age. The microglial expression of C3a, C3b,

and the C3a receptor (C3aR) increased after treatment with aged

rat-derived exosomes. By replacing aging exosomes with young

exosomes, it was possible to reverse the decline of synaptic and

neurological functions and deliver therapeutic benefits after

stroke (Zhang et al., 2021c). Non-ischemic and ischemic

cerebral endothelial cell-derived exosomes facilitate axonal
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growth by altering miRNAs and their target protein profiles in

recipient neurons (Zhang et al., 2020a).

4.2 Vascular protection and angiogenesis

It was initially thought that stem cells could accumulate in

damaged tissues and replace damaged cells by self-renewal and

directed differentiation. Recent studies showed that the tissue

repair and regenerative functions performed by stem cells are

mediated by their paracrine effects at stem cells that are less

differentiated and unstable at the site of injury (Rong et al., 2019).

There is evidence that the paracrine role of stem cells may be an

important mechanism for their function in angiogenesis.

Cerebral I/R could change the metabolism and function of

endothelial cells (ECs), which could trigger EC damage, which

may lead to cell death, and multiple signaling pathways.

Therefore, the repair of damaged ECs and the promotion of

angiogenesis in the damaged area are of vital importance in

cerebral ischemia-induced vascular injury. Adipose-derived stem

cells (ADSCs) promote cerebral blood vessel remodeling.

Similarly, ADSC-derived exosomes could act on the miRNA-

181b/TRPM7 axis to improve injury of ECs subjected to OGD/R

and ameliorate mobility and angiogenesis of BMECs; therefore,

miR-181–5p contributes to angiogenesis (Yang et al., 2018b).

MSCs are different from other stem cells in that they are

primarily found in connective tissue and interstitial organs. In

addition, structural and functional alterations in the brain

microvasculature might be major barriers to adequate

reperfusion of cerebral ischemia (Cipolla 2021; Yang et al.,

2022a). Hou et al. found that miRNA-29–3p in BMSC-exos

was downregulated after BMSCs were subjected to OGD.

Additionally, PTEN was upregulated and angiogenesis

decreased in MCAO rats (Hou et al., 2020). Li et al.

transfected BMSCs with lentivirus encoded by CXCR4.

Thereafter, BMSC-exosCXCR4 was injected into the ipsilateral

lateral ventricle of MCAO model rat brain. The results

indicated that BMSC-exo CXCR4 could attenuate the activation

of the Wnt-3a/β-catenin pathway, achieve anti-apoptosis, and

promote the proliferation and tube formation of microvascular

ECs (Li et al., 2020a). Moreover, miR-126 is an important

regulator of EC functions and angiogenesis. MSC-exo

upregulate the level of VEGF, EGF, PDGF, and bFGF in

H/R-injured ECs via delivery of miR-126, activate PI3K/Akt/

eNOS pathway, and promote angiogenesis (Pan et al., 2019).

Similarly, MSC-exo miR−132−3p has been shown to act on the PI3K

signaling pathway, have anti-apoptotic effects, and improve the

function of oxidative stress-affected ECs (Pan et al., 2020). Except

for the H/R-injured condition, polarized BV2microglial cells also

show pro-angiogenesis effects (Xie et al., 2020). Tian et al.

demonstrated the polarization of microglia using LPS and

interleukin 4 (IL-4). The transfer of polarized BV2 cells was

performed by intravenous injection into MCAO mice.

Thereafter, the expression of BV2-exo miRNA under different

conditions was compared using miRNA microarray technology.

The study found that miRNA-26a contains more IL-4-polarized

BV2 cell-derived exosomes. Moreover, IL-4-polarized BV2 cells

promoted tube formation of ECs by secreting exosomes and had

a therapeutic effect on stroke (Tian et al., 2019).

