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Organ-on-a-chip (OOC) is a new type of biochip technology. Various types of

OOC systems have been developed rapidly in the past decade and found

important applications in drug screening and precision medicine. However,

due to the complexity in the structure of both the chip-body itself and the

engineered-tissue inside, the imaging and analysis of OOC have still been a big

challenge for biomedical researchers. Considering that medical imaging is

moving towards higher spatial and temporal resolution and has more

applications in tissue engineering, this paper aims to review medical imaging

methods, including CT, micro-CT, MRI, small animal MRI, and OCT, and

introduces the application of 3D printing in tissue engineering and OOC in

which medical imaging plays an important role. The achievements of medical

imaging assisted tissue engineering are reviewed, and the potential applications

of medical imaging in organoids and OOC are discussed. Moreover, artificial

intelligence - especially deep learning - has demonstrated its excellence in the

analysis of medical imaging; we will also present the application of artificial

intelligence in the image analysis of 3D tissues, especially for organoids

developed in novel OOC systems.
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1 Introduction

About 90% of drugs could not pass the clinical trials, even they have passed cell and

animal experiments. The reason is that there are species differences between animals and

humans. Thus, animals cannot accurately represent and simulate the disease status,

progression and following treatment that humans have (Golebiewska et al., 2020). At the
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same time, the limitations of low-throughput in vivo animal

research led to the extension of drug development life cycle and

the increase of development cost. Organ-on-a-chip (OOC) is an

interdisciplinary technology that combines cell biology,

biomedical engineering, biomaterials, microfabrication and so

on to recreate and simulate the biomedical and physical

microenvironments of human organs on microfluidic chips

(Wu et al., 2020; Park et al., 2019). Each unit in OOC is

usually very small, so it can screen drugs with high

throughput, which improves the efficiency in drug screening

(Sun et al., 2019a). OOC has good potential to make up the

deficiency in animal experiment, and may replace animal

experiment to some extent in the future. Over the past

decade, researchers have developed chips with different

designs and sizes to mimic organs such as heart (Figure 1A)

(Marsano et al., 2016), kidney (Figure 1B) (Musah et al., 2018),

lung (Figure 1C) (Huh et al., 2010), intestine (Figure 1D) (Kim

et al., 2012), and so on. OOC technology was selected as one of

the top ten emerging technologies at the 2016 World Economic

Forum.

Organoids are three-dimensional cell complexes with organ-

specific functions and similar structures to organs induced and

differentiated from stem cells by 3D in vitro culture technology

(Artegiani and Clevers, 2018; Rossi et al., 2018). Organoids can

be derived from induced pluripotent stem cells (iPSCs) and/or

adult stem cells (ASCs) or even primary epithelial cells (Dutta

et al., 2017), which are self-organized to form a three-

dimensional structure that shares certain similarities to human

organs. Currently, researchers have established dozens of

organoids including organoids of intestine (Figure 2A)

(Gjorevski et al., 2016), skin (Figure 2B) (Lee and Koehler,

2021), tumors (Figure 2C) (Nuciforo et al., 2018), blood

vessels (Figure 2D) (Wimmer et al., 2019), etc. Organoids

have a wide range of application values, which can be used

for drug testing, understanding organ development and related

diseases, promoting the research on tumor treatment, and

FIGURE 1
The representative chips of Organ-on-a-chip. (A) Heart on a chip (adapted and modified from Marsano et al., 2016). (B) a Glomerulus Chip
(adapted andmodified fromMusah et al., 2018). (C) Lung chip (adapted andmodified fromHuh et al., 2010). (D) Intestinal chip (adapted andmodified
from Kim et al., 2012).
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making tissue replacement therapy possible (Lancaster and

Knoblich, 2014; Bleijs et al., 2019).

While the research of organoids has made great progress,

it also promotes the development of tissue engineering. The

concept of tissue engineering was put forward as early as 1980.

Its direct goal is to develop biological substitutes for damaged

tissues or organs for clinical application. The main elements in

tissue engineering include cells being seeded, supportive

matrices w or w/o growth factors. The main sources of seed

cells are primary tissue cells, stem cells, or progenitor cells

(Berthiaume et al., 2011). Growth factors are soluble, diffusing

signaling polypeptides that regulate different kinds of cell

growth processes (Bakhshandeh et al., 2017). The activity

and compatibility of biomaterials are also constantly

improving to help regulate cell proliferation, migration,

differentiation, and other behaviors (Khademhosseini and

Langer, 2016). Tissue engineering has practical applications

in the fields of skin replacement and cartilage repair, and

significant progress has also been made in the fields of blood

vessels, liver, and spinal cord (Langer and Vacanti, 2016).

Researchers have already used organoid technology for

in vitro tissue construction. Markou et al. use vascular

organoids derived from human pluripotent stem cell

derived mural cell phenotypes for tissue engineering

(Markou et al., 2020). Reid et al. use organoids and 3D

printing for consistent, reproducible culture of large-scale

3D breast structures (Reid et al., 2018). Organoid

technology is expected to become a platform for tissue

engineering in the future.

Though OOC and organoid have been developed and widely

used in recent biological and biomedical sciences, the analyzing

methodology of these models are still very limited and old-

fashioned. Researchers often use very traditional paraffin-

embedding with sectioning and/or cryo-sectioning to analyze

slices of those tissues, while these operations are high in labor-

requirement and low in efficacy. It is difficult to collect three-

dimensional images due to their high in thickness and poor in

light transmittance; thus, imaging with traditional light

microscopy could not reach tissues in depth while having

decent spatial resolution. While in the tissue engineering

technology that complements and develops with organoids,

medical imaging methods have been widely used and have

great reference significance. Therefore, this article will review

the medical imaging methods that may be used in organoid and

OOC imaging, including CT/microCT, MRI/small animal MRI,

OCT, etc.We will overview the pros and cons of different medical

imaging methodologies, focusing on spatial resolution and image

contrast analysis; the unique setup for medical imaging

instruments and its applications in organoid imaging will

need to be explored and specified. This article will also review

the application of 3D printing combined with medical imaging

technology in tissue engineering and OOC technology.

Finally, we will discuss the applications of artificial

intelligence (AI) in different medical imaging methods and

the image analysis of organoids, including detecting and

tracking organoids, predicting the differentiation of organoids,

and so on (Kegeles et al., 2020; Bian et al., 2021). The main

methods reviewed in this article are mainly machine learning in

FIGURE 2
Four different types of organoids constructed by researchers. (A) Intestinal organoids (adapted andmodified fromGjorevski et al., 2016). (B) Skin
organoids (adapted and modified from Lee et al., 2021). (C) Organoid Models of Human Liver Cancers (adapted and modified from Nuciforo et al.,
2018). (D) Human blood vessel organoids (adapted and modified from Wimmer et al., 2019).
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artificial intelligence, especially deep learning. Most deep

learning models are based on artificial neural networks (Gore,

2020). The artificial neural network is an algorithm inspired by

human brain neuron cells, aiming to simulate the way the human

brain processes problems. Therefore, deep learning is essentially

a neural network with three or more layers. Deep learning can be

widely used in speech recognition, image recognition, natural

language processing, and other fields. At present, artificial

intelligence has made significant progress in the field of

medical imaging. Artificial intelligence can help provide

critical diagnostic information, improve image reading

efficiency, and reduce the inevitable errors of human image

reading. Specific functions include but are not limited to

image quality improvement, lesion detection, automatic

segmentation, classification, quantification, etc. (Currie et al.,

2019; Higaki et al., 2019; Zhao and Li, 2020).

