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In this study, chondrogenic potentials of 3D high-density cultures of Bone Marrow

(BM) and Wharton’s Jelly (WJ)-derived mesenchymal stromal cells (MSCs) was

investigated by chondrogenesis- and cytokine-related gene expression over a 16-

day culture period supplemented with human transforming growth factor (hTGF)-

β1 at 10 ng/ml. In BM-MSC 3Dmodels, a marked upregulation of chondrogenesis-

related genes, such as SOX9, COL2A1, and ACAN (all p < 0.05) and formation of

spherical pellets with structured type II collagen fibers were observed. Similarly,

WJ-based high-density culture appeared higher in size and more regular in shape,

with a significant overexpression of COL2A1 and ACAN (all p < 0.05) at day 16.

Moreover, a similar upregulation trend was documented for IL-6 and IL-10

expression in both BM and WJ 3D systems. In conclusion, MSC-based high-

density cultures can be considered a promising in vitro model of cartilage

regeneration and tissue engineering. Moreover, our data support the use of

WJ-MSCs as a valid alternative for chondrogenic commitment of stem cells in

regenerative medicine.
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Graphical Abstract

Introduction

Hyaline cartilage, a specialized connective tissue with the

principal task to provide a regular and lubricated surface in joints,

helps in preventing the wear process (Sophia Fox et al., 2009) and in

minimizing subchondral bone pressure by equally distributing load

forces (Bhosale and Richardson, 2008). This tissue is composed of

mature cells with poor mitotic potential, termed chondrocytes, and a

complex extracellular matrix (ECM) containing type II collagen and

aggrecan (ACAN), the main histological cartilage markers (Coburn

et al., 2013; Maldonado and Nam, 2013). Type II collagen fibers

provide tensile strength, are histologically highlighted with picrosirius

red staining (PSR), and are visible under polarized light because of

their birefringence properties (Schmitz et al., 2010a). Conversely,

fibrous cartilage contains type I collagen and shows different

biomechanical behavior (Roberts et al., 2009a). Cartilage lesions

represent a substantial challenge for modern orthopedics as they

do not spontaneously heal due to the absence of vascularity and

innervation, and untreated lesions may have an unfavorable

prognosis with the development of osteoarthritis (Grässel and

Muschter, 2020).

3D in vitromodels of chondrogenic differentiation using human

stem cells are becoming the most utilized model to study healing and

regenerative events. Human mesenchymal stromal cells (MSCs)

derived from bone marrow (hBM-MSCs) have a well-described

chondrogenic potential (Bernardo et al., 2007). MSCs, multipotent

progenitor cells with self-renewal potential, can differentiate in several

tissue types, such as muscle, adipose, and trabecular bone tissue;

however, MSC harvesting from BM requires invasive procedures and

the mesenchymal fraction is low (Mushahary et al., 2018). For these

reasons, alternative MSC sources have been identified, such as

adipose and umbilical cord tissue comprised of Wharton’s Jelly

and umbilical cord blood (Johnstone et al., 1998; Wagner et al.,

2005). However, Wharton’s Jelly-derived mesenchymal stromal cell

(hWJ-MSCs) chondrogenic potential remains poorly investigated,

despite those cells have a superior proliferative capacity, making them

extremely valuable in tissue engineering context (Ciardulli et al.,

2020a). Moreover, MSCs could modulate microenvironment

composition as described in myelodysplasia, where they can

contribute to hematopoietic stem cell growth inhibition by

secretion of pro-inflammatory cytokines, especially transforming

growth factor-beta (TGF-β) (Patel et al., 2021). Other cytokines

and growth factors are important in modulating chondrogenesis

in health and disease, as pro-inflammatory cytokines, such as

interleukin (IL)-1β, that induces chondrocyte-mediated ECM

proteolysis, or IL-6, can significantly reduce proliferation potential

of chondrocytes and favor osteoarthritis events (Zhou et al., 2018;

Razmara et al., 2019; Jafri et al., 2020a; Bhogoju et al., 2022).