4.3 Inflammation reaction

I/R of the CNS could elicit an inflammatory response that

stimulates the innate immune system to activate a series of

inflammatory cascades (Sun et al., 2020). The immune cells

that initially respond are microglia. They are normally

quiescent, and when they are activated by damage, they

become immune effector cells of the CNS (Choi et al., 2009;

Dixon et al., 2021). In fact, microglia are activated to

M1 phenotypes, typically releasing pro-inflammatory

mediators and exacerbating brain injury. Switching the

polarization of microglia from the pro-inflammatory

M1 phenotype to the anti-inflammatory M2 phenotype is a

promising therapeutic strategy for ischemic stroke (Yang

et al., 2011; Zheng et al., 2019). Neutrophils exacerbate

oxidative stress and BBB damage and participate in the

pathological responses to injury and inflammation

(Kolaczkowska and Kubes 2013). Hence, mitigating the

immune-mediated inflammatory response is a crucial goal for

ischemic stroke treatment. In acute ischemic stroke, the

expression of inflammation factors increases and that of miR-

30days-5p decreases in animal and patient models. Jiang et al.

demonstrated that miR-30days-5p enhances ADSC-exos,

inhibiting autophagy-mediated microglia polarization, thereby

preventing cerebral injury (Jiang et al., 2018b). In contrast to

previous studies, circular RNAs (circRNAs) in exosomes also

mediate biological mechanisms via gene regulation. miR-124–3p

and SIRT7 are circ-Rps5 downstream targets, while hypoxia

pretreatment with ADSC-exocirc-Rps5 could shift microglia from

anM1 toM2 phenotype in the hippocampus, decreasingMCAO-

induced inflammatory factor (IL-6, IL-1β, and TNF-α)
expression (Yang et al., 2022b). Likewise, stem cells (Zhang

et al., 2021c), BMSCs (Kang et al., 2021; Liu et al., 2021; Yu

et al., 2021), human umbilical cord MSC-derived exosomes (Li

et al., 2020b), human Wharton’s jelly MSCs (Thomi et al., 2019),

and the plasma-derived exosomes (Wang et al., 2020) can

ameliorate cerebral I/R injury attributed to the modulation of

microglia polarization. Additionally, glutaminase 1 (GLS1), a

mitochondrial enzyme, causes chronic neuroinflammation,

learning deficits, and synaptic dysfunctions in transgenic

animal models. Gao et al. observed that GLS1-mediated

exosome release might play a key role in the formation of a

neuroinflammatory microenvironment (Gao et al., 2020).

Besides microglia, inflammation factors released by astrocytes

also have a profound impact on the inflammatory response in
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cerebral ischemia. Song et al. investigated whether the CXCL1

gene was upregulated in ischemia brain injury and if it promoted

an inflammatory response in MCAO rats. Subsequent studies

found that exosomes derived from cortical neurons that

underwent OGD decrease the expression of CXCL1 and

inflammatory factors in astrocytes, following delivery of miR-

181c-3p via exosomes (Song et al., 2019a). Alternatively,

M2 microglia-derived exosomes attenuate ischemic brain

injury and promote neuronal survival via exosomal miR-124

and its downstream target, USP14 (Song et al., 2019b). Proximity

barcoding assay experiments showed that the numbers of

bEnd.3-derived exosomes carrying various proteins (bFGF,

CD146, EPHA2, ABCB5, and ITGB2) increase markedly

during ischemia. Such proteins are related to angiogenesis, cell

proliferation, and cell inflammation (Yang et al., 2021a).

4.4 Crossing and maintaining the BBB

As part of the NVU, the BBB is a dynamic regulatory

boundary that controls and limits the exchange of molecules,

ions, and cells between blood and the CNS (Yang et al., 2019).

The BBB has a massive impact on maintaining the homeostatic

microenvironment of the CNS and normal neuronal function.

Following an ischemic stroke, the structural integrity of the BBB

is affected, leading to a substantial increase in the paracellular

permeability in the cerebral microvasculature, a noteworthy

pathological characteristic of ischemic stroke (Jiang Y. et al.,

2018). Furthermore, an impaired BBB aggravates cerebral injury

progression and increases hemorrhage risk, which leads to poor

patient outcomes and limits the use of tPA for treatment (Liu and

Chopp 2016). Yuan et al. first demonstrated that exosomes do

not necessarily have to be modified to penetrate the BBB in

mammals (Yuan et al., 2017). Notably, native macrophage-

derived exosomes interact with BMECs and regulate

intercellular adhesion molecule-1 (ICAM-1), whose expression

plays a key role in BBB support (Bendorius et al., 2018).