2 High spatial resolution imaging
method

2.1 Overview

The spatial resolution and some other properties of five

medical imaging tools are listed and compared in Table 1.

Each instrument has different temporal and spatial

resolutions, and the corresponding use scenarios are also

different.

2.2 Magnetic resonance imaging

Magnetic resonance imaging (MRI) is an important non-

invasive imaging method for medical diagnosis based on the

principle of nuclear magnetic resonance (Hespel and Cole, 2018).

Protons precession in a strong magnetic field. When the

frequency of the electromagnetic wave emitted to the proton

is equal to the precession frequency, the proton will resonate and

produce a transition. When the external energy pulse disappears,

the proton will return from the ordered high-energy state to the

disordered low-energy state and release radio waves, which can

be received by the receiving coil and fall into the radio frequency

range. The released energy follows the exponential decay form

(Yousaf et al., 2018). The time used to release energy is called

relaxation time. The relaxation time of different biological tissues

is different, which is also the core principle of nuclear magnetic

resonance imaging. The field strength of MRI equipment used in

the clinic is mainly 1.5T and 3T. Equipment with higher field

strength has a higher signal-to-noise ratio and contrast. The

uMR Jupiter 5.0T has been developed for clinical whole-body

scanning imaging. It shows better image quality and

performance in detecting tiny details in various organs, as

well as provides more precise quantitative analysis (Zhang

et al., 2022). MRI is often used in the brain, blood vessels,

spinal cord, abdominal and pelvic organs, musculoskeletal and

so on, which can be used to study brain tumors, Parkinson’s

disease, mental diseases, and so on (Meijer and Goraj, 2014; Liu

et al., 2020a). MRI signal needs spatial positioning (Hamilton

et al., 2017), which takes longer time compared with other

imaging methods. Still, it will not cause damage to human

body or imaging tissue due to the use of non-ionizing

electromagnetic radiation. Perfusion MRI was studied to

evaluate perfusion parameters at the capillary level. It can be

divided into two categories: using and not using exogenetic

contrast agents (Jahng et al., 2014). Magnetic resonance

spectroscopy (MRS) is a non-invasive metabolic imaging

technology based on the same principle as MRI. MRS is most

commonly obtained by 1H. In addition, it can also be obtained by
13C, 31P, and other nuclei (Speyer and Baleja, 2021). Single voxel

spectroscopy (SVS) is the most commonly used and easily

obtained MRS technology (Zhang et al., 2018), which is

limited to receiving signals from a single voxel. Multi-voxel

chemical shift imaging (CSI) techniques, including 2D and 3D

CSI, have a larger coverage area, which can be displayed as a

single spectrum, a spectral map, or a color metabolic image

(Zoccatelli et al., 2013). MRS can be used to study the metabolic

changes of Alzheimer’s disease, amyotrophic lateral sclerosis,

brain tumor disease, etc.

TABLE 1 Properties of different medical imaging methods.

Spatial resolution Temporal resolution Soft Tissue
contrast

Penetration depth Scan time Cost

MRI 0.5–5 mm 2–50 ms High Full body Long High

Small animal MRI 5–200 μm 20–50 ms High Full body Long High

CT 0.5–0.625 mm 60–200 ms Low Full body Short Low

Micro-CT 5 μm 50 ms Low Full body Short Medium

OCT 10–15 μm 20–50μs Medium About 2 mm Short Low

Adapted from Refs. (Lin and Alessio, 2009a; Lin and Alessio, 2009b; Cao et al., 2009; Runge, 2009; McCabe and Croce, 2012; Nam et al., 2015a; Lewis et al., 2016; Zbontar et al., 2018;

Aumann et al., 2019)

MRI, magnetic resonance imaging; CT, computed tomography; OCT, optical coherence tomography.
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MRI has also been used in organoid research. Vascular

organoids are imaged to observe whether vascular tissue

functions normally. The researchers construct organoid-based

orthotopic mouse xenograft models, transplant the endometrial

cancer organoid cultured in vitro into the mouse uterus, and

observe the tumor growth every week with MRI (Espedal et al.,

2021). Researchers have also proposed the possibility of using

MRI to study brain organoids (Badai et al., 2020).

2.2.1 Small animal magnetic resonance imaging
In the process of translational research and drug

development, animal models are needed for research. It is

necessary to perform brain imaging of rodents, mostly rats or

mice, to observe the phenotypic characteristics of the disease in

order to help understand the mechanism of mental illness,

especially in the research of neurological diseases (Herrmann

et al., 2012; Hoyer et al., 2014). The brain structure of the animal

model is tiny, reaching the sub-millimeter level (Gao et al., 2019),

and the reduction of voxel volume will lead to a reduction in the

signal-to-noise ratio (Boretius et al., 2009). The images produced

by the human scanner are not clear on the details of the mouse

brain. These demands lead to the study of high-resolution MRI

for small animal imaging. Some researchers optimize

T2 weighted fast spin echo MRI at 9.4 T to realize the

imaging of mouse brain cell layer (Boretius et al., 2009). At

present, many manufacturers have developed instruments

specially used for MRI imaging of small animals. Compared

with human scanners, they have higher spatial and temporal

resolution, requiring the use of strong magnets, special gradient

coils, and the development of special sequences for small animals

(Jakob, 2011). There are also many researchers who are

committed to transforming human scanners to image small

animals. Some studies connect preclinical magnets and

gradient coils to human scanners, making it possible to

achieve high-resolution imaging (Felder et al., 2017); a surface

loop array is proposed to image small animals on human

scanners (Gao et al., 2019).

2.3 Computed tomography

Computed tomography (CT) is a commonly used medical

image diagnosis method in clinics. It measures the attenuation of

x-beams in different projection layers of the human body and

finally carries out mathematical reconstruction by computer to

synthesize it into three-dimensional images (du Plessis et al.,

2018). The initial CT used a translational scanning system. With

the advancement of technology, CT scan has gradually evolved

into fan beam scanning, electron beam scanning, etc. The

number of rows of detectors in CT scans is increasing, and

the scanning time is getting shorter and shorter. At present,

multi-slice spiral CT scans, such as 64-slice spiral CT have

become the mainstream of the market because of their fast-

imaging speed and clear imaging. In addition to ordinary scans,

CT can also perform enhanced scans by injecting contrast agents

to make the lesions appear more clearly. Lung, heart, and blood

vessels are suitable for CT examination (Wiant et al., 2009; Cox

and Lynch, 2015; Thillai et al., 2021).

2.3.1 Micro-computed tomography
Micro-computed tomography (micro-CT) is a cone-beam

computed tomography scanning technology. The principle is the

same as that of clinical CT, both of which are x-ray attenuation

imaging. The difference is that the critical structure is a micro-

focus x-ray tube and a high-resolution x-ray detector. Micro-CT

can perform in vitro, in vivo, and ex vivo studies and is an

essential method for preclinical imaging (Bartos, 2018). With the

deepening of research, the spatial resolution of micro-CT has

been continuously improved, and the imaging field of view has

been reduced. Therefore, micro-CT has been applied in the fields

of histomorphological analysis, bone quality assessment, small

animal imaging, 3D printing and other fields that require more

precision (Orhan, 2020). It enables nondestructive visualization

of specimens in 2D and 3D. Tan et al. use micro-CT to analyze

the microstructure of mouse calvarial bone (Tan et al., 2022).