Conversely, anti-inflammatory cytokines, such as IL-4 and IL-10,

are upregulated by BM-MSC models, induce physiological cartilage

turnover over osteoarthritis events, and reduce inflammatory

processes of the synovia (Jafri et al., 2020b).
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Interestingly, TGF-β, both hTGF-β1 and hTGF-β3, is the

principal growth factor used for establishing chondrogenesis

in vitro (Danišovič et al., 2012a). In particular, hTGF-β1 is the

most investigated, both in vitro and in vivo experiments (Huang

et al., 2004a) (Roberts et al., 2009b); however, hTGF-β1 has a

short half-life when supplemented in culture medium that might

be overcome using microencapsulation with biopolymeric

vehicles (Wakefield et al., 1990; Palazzo et al., 2021). hTGF-β1
promotes chondrogenesis through activation of different

intracellular signaling pathways, including mitogen activated

protein (MAP) kinases, p38, or extracellular signal-regulated

kinase-1 (ERK-1) (Tuli et al., 2003). Conventional monolayer

cultures (2D) are considered unsuitable for MSC differentiation

towards chondrogenic phenotype and chondrocyte expansion;

furthermore, 2D culture is often reported to promote

dedifferentiation processes of chondrocytes and acquisition of

fibroblast phenotype (Caron et al., 2012a).

Recently, stem cell 3D cultures have been proposed for

chondrogenesis studies because they better mimic cartilage

microenvironment where chondrocytes reside. The two

predominant strategies are either utilization of a biomaterial

scaffold to support seeding and subsequent differentiation, or

alternatively, scaffold-free techniques, such as 3D high-density

aggregate culture with several advantages (Costa et al., 2016).

Suitable biomaterials composed by natural or ECM analog

components can enhance cell functions, support

differentiation toward specific phenotypes, and modulate

immune responses (Nii and Katayama, 2021). In the context

of cartilage regeneration, synthesis of advanced biomaterials with

strict biomechanical properties, such as alginate hydrogels, is

important to develop new surgical adjuvants for in vivo

implantation (Bidarra et al., 2014; Cao et al., 2014; Baldino

et al., 2021); however, clinical application is limited because of

potential calcification processes (Ma et al., 2005). Chitosan,

another polysaccharide, seems less suitable as a scaffold

material as chondrocytes display reduced proliferation abilities

likely due to its cationic properties (Sechriest et al., 2000).

Conversely, collagen hydrogels can be an appropriate support

for drug delivery system and/or stem cells local implantation

(Lamparelli et al., 2021; 2022b), whereas, collagen-hyaluronic

acid derivatives may be proposed as implantable 3D scaffold

(Lamparelli et al., 2022a).

Polylactic-co-glycolic acid (PLGA), a synthetic biocompatible

material, is rapidly degraded and releases acidic components that

can cause inflammatory responses. Moreover, PLGA has no natural

cell recognition sites, giving poor cell affinity (Mao et al., 2021).

Conversely, poly (l-lactic acid) PLA ismore effective in preventing in

vivo hypertrophic drift of BM-MSCs, especially in nanofibrous form

and when combined with matriline-3, a non-collagenous cartilage

ECM protein (Liu et al., 2018).

Among scaffold-free techniques, cell sheet technology is used to

develop transplantable constructs by stimulatingMSC chondrogenic

differentiation by spontaneously inducing post-detachment cell

contraction leading to cytoskeletal reorganization (Thorp et al.,

2020; 2021b). Moreover, multilayer cell sheets can be produced

to increase 3D cellular interactions, especially those mediated by

N-cadherin, connexin 43, and integrin β-1, enhancing in vitro

chondrogenesis (Thorp et al., 2021a).

Another effective scaffold-free technique is 3D high-density

culture for the manufacture of cartilage spheroids. These 3D-

systems commonly display a hypoxic core that could promote

chondrogenesis of stem cells. Moreover, interactions with

adjacent cells simulate those found in pre-cartilage

condensations during embryonic development (Ryu et al.,

2019). These aggregates can be produced using a range of

methods; however, the hanging drop technique allows to

control 3D-system size by modifying drop volume or cell

density (Ryu et al., 2019).