Neurons can regulate brain vascular integrity. A study

conducted by Xu et al. showed that miR-132 functions as an

intercellular signal, mediating neural regulation of brain vascular

integrity, and indicated that neuronal exosomes are a novel

communication mechanism for the brain (Xu et al., 2017).

Moreover, a marker of BBB disruption is disruption of the

tight junction (TJ) protein complex. Hypoxia pretreatment

with endothelial colony-forming cell (ECFC)-derived

exosomes increase TJ protein expression and target the

PTEN/AKT signaling pathway; thus, the study showed that

exosomes derived from ECFCs contribute to BBB integrity

(Gao et al., 2018). Naturally, MSC- and neural stem cell

derived exosomes may be neuroprotective, decreasing the

severity of brain injury in addition to maintaining the BBB

integrity (Webb et al., 2018; Williams et al., 2020). Vascular

protection and revascularization in ischemic stroke diseases are

different from other disease conditions, and the treatment of

cerebral ischemia is usually concerned with increasing collateral

circulation and maintaining CNS homeostasis rather than the

peripheral (Monteforte et al., 2017). Simultaneously, several

studies have demonstrated the unique advantage of vascular

endothelium-derived exosomes in a variety of diseases and in

crossing the BBB up to the CNS, thus focusing on cerebral

ischemia.

5 Diagnosis of ischemic stroke

Based on the European Stroke Organization’s guidelines on

intravenous thrombolysis for acute ischemic stroke, the use of rt-

PA is conditional at onset depending on medical history and

other parameters. Moreover, the type of the drug, tenecteplase-

tPA or rt-PA, and the dose to be administered is determined

according to differing degrees of onset. The main diagnostic tool

for cerebral stroke is advanced imaging, which is utilized to

determine whether the conditions for mechanical embolization

are satisfied. If an acute stroke is to be treated with intravenous

thrombolysis based on the current guidelines, a rapid, sensitive,

and accurate diagnostic tool is required for such a short

therapeutic window. Meanwhile, the profile of exosomes in

blood, urine, and other media have considerable differences

amongst patients with a particular disease and healthy

individuals and can be easily analyzed for assessing disease

risk (Yang et al., 2022c). Based on the above pathogenesis

research, not all miRNAs with differential expression can be

used as diagnostic biomarkers; however, those that are should be

specific and stable.

Exosomes are secreted by all types of cells and are present in

biological fluids, making their sampling appealing for tracking

disease progression in liquid biopsies. Therefore, exosomes have

diagnostic abilities as potential biomarkers, making distinct

stages of ischemic stroke easier to diagnose based on

differences in the levels of miRNA. The level of miR-134 in

plasma exosomes in patients with acute ischemic stroke is higher

than in normal controls, and infarct volume is positively

associated with a worse prognosis in patients with stroke

(Zhou et al., 2018). miRNA expression changes throughout

the various phases of the stroke, including during the time of

early symptoms, symptom appearance, and prognosis. During

pathogenesis [comprising the hyperacute phase IS (HIS, <6 h),
acute ischemic stroke (one to three and 4–7 days), subacute phase

IS (SIS, 8–14 days), and recovery phase (RIS, >14 days)] of

cerebral ischemia, the expression of miRNA in plasma varies

in clinical investigations, i.e., the expression of mi-R-30a-5p,

miR-422a, miR-21–5p, and miR-1256-2-3p were found to be

different in the four phases (Chen et al., 2015; Kerr et al., 2018;