Doost et al. use iodine-enhanced micro-CT to image the mouse

heart ex vivo (Doost et al., 2020).

2.4 Optical coherence tomography

Optical coherence tomography (OCT) is a non-invasive,

high-resolution optical imaging technique that distinguishes

different tissues by analyzing the difference between the

incident signal and the received signal, taking advantage of

the different degrees of absorption and scattering of light by

different tissues (Podoleanu, 2005; Podoleanu, 2012). OCT is

mainly composed of a low coherence light source, Michelson

interferometer and photoelectric detection system. According to

different signal acquisition units, it can be divided into time

domain OCT (TD-OCT) and frequency domain OCT (FD-OCT)

(Chaber et al., 2010; Mueller et al., 2010). TD-OCT developed

earlier, using a mechanical reference mirror. FD-OCT improves

the imaging speed and sensitivity, accelerates the development of

OCT, and has become the mainstream of application. FD-OCT

can be realized by spectra-domain OCT (SD-OCT) and swept-

source OCT (SS-OCT) (Podoleanu, 2012). The spatial resolution

of OCT is high, up to several microns, but due to the insufficient

penetration of light into the tissue, the imaging depth is between

1 and 3 mm (McCabe and Croce, 2012). Therefore, OCT is

suitable for precision medical fields such as intravascular imaging

and ophthalmic diseases (Kim et al., 2017). In the field of

intravascular imaging, the application scenarios of OCT

basically overlap with that of IVUS, but it can provide more

detailed intracoronary pathological features (McCabe and Croce,

2012). At the same time, OCT can also be used to evaluate
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bioabsorbable vascular stents (Okamura et al., 2010; Brugaletta

et al., 2012). In the field of ophthalmic diseases, OCT has become

the primary imaging method. The initial imaging of the posterior

end such as the retina and the optic nerve head, has progressing

to the imaging of the anterior segment such as the ocular surface

and the anterior segment due to the development of FD-OCT (Fu

et al., 2017; Bille, 2019). The development of OCT greatly

promotes the research of glaucoma, macular degeneration and

other ophthalmic diseases and plays a great auxiliary role in the

research of some diseases that may cause retinopathy, such as

Alzheimer’s disease and Parkinson’s disease (Cheung et al., 2015;

Zou et al., 2020). Compared with CT, MRI, and other imaging

technologies commonly used in the clinic, OCT has higher

spatial resolution, and higher imaging depth compared with

confocal microscope and other microscopic imaging

technologies. Therefore, the emergence of OCT makes up for

the gap between traditional medical imaging technology and

microscopic imaging technology and can provide support for the

biomedical field of organoids with thicker tissue.

3 3D Printing in tissue engineering
and organ-on-a-chip

3D printing and 3D bioprinting technology have introduced

tissue engineering and OOC technology as a standardized culture

platform, which also requires medical imaging support.

3.1 3D printing and 3D bioprinting

3D printing has made considerable progress in recent years.

3D printing creates three-dimensional objects by superimposing

layers on a two-dimensional plane, which is versatile and

customizable. 3D printing has been applied and improved in

aerospace, manufacturing, and so on. When 3D printing is

combined with medicine, it has evolved further. More and

more researchers in the field of biomedical engineering take

3D printing as a transformation tool for biomedical applications.

The slice data of medical images can be modeled and printed

layer by layer through 3D printing to visualize simulated organs

or other structures. This helps researchers study pathology, helps

students learn biological structures, and helps patients better

understand their own diseases.

3D bioprinting is an application of 3D printing in

biomedicine and has become a promising method for tissue

engineering and regenerative medicine. Compared with 3D

printing, 3D bioprinting uses living cells, biological materials,

etc. as “bioinks” to construct artificial multicellular tissues or

organs in three dimensions (Dey and Ozbolat, 2020). It can be

used to manufacture a three-dimensional framework that has a

similar hierarchical structure to living tissues. Currently, popular

3D bioprinting technologies include laser-assisted bioprinting,

inkjet bioprinting, and micro-extrusion bioprinting (Zhu et al.,

2016). There have been 3D bioprinting studies on skin, bones,

liver, nerves, blood vessels, etc. It is expected to produce

transplantable biological tissues in the future to meet the

demand for organ transplantation (Matai et al., 2020).

Figure 3 shows a typical process of 3D bioprinting; the main

steps are imaging, 3D modeling, bioinks selection, bioprinting,

post-processing, and applications. It can be seen that there is a

close relationship between 3D bioprinting and medical

imaging. The first step of 3D bioprinting is to image the

tissue or organ to be printed through medical imaging

equipment such as CT and MRI (Abdullah and Reed, 2018).

The second step is that 3Dmodeling depends on accurate image

segmentation (Squelch, 2018), which can be supported by

artificial intelligence. In the final stage of application,

medical images can also be used to visually inspect the

tissues in vitro or transplanted into the body.

3.2 3D printing in tissue engineering

Conventional tissue engineering strategies employ a “top-

down” approach in which cells are seeded on biodegradable

polymer scaffolds (Nichol and Khademhosseini, 2009), but these

approaches often fail to distribute cells rationally and provide a

microenvironment for cell survival. The bottom-up modular

approach has the advantage of assembling

microenvironments, which is more conducive to constructing

large-scale biological tissues (Mandrycky et al., 2016). Therefore,

3D printing has brought new impetus to the development of

tissue engineering. 3D printing can be used in tissue engineering

to rationally assemble multiple types of cells and scaffold

materials for tissues. There are already impressive results

using 3D printing to build skin, cartilage, blood vessels, etc.

for tissue engineering. 3D printing in tissue engineering can be

divided into scaffolded and scaffoldless methods. There has been

tremendous progress in 3D printing methods with scaffolds. 3D

printing can print precise and complex scaffolds for tissue

engineering, and it is convenient to introduce computer

methods to assist scaffold construction (Zaszczyńska et al.,

2021). There are already 3D printed scaffolds for tissue

engineering using materials such as metals, ceramics,

hydrogels, etc. Wu et al. achieve 3D printing of microvascular

networks using a hydrogel layer (Wu et al., 2011). Lee et al. use

polycaprolactone (PCL) to create a framework for hepatocyte

engineering (Lee et al., 2016). Scaffold-free approach exploits

self-assembly processes in developmental biology (Richards et al.,

2013). Taniguchi et al. use 3D bioprinting technology to

construct a scaffold free trachea with spheroids composed of

several types of cells (Taniguchi et al., 2018). Lui et al.

demonstrate the enhancement of mechanical stimulation by

creating scaffold-free heart tissue from hiPSC-derived

cardiomyocyte spheroids (Lui et al., 2021).
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3.3 3D printing in organ-on-a-chip

3D printing has also been applied in the field of OOC. The

microfluidic device of OOC is mainly made by using traditional

manufacturing techniques. The more complex the organizational

structure, the more complex and time-consuming the

microfluidic device of OOC is. Since 3D printing has the

advantage that complex spatial structures can be freely

designed, it can change the method of fabricating microfluidic

devices (Carvalho et al., 2021). The microfluidic device

constructed by 3D printing has the characteristics of high

accuracy and short time from design to manufacturing

(Goldstein et al., 2021). Sochol et al. investigate the potential

of using 3D printing to make Kidney-on-a-Chip platforms

(Sochol et al., 2016). The liver chip developed by Lee et al.