Despite 3D cultures are well-recognized methods to study

chondrogenic potential of various tissue derived MSCs, the ability

of these stem cells in a 3D setting to modulate chondrogenic

differentiation and cytokine production has not been reported

yet. Therefore, we investigated 3D high-density culture

performance in promoting chondrogenic commitment of human

stem cells, and in modification of cytokine expression during

differentiation process. Specifically, BM and WJ-MSCs were used

to produce 3D culture in the presence of hTGF-β1. Chondrogenic
commitment was evaluated by gene expression profiling and

immunohistochemistry (IHC) analysis of specific markers, such

as types I, II, III, and X collagen, SOX9 transcription factor, and

ACAN. Cytokine production was also monitored by pro- and anti-

inflammatory cytokine gene expression and immunoassay along the

differentiation events.

Materials and methods

hMSC isolation, expansion, and
characterization

hBM-MSCs were obtained from bone marrow (BM) of three

healthy donors (aged between 38 and 40); whereas hWJ-MSCs

were isolated from human umbilical cord of three donors (age

between 23 and 31). Donors gave written informed consent to the

use of samples for research purposes, with approval of local Ethic

Committee (Review Board prot./SCCE n. 24988). Briefly, BM

aspirate or umbilical cord were seeded in Minimum Essential

Medium Alpha (α-MEM) supplemented with 1% Glutagro™,
10% Fetal Bovine Serum (FBS), and 1% Penicillin/Streptomycin,

and incubated at 37°C in an atmosphere of 5% CO2 and 95%

relative humidity (Giordano et al., 2014). After 72 h, non-

adherent cells and other residues were aspirated, fresh media

added, and the remaining adherent cells fed with fresh media

twice a week. On day 14, colonies of adherent MSCs were

identified, detached, and re-seeded at 4,000 cells/cm2 in the

same culture conditions. Once the cell culture reached
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70–80% confluence, cells were detached using 0.05% trypsin-

0.53 mM EDTA and washed with 1X phosphate buffered saline

(PBS) (Corning Cellgro, Manassas, VA, United States), counted

using Trypan Blue (Sigma-Aldrich, Milan, IT), and subcultured

at a concentration of 4 × 103 cells/cm2. At passage 2, cells were

used for the experiments. Flow cytometry analysis was performed

on both hBM-MSCs and hWJ-MSCs obtained at passage 2 with

antibodies directed against CD90, CD105, CD73, CD14, CD34,

CD45, and HLA-DR expression (Miltenyi Biotec B.V. & Co. KG,

Bergisch Gladbach, Germania), as better described elsewhere

(Ciardulli et al., 2020b, 2021; Scala et al., 2022).

hMSC cultures

hBM-MSCs were seeded on coverslips at a concentration of

4 × 103 cells/cm2. Once the cell cultures reached 60% confluence,

cells were treated with chondrogenic medium and supplemented

with either 1 ng/ml or 10 ng/ml of recombinant human TGF-β1
(PeproTech EC, Ltd., London, United Kingdom). The

chondrogenic medium was composed of alpha-minimum

essential medium (α-MEM) (Corning, NY, United States) with

reduced FBS to 1% (Corning Cellgro) further supplemented with

1% ITS (Corning Cellgro), 1% GlutagroTM (Corning Cellgro),

50 µM of ascorbic acid phosphate, and 1% Penicillin-

Streptomycin. Cells were fed twice a week with fresh medium

and growth factor for up to 16 days. Untreated cells for all studied

time-points were employed as control.

High density 3D cultures were obtained by the hanging drop

method. Briefly, hMSCs were resuspended at a density of 5 × 105

cells/mL. Drops of cell suspension (30 µl) were dispensed on the

lids of Petri dishes, that were then inverted, and hanging drop

cultures were incubated. After 3 days, resulting cellular

aggregates were harvested using a pipette, and transferred into

an ultra-low attachment 96 multi-well plate using 100 µL/well of

chondrogenic medium (supplemented with 10 ng/ml of hTGF-

β1), that was changed every 2 days. 3D systems morphology was

monitored with ImageJ software (rel.1.52p National Institutes of

Health, United States), and diameter, area (A) and perimeter (p)

were measured, and circularity was calculated using Eqn. 1:

F circularity � 4πA
p2

(1)

For the evaluation of Feret’s diameter and circularity, the average

value of 10 3D-systems (n = 3), were considered (De Moor et al.,

2020).