Wang et al., 2018). Similarly, compared with the control group,

the expression of miR-223 in serum exosomes of patients with

acute ischemic stroke was notably upregulated. Moreover,
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exosomal miR-223 expression is higher in stroke patients with

poor outcomes than in those with favorable outcomes (Chen

et al., 2017), showing positive correlation with NIH Stroke Scale/

Score. Moreover, transient ischemic attack and permanent

cerebral ischemia are different. Three hours after permanent

cerebral ischemia, a rapid reduction in the level of serum

exosomal miR-126 occurs, and it returns to normal after 24 h

(Chen et al., 2015). In addition, patients with large artery

atherosclerosis show the lowest serum exosome miR-152–3p

levels compared with those with small vessel occlusion,

cardiac embolism, and stroke of undetermined etiology.

Moreover, the level of miR-152–3p in serum exosomes is

lower in acute ischemic stroke than in the chronic phase

(Song et al., 2020).

Furthermore, atherosclerosis can promote thrombosis and is

strongly associated with acute cerebrovascular morbidity; its

progression involves exosomes delivering bioactive messages.

miR-21, miR-29, miR-126, miR-133, miR-146, and miR-155

in EC-derived exosomes may act as functional biomarkers to

diagnose and predict the outcomes of atherosclerosis (Hulsmans

and Holvoet 2013; Cervio et al., 2015; Lu et al., 2019). Moreover,

growth arrest and DNA damage-inducible protein-34

(GADD34) has opposing effects on different stimulus-induced

cell apoptotic events in many diseases affecting the nervous

system. There is an increase in GADD34 levels in plasma

exosomes of cerebral ischemic rats, indicating that exosome

GADD34 could be used as a diagnostic biomarker and

therapeutic target in ischemic strokes (Yang et al., 2021b).

Therefore, based on the combination of these specific

miRNAs and proteins within the group, it could be

recognized as potential biomarkers of exosomes to diagnose

ischemic stroke.

6 Development of engineered
exosomes

Natural exosomes express transmembrane proteins and

membrane-anchored proteins that allow them to be

biocompatible. Exosomes as natural vehicles can achieve the

objectives of nucleic acid delivery and drug targeting across

physiological barriers and have advantages of lower

immunogenicity and toxicity and favorable pharmacokinetics

(Song Y. et al., 2019; Li Y. J. et al., 2021). However, the short half-

life (t1/2) and weak targeting ability of exosomes limit their

clinical application; engineered exosomes are capable of

breaking through these limitations (Han et al., 2019). By

engineering exosomes, we can impart additional functionality

to the exosomes with the aim of enabling in vivo imaging and

tracking, which facilitates the understanding of their fate in vivo,

including the uptake mechanisms and biodistribution. Exosome

engineering can significantly promote the application of

exosomes for therapy and targeted drug delivery in various

brain pathologies. We plan to focus on the availability of

engineered exosomes as delivery nanotechnologies and in in

vivo imaging and tracking next. Table 2 summarizes the relevant

studies on engineered exosomes in the brain.

6.1 Delivery nanotechnologies

Exosomal delivery nanotechnologies are attractive because of

their ability to improve the solubility and targeting specificity of

natural compounds. Guo et al. enhanced the stability and

solubility of quercetin by preparing quercetin-loaded

exosomes. A monoclonal antibody GAP43 (a neuron-specific

protein) continued to be modified on the surface of drug-loaded

exosomes to alleviate neuronal damage by targeting ischemic

penumbra (Guo et al., 2021). Briefly, curcumin (cur), an anti-

inflammatory and neuroprotective molecule, could load

macrophage (Ex-cur) and embryonic stem cell-derived

exosomes (MESC-exocur). They could downregulate ROS

accumulation, alleviate BBB damage in lesions, reduce the

expression of inflammation and the excitatory amino acid

receptor, and improve neurovascular restoration (Kalani et al.,

2016; He et al., 2020). Macrophage-derived exosomes containing

Edaravone (Exo + Edv) could improve bioavailability, prolong t1/

2, and have neuroprotective effects on permanent MCAO rats (Li

et al., 2020b). The investigation showed that tar-exo-enkephalin

(exosomes, combined with transferrin and enkephalin, were

packaged into the vesicle) was capable of crossing the BBB

and inhibited neuron apoptosis caused by glutamate by

decreasing p53 and caspase-3 levels. This result was verified in

transient MCAO rats (Liu et al., 2019b).