Using 3D printing significantly enhance liver function (Lee and

Cho, 2016). The advantages of 3D printing, which is easy to

design and implement, will break the technical barriers that exist

in the multidisciplinary intersection of OOC, and accelerate the

development and innovation of OOC (Knowlton et al., 2016).

4 Application of medical imaging in
tissue engineering and artificial
tissues

With the development of tissue engineering, the composition

of artificial tissue has become increasingly complex, and

advanced imaging techniques are required to evaluate the

structure of the tissue (Nam et al., 2015b). The micro-CT,

MRI, and OCT imaging techniques reviewed above can be

applied to artificial tissue imaging. These advanced imaging

techniques enable nondestructive visualization studies

compared to some traditional tissue engineering techniques

that may destroy the sample. Figure 4 shows the development

trend of the number of publications combining tissue

engineering and various medical imaging methods from

2006 to 2021. It can be seen that the number of publications

is growing steadily, whether it is medical imaging keyword search

or different medical imaging methods.

4.1 Magnetic resonance imaging in tissue
engineering

MRI can image artificial tissue implanted in the body.

Fujihara et al. use MRI to evaluate the maturity of cartilage

tissue transplanted into the back of mice (Fujihara et al., 2016).

Using small-animal MRI tracking imaging in experimental mice,

Apelgren et al. demonstrate that gridded 3D bioprinted tissue

allows vascular ingrowth after implantation. Harrington et al. use

cellular MRI to continuously image the grafted tissue of artificial

blood vessels, realizing the serial study of MRI at the cellular level

of tissue engineering (Figure 5A) (Harrington et al., 2011). MRI is

also an important tool for imaging tissue engineering scaffolds.

Szulc et al. synthesize MnPNH2 for labeling of dECM scaffolds

and visualize the scaffolds using MRI, demonstrating the

potential for long-term detection of dECM-based tissue

engineering (Szulc et al., 2020). Marie et al. use high-

resolution 1.5-T MRI to evaluate scaffold structure and detect

cell seeding (Poirier-Quinot et al., 2010). Using gadolinium-

enhanced MRI to measure negative fixed-charge density in

tissue-engineered cartilage in vitro, Miyata et al. assess its

relationship to biomechanical properties (Miyata et al., 2010).

FIGURE 3
A typical process of 3D bioprinting includes 6 steps: 3D modeling, bioink selection, bioprinting, post-processing and application. (adapted and
modified from Murthy et al., 2014; Vijayavenkataraman et al., 2018; Lee et al., 2021).
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4.2Micro-computed tomography in tissue
engineering

The use of micro-CT in tissue engineering has increased

significantly, especially in imaging hard tissue. Martin et al. apply

micro-CT to tissue engineering scaffolds aimed at bone

regeneration, assessing structural changes related to hydration,

complementing traditional methods that can only be studied in

the dry state (Figure 5B) (Bartoš, 2018). Tim et al. model the bone

tissue engineering scaffold based onmicro-CT images to evaluate

the structural performance (Van Cleynenbreugel et al., 2006).

Wang et al. use MICROFIL perfusion and micro-CT for 3D

reconstruction of rat blood vessels, helping to analyze the

number, diameter, connectivity and other parameters of blood

vessels as an objective assessment method for the generation of

angiogenesis in tissue-engineered nerves (Wang et al., 2016).

Cioffi et al. use micro-CT to construct a 3D model of a cartilage

scaffold to help quantify the regulation of cartilage growth by

hydrodynamic shearing (Cioffi et al., 2006). Townsend et al. use it

to image tracheal tissue engineering to quantify tracheal patency

for standardization in future production (Townsend et al., 2020).

In addition, Papantoniou et al. use contrast-enhanced nanofocus

CT for full-structure imaging of tissue engineering, which has

great potential in 3D imaging and quality assessment of tissue

engineering (Papantoniou et al., 2014).

4.3 Optical coherence tomography in
tissue engineering

OCT is also used in tissue engineering and is especially

suitable for imaging tissues with collagen matrix in tissue

engineering, such as skin and tendons. Smith et al. use SS-

OCT to monitor dermal rehealing of cutaneous wounds

(Smith et al., 2010). Yang et al. use PS-OCT to image tissue-

engineered tendon (Yang et al., 2010). Chen et al. demonstrate

the effect of pulsatile stimulation on the development of

engineered blood vessels using OCT for real-time imaging of

tissue-engineered vascular grafts (Figure 5C) (Chen et al., 2017).

Yang et al. monitor the cell contour and polylactic acid scaffold in

tissue engineering by OCT (Yang et al., 2005). Levitz et al. assess

the influence of atherosclerotic plaque composition on

morphological features of OCT images (Levitz et al., 2007).

Ishii et al. use two imaging techniques, OCT and magnetic

resonance angiography to assess the patency of tissue

engineered biotubes (Ishii et al., 2016). From the above,

micro-CT, MRI, and OCT are developing continuously in

tissue engineering and artificial tissue imaging, and are

increasingly used by researchers.

5 Application of medical imaging in
organoids and organ-on-a-chip

Medical imaging technology has played an important role in

the construction of tissue-engineered artificial tissue. With the

development and maturity of OOC technology, medical imaging

technology also has the opportunity to become an imaging

analysis method for OOC.

5.1 Application of medical imaging in
organoids

Among the imaging methods reviewed, MRI has powerful

functions and strong soft tissue contrast, which can be applied to

FIGURE 4
Number of publications on tissue engineering combined with different medical imaging methods in PubMed. The line chart represents the
overall trend of the number of searches for medical imaging keywords, and the bar chart represents the number of searches for micro-CT, MRI, and
OCT from 2006 to 2021.
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most organoid imaging. Perfusion MRI may help provide

perfusion parameters of the complex capillary network in

artificial microvascular systems currently under study

(Figure 6A) (Fleischer et al., 2020). The soft tissue contrast of

CT or micro-CT is not as good as that of MRI, and is suitable for

positional imaging of tissue that differs in density, such as

imaging tumor organoids in tissue with altered density or size.

The spatial resolution of OCT is high, but the contrast of soft

tissue is relatively general. It is mainly used for eye, skin, and

intravascular imaging in clinical practice. The same application

field also serves as a reference for the application of OCT in

organoids. Lee et al. construct branched tissue-engineered blood

vessels to mimic early atherosclerosis (Figure 6B) (Lee et al.,

2021). Skin organoids are also emerging as human models for

dermatological research (Figure 2B) (Lee and Koehler, 2021).

OCT is expected to play an important role in the research of

artificial blood vessels and skin organoids.

5.2 Application of medical imaging in
organ-on-a-chip

When using medical imaging to image OOC, it is vital to

consider not only the characteristics of the organoid but also the

microfluidic chip.Magneticmetals have an adverse effect onMRI, so

when MRI or small animal MRI is required for OOC, metal

components should be avoided early in microfluidic chip design

and during processing. Additionally, if imaging with micro-CT or

FIGURE 5
Application of Different Imaging Methods in Tissue Engineering. (A)Noninvasive MRI images of labeled and unlabeled stent-grafts in mice, a, b)
RARE T2-weighted images of labeled (a) and unlabeled. (b) seed scaffolds after implantation. Boxes represents the location of the graft and K
represents kidneys. c, d) Corresponding T2 maps of a, b) (adapted and modified from Harrington et al., 2011). (B) micro-CT scanning of collagen-
based scaffold (adapted and modified from Bartoš et al., 2018). (C) OCT imaging contrasting the effects of pulsatile stimulation on tissue-
engineered vascular grafts culture, (a–f) are images with arterial stimulation, (g–l) are images without arterial stimulation (adapted andmodified from
Chen et al., 2017).
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CT, additional consideration should be given to possible artifacts

caused by microfluidic chips, resulting in problems such as image

distortion. To remove artifacts, the structure of the OOC can be

skillfully laid out in the early stage, and appropriate algorithms

including artificial intelligence algorithms can be used in the later

stage. It is foreseeable that the application of medical imaging on

OOC is not only involved in one of the links but needed to be

considered comprehensively and added to the entire design process.

The introduction of medical imaging into the field of OOCwill help

OOC to industrialize and perform large-scale imaging examinations

in the future.

6 AI achievements in medical imaging
and organoids

6.1 Magnetic resonance imaging
combined with artificial intelligence

MRI has good soft tissue contrast, so the research and

analysis of MRI images are very extensive and multifaceted.

Research on MRI images has evolved from traditional

methods to artificial intelligence methods. This paper mainly

reviews the aspects of image reconstruction, image enhancement,

object detection, image segmentation, diagnosis and prediction

in the order of processing and analysis of MRI. Figure 7 takes

brain MRI as an example to show the current research results of

artificial intelligence methods.

6.1.1 Image reconstruction
The use of deep learning for image reconstruction is a

relatively new field compared to the detection and

segmentation of medical images, but it has shown better

performance than traditional iterative, compressed sensing

and other methods in the accelerated reconstruction of images

and the improvement of reconstruction quality (Lundervold and

Lundervold, 2019). The long scanning time can be an issue

limiting the application of MRI in organoid researches, which

may be solved by some acceleration methods like half Fourier

imaging, parallel imaging and compressed sensing. However, the

acceleration of these methods is quite limited and the image

quality always suffers from the introduced reconstruction

FIGURE 6
Research on artificial tissue with potential application in medical imaging. (A) Related research on artificial microvascular system. (a)
Microvascular Networks Using Laser Patterns in Polyethylene Glycol Hydrogels. (b) 3D printed heart perfusion model (adapted and modified from
Fleischer et al., 2020). (B) Brightfield and fluorescence images of brTEBV. (a) Brightfield image of brTEBV with a branch angle of 45° considering MC
adhesion, where the dashed circles mark the inlet, side, main regions. (b) Fluorescence images of green-labeled MCs in the brTEBV region
(adapted and modified from Lee et al., 2021).
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artifacts. As a potential alternative, AI-assisted compressed

sensing (ACS) integrate the mentioned techniques and

innovatively introduce the state-of-art deep learning neural

network as the AI module into the reconstruction procedure,

which lead to a superior image quality under a high acceleration

factor with fewer artifacts (Wang et al., 2021a). Schlemper et al.

use cascaded CNN to reconstruct the under-sampled two-

dimensional cardiac MRI. It has the function of iterative

algorithm to remove aliases, and it is less prone to overfitting

than a single CNN network (Schlemper et al., 2018). The

experimental result can reach 11 times of under-sampling,

and the entire dynamic sequence can be reconstructed within

10s. Hammernik et al. propose a variational network as a

variational model, which uses deep learning to learn all free

parameters to accelerate MRI image reconstruction. Finally, the

reconstruction time on a single graphics card is 193 ms, showing

fast computing performance (Hammernik et al., 2018). Huang

et al. introduce motion information into unsupervised deep

learning model for dynamic MRI reconstruction for the first

time (Huang et al., 2021). Kamlesh et al. combine the domain

knowledge of traditional parallel imaging with U-Net for MRI

reconstruction, and the reconstruction results are anti-

interference and accurate (Pawar et al., 2021). Hossam et al.

use a complex valued revolution network, which uses U-Net as

the backbone network to join the complex valued revolution, etc.

to accelerate the reconstruction of highly undersampledMRI (El-

Rewaidy et al., 2020). Li et al. use 3DU-Net to construct the brain

structure and adopted the recurrent convolutional network

embedding LSTM to complete more detailed vector

information depiction in two steps, which retains the

important features of brain MRI (Figure 8A) (Li et al., 2021a).

Image reconstruction is developing rapidly. Many artificial

intelligence methods that combine traditional methods or

directly use deep learning to complete rapid or even real-time

reconstruction are still being proposed.

6.1.2 Image enhancement (de-noising, super-
resolution)

Image de-noising and image super-resolution have become

important research directions to improve the quality of MRI

FIGURE 7
Deep Learning Image Processing and Analysis Using BrainMRI as an Example. (A) Image reconstruction of brainMRI (adapted andmodified from
Lundervold et al., 2019). (B) Image denoising of brain MRI (adapted andmodified from Lehtinen et al., 2018). (C) Smallest brainmetastasis detected by
artificial intelligence method marked with red bounding box (adapted and modified from Zhang et al., 2020). (D) Brain Tumor Segmentation Using
UNet++ (adapted and modified from Zhou et al., 2020). (E) Feature images extracted by Parkinson’s diagnostic network (adapted and modified
from Sivaranjini et al., 2020).
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images, especially after the introduction of deep learning into

this field. Despite the continuous development and innovation

of medical imaging equipment, it is still inevitable to generate

random noise, which will affect the speed and accuracy of

doctors’ judgment. Most denoising methods are based on a

small range of homogeneous samples. Benou et al. study the

denoising problem of dynamic contrast-enhanced MRI and

construct an ensemble of expert DNNs to train different parts

of the input image separately (Benou et al., 2017). Li et al. use a

supervised learning network constructed by two sub-networks

to learn distribution information in MRI to reduce Rician noise

(Li et al., 2020a). Noise2noise, an unsupervised learning

method, has also attracted widespread attention. It is

characterized by the fact that the input and output of the

network are all noisy pictures during training, which is very

suitable for scenes such as MRI, where it is difficult to obtain

clean samples. Some researchers also propose a denoising

method based on a large range of multidisciplinary samples.

Sharif et al. combine attention mechanism and residual

learning modified by noise gate to build deep learning

network, applied to radiology, microscopy, dermatology

medical images (Sharif et al., 2020). The final results show

good denoising effect, which also proposes a new idea for

medical image denoising.

Directly generating high-resolution images using medical

imaging devices is sometimes a time-consuming and

expensive process, so researchers have attempted to use deep

learning to perform super-resolution operation on the images for

post-processing. Neonatal brain MRI and cardiac MRI images

are two important application scenarios of super-resolution. Low

resolution (LR) image training samples are usually obtained by

downsampling the collected images. Masutani et al. build

4 CNNs to demonstrate the excellent performance of deep

learning for super-resolution of Cardiac MRI images, which is

expected to shorten the scanning time for image acquisition and

reduce the discomfort of patients holding their breath for too

long (Masutani et al., 2020). Generative Adversarial Networks

(GAN) can speed up the training time, so many researchers use

GAN combined with CNN to build a training network. Based on

GAN, Delannoy et al. take differential low resolution (LR) images

as input and simultaneously complete two tasks of neonatal brain

MRI super-resolution and segmentation (Delannoy et al., 2020).