In addition to molecular drug delivery, nucleic acid and

peptide delivery can be achieved. Pigment epithelium-derived

factor (PEDF) was overexpressed in ADSCs, and PEDF-modified

ADSC-derived exosomes were obtained. These ameliorated

neuron OGD-induced apoptosis and I/R injury by activating

autophagy (Huang et al., 2018). Yang et al. found that rabies virus

glycoprotein (RVG)-modified exosomes could promote cortical

neurogenesis to attenuate ischemic injury by delivering miR-124

to the infarct (Yang et al., 2017). Similarly, Yang et al. first found

that nerve growth factor-ExoRVG reduced ischemic injury by

reducing inflammation and cell death (Yang et al., 2020).

MSC-exos were conjugated to c (RGDyK) peptides and loaded

with cholesterol-modified miR-210 to target the ischemic brain.

Considerable improvement in angiogenesis and survival was

observed in MCAO/R mice using near-infrared fluorescence

imaging (Zhang et al., 2019). The receptor for advanced

glycation end-products (RAGE)-binding-peptide linked to

exosomes (RBP-Exo) was used for nose-to-brain delivery of

anti-miRNA oligonucleotide. Moreover, compared with

unmodified exosomes, RBP-Exo could downregulate RAGE

more efficiently to deliver AMO181a, and reduced damage to

the ischemic brain (Kim et al., 2021).
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6.2 In vivo imaging and tracking

Translating exosome therapies to clinical settings is

challenging and assessing treatment outcomes can only be

achieved by evaluating symptom improvement, which

typically takes weeks to months after treatment. Imaging of

engineered exosomes allows real-time assessment of the

exosomes’ fate and reveals information regarding the function,

viability, and circulation of the exosomes in vivo. In a study,

rhodamine 123-loaded exosomes were injected into zebrafish

embryos, and the fluorescence of rhodamine 123 was examined

in the brain tissue. The results confirmed the ability of exosomes

to deliver drugs across the BBB, highlighting their potential for

the treatment of brain diseases (Yang et al., 2015). Gold

nanoparticles (AuNPs) are widely used in various

bioanalytical and biomedical detection techniques. Perets et al.

developed a method for longitudinal and quantitative in vivo

neuroimaging of exosomes based on the superior visualization

abilities of classical X-ray computed tomography (CT),

combined with AuNPs as labeling agents. This technique has

been proven to track the migration and homing patterns of

intranasally-administered exosomes derived from MSC-exos in

different brain pathologies (Perets et al., 2019). Furthermore, a

previous study has established a method for non-invasive in vivo

neuroimaging and tracking of exosomes based on glucose-coated

AuNP (GNP) labeling and CT imaging. Using a mouse model of

focal brain ischemia, the authors could track intranasally-

administered GNP-labeled exosomes in a non-invasive

manner (Betzer et al., 2017). This strategy could also be used

to assess and compare the spread of exosome-enveloped adeno-

associated virus (exo-AAVs) or unassociated AAVs (std-AAVs)

in the brain through in vivo optical imaging techniques, such as

probe-based confocal laser endomicroscopy (pCLE) and ex vivo

fluorescence microscopy. The results suggest that the strategy

TABLE 2 Summary of engineered exosomes in ischemic stroke.

Derived Engineered method Outcome References

Whole blood of SD
rats

Que loaded and mAb GAP43 conjugated Targeting and therapeutic drug delivery system Guo et al. (2021)

Macrophage Curcumin loaded Accumulated Ex-cur in ischemic regions to reduce ROS
accumulation

He et al. (2020)

MESC Curcumin loaded Neurovascular restoration following I/R injury Kalani et al.
(2016)

Macrophage Edaravone Loaded Improved the biovailability of Edv and prolonged Li et al. (2020b)

Mesenchymal cells Transferrin combined and enkephalin packaged Promote neurological recovery after stroke Liu et al.
(2019b)

ADSC PEDF overexpressed Activating autophagy and suppressing neuronal apoptosis Huang et al.
(2018)

BM-MSC Modified exosomes with RVG fused to exosomal protein
Lamp2b

Utilized therapeutically for the targeted delivery of gene
drugs to the brain

Yang et al.
(2017)

HEK293 RVG peptide on the surface and loaded NGF Neuron targeting and NGF was delivered in to ischemic
cortex

Yang et al.
(2020)

MSC c (RGDyK) peptide was conjugated and cholesterol-modified
miR-210 loaded

Targets the lesion region of the ischemic brain to
angiogenesis

Zhang et al.
(2019)

HEK293T Linked to RAGE-binding-piptide Nose-to-brain delivery of AMO181a-chol and exerted
neuroprotective effects

Kim et al. (2021)

Loaded with cholesterol-modified AMO181a

Brain endothelial
cells

Rhodamine 123-loaded exosomes the ability of exosomes to deliver drugs across the BBB Yang et al.
(2015)

MSC MSC-exo combined with AuNPs as labeling agents developed a method for longitudinal and quantitative in vivo
neuroimaging of exosomes

Perets et al.
(2019)

MSC Glucose-coated gold nanoparticle (GNP) labeling and computed
tomography imaging

The technique can serve as a powerful diagnostic tool for
various brain disorders

Betzer et al.
(2017)

HEK293 Using a slight modification of the adenovirus-free transient
transfection methods

The use of exo-AAVs as an efficient gene delivery tool Orefice et al.
(2019)

Raw264.7 Loaded superparamagnetic iron oxide nanoparticles (SPIONs)
and curcumin (Cur) into exosomes

Carry nanomaterials and chemical agents for simultaneous
diagnosis and treatment of glioma

Zhang et al.
(2019)
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enables tracking of exo-AAV spread and that exo-AAVs allow for

widespread, long-term gene expression in the CNS, supporting

the use of exo-AAVs as an efficient gene delivery tool. Moreover,

a new type of engineered exosomes has been designed (Orefice

et al., 2019). In this strategy, superparamagnetic iron oxide

nanoparticles and Cur were loaded into exosomes and the

exosomal membrane was conjugated with neuropilin-1-

targeted peptides (RGERPPR peptide) using click chemistry to

obtain exosomes that possess imaging and therapeutic functions,

thus providing a potential approach for improving the diagnosis

and treatment effects (Jia et al., 2018). Engineering can be made

to achieve an efficient, targeted, or controlled release. However,

precise exertion of a slow and controlled release after

modification remains a great challenge. This strategy should

also be compatible with cell culture conditions and must not

affect the exosome itself.

7 Perspectives and conclusion

A key limitation for the precise characterization of EVs is the

technical difficulty in isolating and characterizing pure

populations of specific subtypes, as the methods currently at

our disposal lead to systematic co-isolation of EVs of distinct

subcellular origins. Thus, although many research articles use the

term “exosome” to refer to EV preparations that have been

separated from larger EVs via physical and biological

processes (western blotting, NTA, TEM, etc.), it is likely that

they are instead referring to a mixture of small EVs possessing

both an exosomal and a non-exosomal properties. Hence, unless

their MVB origin has been clearly established, using the more

generic term “small EVs” is preferable.

Most research on ischemic stroke treatment and pre-

development of new drugs have focused on neuron and EC

development or have studied each part separately, ignoring the

holistic nature of brain organization and the interactions between

the parts. The NVU includes ECs, pericytes, neurons, glial cells,

and ECM; this highlights the connection between the vasculature,

the nerves, and the surrounding environment (Cai et al., 2017).

As a prominent intercellular communication messenger,

exosomes transmit biological information within the NVU

and allow communication between the brain and distant

tissues through the circulation of body fluids (He et al., 2021).