Chen et al. also implement MRI super-resolution based on GAN.

The generator part of GAN uses a self-designed multi-level

FIGURE 8
Some network frameworks applied in MRI image processing and analysis. (A) Spatial connectivity-aware network including LSTM blocks,
exploiting sagittal information from adjacent slices. (adapted and modified from Li et al., 2019). (B) The Faster R-CNN network structure has two
branches, the bounding box regression network and the classification network. The region proposal network is used to recommend bounding boxes
that may have targets. (adapted andmodified from Ren et al., 2015). (C)U-net is often used as a basic network. The blue boxes represent feature
maps with different number of channels, the white boxes represent the copied feature maps, and the arrows represent operations such as
convolution, pooling, etc. (adapted and modified from Ronneberger et al., 2015). (D) The UNet++ network obtained by improving U-Net, the
downward arrow indicates downsampling, the upward arrow indicates down adoption, and the dot arrow indicates skip connections between
feature maps. (adapted and modified from Zhou et al., 2019).

Frontiers in Bioengineering and Biotechnology frontiersin.org12

Gao et al. 10.3389/fbioe.2022.985692

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.985692


densely connected network (Chen et al., 2018). Zhao et al.

perform parallel filtering of the original images to obtain LR

images as a training set, use enhanced deep residual networks for

single image super-resolution, and make different training

distinctions between 2D and 3D MRI images (Zhao et al.,

2020). Some researchers have also realized the joint processing

of image denoising and super-resolution. Gao et al. study the

super-resolution and denoising of flow MRI. They introduce

physical information into the network and realize the training of

the network without high-resolution labels (Gao et al., 2021).

6.1.3 Object detection

Object detection is an important link in medical image

processing, usually using a square frame to mark and locate

areas of interest such as lesions and organs, which is a

preprocessing step for further segmentation or classification.

Especially for small target lesions, locking the location of the

lesions in advance and storing only the surrounding areas for

semantic segmentation are conducive to reducing storage

consumption and improving the accuracy of segmentation

(Kern and Mastmeyer, 2021). It can be divided into detection

of 2D MRI slices and 3D MRI image sets. The object detection of

2D images is to feed each slice of the MRI into the training

network separately, which can obtain more training data and

correspondingly more training volume than 3D object detection

(Kern and Mastmeyer, 2021). But the disadvantage is that the

context information will be lost. The current development trend

is 3D object detection, which can make more full use of context

information to improve the detection accuracy. In the research

field of independent detection of 2D MRI, Zhou et al. use the

transfer learning method and a special similarity function to pre-

train the CNN in the pre-prepared data, and realize the use of

unlabeled images of the lumbar spine to detect the vertebral

position during the training process (Zhou et al., 2018). Zhang

et al. use the classic Faster-RCNN (Figure 8B) to detect brain

cancer metastasis, which has superior performance and

application prospects (Zhang et al., 2020a). In the field of 3D

detection, Alkadi et al. use 3D sliding window for prostate cancer

detection (Alkadi et al., 2018). Qi et al. use a 3D CNN to detect

cerebral microbleeds (CMBs), achieving a high sensitivity of

93.16% (Qi et al., 2016). Mohammed et al. use YOLO and 3D

CNN to detect CMBs.

6.1.4 Image segmentation

Image segmentation aims to describe the contour of organs,

tissue structures, and lesions as accurately as possible or identify

the voxel set in them. Since MRI is good at depicting human soft

tissues, especially the human brain, segmentation of MRI has

attracted great interest from researchers. Meanwhile, the noise and

artifacts of MRI images have brought challenges to segmentation

(Despotović et al., 2015). Fully Convolutional Network (FCN) is

the pioneer of currently popular medical image segmentation

based on convolutional neural networks (CNN) (Shelhamer

et al., 2017). In the multi-atlas and diffeomorphism-based

encoding block, both MRI intensity profiles and expert priors

from deformed atlases were encoded and fed to the proposed FCN.

The MRI intensity and the expert priors from the deformation

map are coded and input, and the adaptive size patches are used at

the same time (Wu and Tang, 2021). The Mask RCNN framework

also has a good performance in medical image segmentation.

Zhang et al. use Mask RCNN to achieve tumor segmentation

for breastMRI, achieving an accuracy of 0.75 on the test set (Zhang

et al., 2020b) The U-Net architecture proposed by ronneberger

et al. has the structure of u-encoder and decoder and the unique

skip connection to help compensate for the information loss in the

down sampling process (Figure 8C) (Ronneberger et al., U-Net).

The design performs well in medical image segmentation and is

widely used by researchers as the basic network for research. V-Net

expands the segmentation method of U-Net from two-

dimensional images to three-dimensional images. It uses a new

loss function called dice coefficient, and replaces the pooling layer

in the U-Net architecture with a convolutional layer to achieve fast

(1s) and accurate (approximately 87%) volume segmentation of

prostate MRI images (Milletari et al., V-Net). UNet++ (Figure 8D)

is a collection of U-Net with different depths and redesigned the

skip-connection in U-Net. Segmentation experiments are carried

out on 6 different biomedical images, including 2D and 3D

applications for brain tumor MRI image segmentation (Zhou

et al., 2020). The proposal of nnUnet verify the rationality of

the original U-Net framework. It only needs to adaptively set the

data fingerprint and pipeline fingerprint according to different

tasks. The result has won the 2020 MRI-based BraTS brain tumor

segmentation competition (Isensee et al., 2021). At the same time,

some researchers use recurrent neural networks (RNN) for

segmentation. Rudra et al. use recurrent fully-convolutional

network (RFCN) for multi-layer MRI cardiac segmentation.

Recurrent networks can help extract context information from

adjacent slices and improve segmentation quality (Poudel, Lamata,

Montana). Andermatt et al. use RNN with multi-dimensional

gated recurrent units to segment a brain MRI data set, showing a

powerful segmentation ability (Andermatt et al., 2016).

Transformer has begun to be applied to the field of medical

image segmentation. Peiris et al. propose a U-shaped

transformer architecture similar to U-Net, which specially

designed the self-attention layer of the encoder and decoder,

and showed promising results in MRI brain tumor

segmentation (Lehtinen et al., 2018).

6.1.5 Diagnosis and prediction
With the improvement of computing level, computer-aided

diagnosis has become the development trend in clinical

medicine, but since decision-making must be very cautious, it
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also requires high accuracy. MRI-based deep learning methods

have been widely experimented and studied by researchers, and

have been applied to disease diagnosis on MRI images of the

brain, prostate, breast, kidney, etc. disease diagnosis can be

regarded as a classification problem in neural networks,

including distinguishing diseased and non-diseased patients,

and subdividing the disease of diseased patients. Among them,

the diagnosis of diseases based on brain MRI is the most

abundant. Sivaranjini et al. use AlexNet and transfer learning

network to classify Parkinson’s disease patient population and

refine Parkinson’s disease diagnosis (Sivaranjini and Sujatha,

2020). There are also researchers apply to the diagnosis of

multiple sclerosis (MS) (Shoeibi et al., 2021), Alzheimer’s

disease (Roy et al., 2019), identifying schizophrenia (Oh et al.,

2020). Liu et al. classify prostate cancer based on 3D multi

parameter MRI (Liu et al., 2017). Gravina et al. use transfer

learning combined with traditional radiology experience three

time points to diagnose breast cancer lesions with dynamic

contrast enhanced MRI (Gravina et al., 2019). Shehata et al.

create an early diagnosis of acute renal transplant rejection

diagnostic system based on diffusion-weighted MRI, which

can realize a fully automatic detection process from renal

tissue segmentation to sample classification (Shehata et al., 2016).