This may explain why most neuroprotective agents were effective

in preclinical studies but failed in clinical trials (Paul and

Candelario-Jalil 2021). Additionally, tissue interactions in a

variety of diseases, such as other neurodegenerative diseases

(Guo et al., 2020), cancer (Chen et al., 2021), atherosclerosis

(Zhu et al., 2019), and diabetes (Sun et al., 2018b), can be

elucidated by exosomes.

miRNAs in exosomes are thought to have a substantial

therapeutic impact. miRNAs are key regulatory substances

carried by exosomes and have specific characteristics

compared to free miRNAs. Their characteristics determine

homeostasis during the treatment of ischemic stroke (Rappa

et al., 2019). Moreover, the risk of microvascular occlusion is

reduced in exosome therapy compared with cell therapy

(Nikfarjam et al., 2020; Moghadasi et al., 2021). It has been

TABLE 3 The application of exosomes and EVs in stroke clinical trials.

ClinicalTrials.gov
identifier

Official tittle Study type First
posted

Estimated/
Actual study
start date

Condition or
disease

Intervention/
Treatement

NCT05326724 The Role of Acupuncture-
induced Exosome in Treating
Post-stroke Dementia

Interventional
(clinical trial)

13 April 2022 1 August 2022 Exosome Device:
Acupuncture

Post-stroke
Dementia

Acupuncture

NCT03384433 Allogenic Mesenchymal Stem
Cell Derived Exosome in
Patients with Acute Ischemic
Stroke

Interventional
(clinical trial)

27 December
2017

17 April 2019 Cerebrovascular
disorders

Biological:
exosome

NCT05370105 Extracellular Vesicles as Stroke
Biomarkers (EXO4STROKE)

Observational 11 May 2022 25 June 2018 Stroke
Rehabilitation

Other: blood
withdrawal

NCT05524506 PROgnostic Value of
MicroParticles and Markers of
Hemostasis in TIA and Ischemic
Stroke (PROMPTS)

Observational 1 September
2022

June 2007 Brain Ischemia -

Cerebral Ischemia

Extracellular
Vesicles

Hemostasis

Prognosis
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shown that cell therapy and the use of exosomes are almost

consistent. Exosomes are more stable as they show resistance to

degradation and can act as a nanocarrier to deliver miRNAs and

siRNAs to the CNS (Kim et al., 2019; Chen et al., 2020).

This review summarizes an abundant amount of research

reporting that miRNAs in exosomes are involved in a wide range

of paracrine and endocrine biological activities and fulfill

important functions in different types of target cells in

ischemic stroke. However, this point of view remains

controversial. In general, studies examining this particular

function have typically been conducted with a large excess of

exosomes; these studies could not ascertain the feasibility of

utilizing endogenous exosomes as functional miRNA transfer

vehicles in native physiological settings (Chevillet et al., 2014).

One study revealed that the number of miRNAmolecules carried

by the EVs is too small to make a biologically significant

difference in recipient cells (Toh et al., 2018). This could be

explained by one of two possibilities: either the miRNA levels in

the EVs are insufficient to regulate their target mRNAs in

recipient cells upon EV-mediated delivery, or the RNA-

containing EVs themselves are not functional in recipient

cells. Thus, it is critical to determine the effects of both the

miRNA and protein on biochemical potency to reach the

therapeutic dose required to elicit a relevant biochemical effect.

The protein range is rather limited when initially analyzing

the protein composition of exosomes. Exosome preparations do

not contain any proteins originating from the nucleus,

mitochondria, endoplasmic reticulum, or Golgi apparatus.

Instead, almost all identified exosomal proteins are found in

the cytosol, plasma membrane, and membranes of endocytic

compartments. The exosomes are formed of plasma membrane

fragments as they lack abundant cell surface proteins (Théry

et al., 2001; Théry et al., 2002). With the development of exosome

proteomics and databases such as ExoCarta, EVpedia, and

Vesiclepedia, a wealth of exosome proteins could be

elucidated including different species, tissue, and uncertain

cellular sources. Moreover, a previous study suggested that

proteomes of MSC-derived exosomes are involved in many

key biological processes that are important in cellular

communication and structure; inflammation; exosome

biogenesis and development; tissue repair and regeneration;

and metabolism (Lai et al., 2012). Based on these studies, it

can be deduced that exosome proteins have the potential to

modulate many biological processes involved in disease

pathogenesis and tissue repair and regeneration.