Prediction of physical development and disease progression is

also a hot area. Amoroso et al. use multiplex networks to accurately

assess brain age (Amoroso et al., 2019). Markus et al. use CNN and

tree based machine learning methods to evaluate the age of young

people based on 3D knee MRI (Mauer et al., 2021). Adrian et al. use

parallel convolution paths and inception networks to predict the

disease progression of MS (Tousignant et al., 2019). Li et al. use an

ensemble of three different 3DCNNs for survival prediction of brain

tumors based onmultimodal MRI (Sun et al., 2019b). There are also

studies to predict the progression of Alzheimer’s disease (Jo et al.,

2019), amyotrophic lateral sclerosis survival prediction (van der

Burgh et al., 2017), etc.

6.2 Computed tomography combined
with artificial intelligence

CT and MRI are both primary imaging methods in radiology,

and the problems to be solved by artificial intelligence are similar. In

terms of image reconstruction, Tobias et al. map the filtered back

projection algorithm to a neural network to solve the problem of

limited-angle tomography, and introduce cone-beam back-

projection to overcome the defect that back projection cannot

complete the end-to-end network during CT reconstruction

(Wurfl et al., 2018). Solomon et al. evaluate a commercial deep

learning reconstruction algorithm, and the noise is greatly reduced

compared to traditional methods (Solomon et al., 2020). In terms of

image enhancement, low-dose CT is often used in order to reduce

radiation damage to the human body, but it is accompanied by a

reduction in image quality. Li et al. use improved GAN with the

Wasserstein distance and a hybrid loss function including sharpness

loss, adversarial loss, perceptual loss, etc. for low-dose CT image

denoising (Li et al., 2021b). At the same time, low-dose CT also has

the problem that the deep learning method is difficult to generalize

due to different doses. In order to solve this problem, Shan et al.

propose a transfer learning network cascaded by five identical

networks, which does not need to be retrained with different

doses (Shan et al., 2019). Yao et al. improve convolutional layers

and introduce edge detection layers for denoising of micro-CT (Yao

et al., 2021). To obtain high-resolution CT images, Zhao et al.

construct a network with superior performance using multi-scale

attention with multiple branches and information distillation (Zhao

et al., 2021). Zhang et al. design a lightweight GAN, construct dense

links in all residual blocks in the generator and introduce

Wasserstein distance in the loss function to achieve super-

resolution (Zhang et al., 2021). In the field of CT image

detection, Holbrook et al. use CNN to detect lung nodules in

mice based on micro-CT (Holbrook et al., 2021). Lee et al. use

three CNN models for coronary artery calcium detection based on

CT images. Similarly, the application of image segmentation

algorithms in lung CT is more comprehensive, including lung

segmentation (Yahyatabar et al., 2020), lung lobe segmentation

(Gu et al., 2021), lung parenchyma segmentation (Yoo et al.,

2021), lung nodule segmentation (Jain et al., 2021) and other

segmentation from larger organs to smaller lesions. Shah et al.

test the performance of different deep learning models for COVID-

19 detection based on CT images, among which VGG-19 performs

the best (Shah et al., 2021). Chen et al. construct a deep learning

model with asymmetric convolution based on CT images for

predicting the survival rate of non-small cell lung cancer (Chen

et al., 2021a).

Currently, many researchers focus on the development of a

computer-aided diagnosis (CAD) system for pulmonary nodules on

chest CT. The main processes are lung segmentation, lung nodule

detection, lung nodule segmentation, lung nodule classification, etc.

Tan et al. perform lung segmentation using a GAN network

(Figure 9A) (Tan et al., 2021). Cao et al. implement lung nodule

detection using a two-stage CNNs (Figure 9B) (Cao et al., 2020). Shi

et al. use aggregation U-Net Generative Adversarial Networks for

lung nodule segmentation (Figure 9C) (Shi et al., 2020). Zhang et al.

use ensemble learners of multiple deep CNNs to classify lung

nodules (Figure 9D) (Zhang et al., 2019). More experimental

details also include feature extraction and false positive removal

for lung nodules. The development of pulmonary nodule CAD

system can help clinicians make diagnosis, reduce the workload of

doctors, and has good application value and market prospect.

6.3 Optical coherence tomography
combined with artificial intelligence

Likewise, artificial intelligence has begun to develop in the

field of OCT images. Since speckle noise can greatly affect the
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image quality of OCT, researchers seek to denoise images by

using CNN and GAN. Wang et al. propose a semi-supervised

learning method of GAN with fewer parameters to deal with the

overfitting problem caused by too many parameters, and can use

less data to complete the training (Figure 10A) (Wang et al.,

2021b). Zhou et al. use CycleGAN to unify the style of images

captured by different OCT instruments, and use conditional

GAN for denoising (Zhou et al., 2022).

In the field of OCT intravascular imaging, researchers have

applied artificial intelligence to assist in the diagnosis of

atherosclerosis. Abhijit et al. propose a distribution preserving

autoencoder based neural network for plaque detection in blood.

To adapt to the spatiotemporal uncertainty of OCT speckle

images, the model learns the representation in the data while

preserving the statistical distribution of the data, and a newly

proposed LogLoss function is used for error evaluation

(Figure 10B) (Roy et al., 2016). To further identify vulnerable

plaques, they propose to use a bag of random forests to learn

tissue photon interactions (Roy et al., 2015). Asaoka et al. use

deep learning to diagnose early-onset glaucoma based on

macular OCT images, and use transfer learning to deal with

differences in images acquired by different OCT devices (Asaoka

et al., 2019). Thomas et al. construct a neural network of encoder

and decoder, and complete the classification of fluid and non-

fluid regions by semantic segmentation of OCT images, realizing

the detection and quantification of macular fluid IRC and SRF,

which is convenient for the diagnosis of exudative macular

disease (Schlegl et al., 2018).

Research on automated segmentation of retinal OCT images

contributes to the diagnosis of retinopathy-related diseases. Li

et al. use an improved Xception65 to extract feature information,

pass it into the spatial pyramid module to obtain multi-scale

information, and finally used an encoder-decoder structure for

retinal layer segmentation (Figure 10C) (Li et al., 2020b). Yang

et al. achieve retinal layer segmentation with choroidal

neovascularization, which responds to retinal morphological

changes by introducing a self-attention mechanism (Yang

et al., 2020). In (Roy et al., 2017), an end-to-end full CNN

with encoder and decoder is constructed, realizing simultaneous

segmentation of multiple retinal and fluid pockets to aid in the

diagnosis of diabetic retinopathy. Artificial intelligence methods

can also be combined with other methods for segmentation, Fang

et al. conduct probability mapping on nine retinal layer

boundaries through CNN and describe the boundary using

the graph search method (Fang et al., 2017). In order to

improve the segmentation accuracy, Srinivasan et al. first use

FIGURE 9
Achievements related to the realization of pulmonary nodule CAD system. (A) Input image and predicted mask for lung segmentation (adapted
andmodified from Tan et al., 2020). (B) Lung nodule detection results using deep learning. The green rectangle box represents ground truth and the
red rectangle box represents the detection results (adapted and modified from Cao et al., 2019). (C) Segmentation results of large nodules, the first
row is the original image, the second row is the radiologist’s manual annotation results, and the third row is the result of the network prediction
(adapted and modified from Shi et al., 2020). (D) Classification of lung nodules into malignant and benign using an ensemble learning classifier
(adapted and modified from Zhang et al., 2019).
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sparsity-based image denoising, and then combine graph theory,

dynamic programming and SVM to segment the ten-layer

boundary of the mouse retina (Srinivasan et al., 2014).