Both natural and engineered exosomes have certain targeting

capabilities with the advantages of low immunogenicity (Yu et al.,

2014), high membrane structure stability, low drug dose,

sensitivity, and reduced drug toxicity (Yu et al., 2019; Liang

et al., 2021) compared with non-biological carriers. Drug-

mediated or -induced exosomes in ischemic stroke therapy are

also noteworthy (Zang et al., 2020; Zhai et al., 2021); however,

their targeting ability still requires improvement. Ensuring that

exosomes are not disturbed by exogenous substances is also a

challenge.

In most studies, only one miRNA with considerable

differences in exosomes was explored. There are differences in

exosome-derived miRNAs, with no uniform criteria for diagnosis

and treatment of diseases. Therefore, the selected biomarker

should be specific and well-established, and the exosome

preparation technique should be easily repeatable. Numerous

studies have analyzed miRNA sequencing in various derived

exosomes after ischemic stroke or OGD/R pretreatment and

found that miRNAs are differentially expressed under disease

conditions (Zhang et al., 2020b; Yang et al., 2021a). Nevertheless,

whether each miRNA or several mRNAs synergistically play a

more effective role is yet to be elucidated. Furthermore, except for

the process of diagnosis and treatment, there are several

limitations that need to be overcome prior to clinical

therapeutic application, and this includes a better

understanding of the mechanism by which exosome therapy

may lead to enhanced recovery.

Exosome manufacturing is scalable and more amenable to

process optimization as the producer cells can be clonally selected

and derived. Clinical focus on exosomes as natural carriers could

enable nucleic acid delivery, targeted drug delivery, and non-

invasive diagnosis. Therefore, it is critical to ensure standardized

and reproducible production of exosomes for clinical translation.

Addressing process development and scaling up exosome

production would be easier if a regulatory-accepted definition

of what an exosome is could be settled on. Regarding the matter,

the International Society for Extracellular Vesicles provided

information on upstream cell culture and downstream

processing that will potentially advance exosomes toward

routine manufacture. For cell culture fluid-derived exosomes,

the number of cell passages, inoculation density, culture volume,

and whether stimulation or other treatments have occurred,

should be recorded, and details regarding medium

composition and preparation, including components, such as

glucose, antibiotics, growth factors, and other supplements

affecting the production and composition of exosomes, should

be provided in the methods. In particular, components

containing exosomes, such as the serum, and cell culture

history (conversion of media and adaptation steps) should

also be included. For exosomes obtained from sources such as

plasma, serum, and other derivatives of biological fluids, in

addition to the need to control for initial volume, detailed

information is required, including donor age, physiological

sex, time of collection (circadian rhythm variation), diet, body

mass index, specific infectious and non-infectious diseases,

medications, and other factors that may affect exosome

secretion (Thery et al., 2018). There are also significant

downstream processing challenges to manufacturing

exosomes. Different methods of preparation and purification

might affect the reproducibility of obtaining exosomes (Colao

et al., 2018). Although the ultracentrifugation method is the gold
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standard for exosome extraction, exosome purity still requires

improvement. While tools such as immunomagnetic and

transmission surface plasmon resonance may not fit the

requirements of a large-scale purification platform, they are

potentially label-free methods that may aid isolation of

exosomes that can be subsequently characterized (Lobb et al.,

2015; Colao et al., 2018; Whitford and Guterstam 2019).

In this review, we have included studies that investigated the

application of exosomes and EVs clinically in stroke cases;

however, to our knowledge, only a few studies were found

(search date: 1 November 2022; Table 3). This may be due to

problems with clinical sample collection and difficulty in

controlling the time of onset of ischemic stroke.
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