Recently, researchers have begun to use optical coherence

tomography angiography (OCTA) images to study retinal blood

vessel segmentation. Compared with the more commonly used

color fundus imaging techniques, OCTA can present subtle

microvessels. Methods for vessel segmentation using deep

learning can be roughly divided into two categories. The first

category is to use multiple deep learning networks to refine the

segmentation results. Ma et al. create a dataset ROSE containing

229 annotated OCTA images and propose a two-stage vessel

segmentation network (OCTA-Net), where the coarse stage

module is used to generate preliminary confidence maps, and

the fine stage is to optimize vessel shape (Figure 10D) (Ma et al.,

2021). The second is to enhance the ability of a single network to

extract features. Mou et al. use U-Net as the basis and combined

with self-attention mechanism to build a channel and spatial

attention network, which can process various types of images

from corneal confocal microscopy and OCTA (Mou et al., 2019).

Li et al. propose an image projection network (IPN). The network

architecture uses three-dimensional convolution and

FIGURE 10
Related achievements of AI processing OCT images. (A) structure of the proposed semi-supervised system (adapted and modified from Wang
et al., 2021). (B) The result of plaque detection, the red area represents the detected plaque, and the green area represents the normal tissue (adapted
and modified from Roy et al., 2016). (C) Retinal 10-layer segmentation prediction results, The left is the original image, the right is the segmentation
result (adapted and modified from Li et al., 2019). (D) Architecture of the proposed OCTA-Net network (adapted and modified from Ma et al.,
2021).
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unidirectional pooling to achieve 3D-to-2D retinal vessel

segmentation and foveal avascularzone segmentation (Li et al.,

2020c). In (Liu et al., 2020b), unsupervised OCTA retinal vessel

segmentation is proposed using encoders constructed from the

same regions of different devices (Liu et al., 2020b).

6.4 Organoids combined with artificial
intelligence

The development of artificial intelligence on OOC mainly

focuses on the analysis of organoid images. Our team build a fully

automated tumor spheres analysis system (Figure 11A) that

integrates automatic identification, autofocus, and a CNN

algorithm based on improved U-Net for accurate tumor

boundary detection (Figure 11B). Moreover, two

comprehensive parameters—the excess perimeter index and

the multiscale entropy index are developed to analyze tumor

invasion (Chen et al., 2021b). Bian et al. develop a deep learning

model for detection and tracking of high-throughput organoid

images. It is mainly implemented in two steps. The first step is to

detect the organoids in the collected images of all periods, and the

second step is to perform feature extraction on the detected

organoids, and calculate the similarity of adjacent periods of

organoids for tracking (Figure 11C) (Bian et al., 2021). Kegeles

et al. use deep learning algorithms for retinal organoid

differentiation, specifically using transfer learning to train a

CNN for feature extraction and sample classification (Kegeles

et al., 2020). Kong et al. use machine learning methods in

colorectal and bladder organoid models to predict the efficacy

of anti-cancer drugs in patients (Kong et al., 2020). In addition,

researchers have improved deep learning methods for

characterizing organoid models using augmented loss

functions based on previous studies (Winkelmaier and Parvin,

2021). The development of organoids and OOC is unstoppable,

and the application of artificial intelligence methods will

undoubtedly bring greater vitality and impetus to the

development of this field.

FIGURE 11
Relevant results of artificial intelligence combined with organoids. (A–B) System and process for edge detection of tumor spheres (adapted and
modified from Chen et al., 2021b). (A) The SMART system for automated imaging and analysis. 1) Condenser with light source; 2) sample plate; 3)
motorized x,y stage; 4) motorized Z-axis module; 5) objective wheel; 6) filter wheel; 7) CCD; 8) computer to control SMART system with developed
software interface. (B) The process of tumor sphere edge detection. (C) Pipeline for organoids tracking (adapted and modified from Bian et al.,
2021).
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7 Discussion and conclusion

7.1 Discussion

1) A close combination between OOC or organoid and image-

guided radiotherapy may provide extra benefits for the

treatment of related diseases, especially in the field of

oncology, which requires a more precise localization and

efficient workflow. This challenge was overcome by a

newly-designed integrated CT linear accelerator (linac)

uRT-linac 506c, by achieving a diagnostic-quality

visualization of anatomical structures and a seamless

workflow (Yu et al., 2021). Artificial intelligence algorithm

is also applied to the dose prediction of intensity-modulated

radiotherapy plan generating to simply the clinical trial (Sun

et al., 2022).

2) Medical imaging methods with high spatial resolution such as

micro-CT, small animal MRI, and OCT are required for

small-sized organoids. Some organoids with size reaching

millimeter level and visible to the naked eye, such as tumor

spheres, may be imaged by clinical MRI, and the instrument is

easier to obtain.

3) In addition to the structural imaging mainly discussed in

this article, positron emission tomography (PET) and

MRS are very promising in combination with OOC to

monitor biochemical changes in tissues. PET is often

combined with CT or MRI. As the first total-body

PET/CT scanner, the uEXPLORER can provide

dynamic images with higher temporal resolution,

sensitivity and signal-to-noise ratio, contributing

higher feasibility to the proposed research (Marro

et al., 2016; Cherry et al., 2018; Liu et al., 2021).

Furthermore, benefited from the inherent advantages of

MRI, PET/MR is expected to provide better soft tissue

contrast compared to PET/CT. More promisingly, some

previous researches show the higher sensitivity and

specificity of integrated in the detection of micro

lesions (Zhou et al., 2021). PET/CT and PET/MRI will

provide multi-angle information for analyzing the

changes and characteristics of tumor spheres.

4) In the future, as OOC enters the market, medical imaging

instruments will be required to process multiple OOCs, most

likely arrays of OOCs, simultaneously, and faster or even real-

time imaging technology will be required. Exploring medical

imaging instruments dedicated to OOC is both a challenge

and an opportunity.

5) Artificial intelligence has been widely used in image

analysis of medical imaging, including object detection,

image segmentation, and image enhancement mentioned

in this paper. In the same way, when medical imaging

technology is used to image OOC, artificial intelligence will

also support the development of OOC by automatically

analyzing images.

7.2 Conclusion

Imaging of tissue-engineered artificial tissues andOOCs is in the

ascendant. Admittedly, there are limited works utilizing medical

imaging tools for tissue engineering and OOC researches. However,

with the increase in the application of 3D tissue models and OOCs

in drug discovery, environmental protection, and personalized

medicine, we believe, in the very near future, the use of medical

imaging technology to image micro-organs and use AI for analysis

could be a mainstream methodology for organoid and OOC

imaging. This paper reviews the research on medical imaging,

artificial intelligence especially deep learning application and 3D

tissue construction technology, as well as the combination of the

two, which will provide relevant biomedical engineering researchers

with effective imagingmethods for different organoids, and lead to a

more rapid development of research in this field.
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