RNA isolation and gene expression
profiling

Type II collagen (COL2A1), SRY-Related HMG-BOX Gene 9

(SOX9), Aggrecan (ACAN), type I, III and X collagen (COL1A1,

COL3A1, and COL10A1) markers were investigated, as well as

pro-inflammatory cytokines Interleukin 6 (IL-6), Tumor

Necrosis Factor α (TNF-α), Interleukin 12A (IL-12A),

Interleukin 1β (IL-1β) and anti-inflammatory ones Interleukin

10 (IL-10), and TGF-β1. Total RNA was extracted from hBM-

MSCs at each time point using QIAzol® Lysis Reagent (Qiagen,
DE), chloroform (Sigma-Aldrich) and the Rneasy Mini Kit

(Qiagen, DE). For each sample, 1 μg of total RNA was reverse

transcribed using the iScript™ cDNA synthesis kit (Bio-Rad,

Milan, IT). Relative gene expression analysis was performed in a

LightCycler® 480 Instrument (Roche, IT), using the

SsoAdvanced™ Universal SYBR® Green Supermix (Bio-Rad,

Foster City, CA, United States) with the validated primers

(Bio-Rad) and following MIQE guidelines (Bustin et al.,

2009). Amplification was performed in a 10 μl final volume,

including 2 ng of complementary DNA (cDNA) as template.

Triplicate experiments were performed for each explored

condition, and data were normalized to glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) expression (Hellemans

et al., 2007). Fold change in gene expression was determined

by the 2−ΔΔCt method and presented as relative levels vs. untreated

cells at each time-point.

Immunofluorescence assays

Cells were fixed with 3.7% paraformaldehyde (PFA) for

30 min at room temperature (RT), followed by

permeabilization with 0.1% Triton × −-100 for 5 min and

blocked with bovine serum albumin (BSA) solution (1% w/v)

for 1 h. For type II and III collagen staining, cells were incubated

overnight at 4°C with a rabbit polyclonal anti-type II collagen

antibody (1:100; Cat no: ab34712, Abcam, Cambridge,

United Kingdom) and a mouse polyclonal anti-type III

collagen antibody (1:100; Cat no: sc166316, Santa Cruz

Biotech., CA, United States). Then, cells were incubated for

1 h at RT with the Alexa Fluor ™ 488 goat anti-rabbit IgG (1:

400; Thermo Fisher Scientific, Waltham, MA, United States) and

the DyLight 649 anti-mouse IgG (1:500; BioLegend, San Diego,

CA, United States) antibody. Cell nuclei were counterstained

with 4′,6-diamidino-2-phenylindole (DAPI). Images were

acquired using Leica laser-scanning confocal microscope

(mod. TCS SP5; Leica Microsystems, Wetzlar DE) equipped

with a plan Apo 63X/1.4 NA oil immersion objective. Signal

intensity, related to the proteins of interest, was quantified using

ImageJ software (rel.1.52p National Institutes of Health,

United States) (Suchorska et al., 2016), when reported. Five

images of several fields were used for the analysis at each time

point. All data were reported as fold change relative to untreated

cells. Antibody specificity was assessed in our previous works

(Ciardulli et al., 2020c, 2021; Lamparelli et al., 2021).

3D-spheroids were fixed in 4% PFA for 2 h at room

temperature, cryo-protected in 30% sucrose (4°C,
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overnight), included, and sliced in 15 μm thickness samples

using a cryostat (mod. CM 1950, Leica, Wetzlar, Germany).

For type I and II collagen staining, samples were incubated

overnight at 4°C with a mouse polyclonal anti-collagen type I

antibody (1:100, Cat no: MAB3391, Abcam) and rabbit

polyclonal anti-collagen type II antibody (1:100, Cat no:

ab34712, Abcam). Subsequently, slices were incubated for

1 h at RT with Alexa Fluor ™ 488 goat antirabbit IgG (1:

400; Thermo Fisher Scientific) and DyLight 649 anti-mouse

IgG (1:500; BioLegend) antibodies. Cell nuclei were

counterstained with DAPI.

Sirius red staining

For cartilage matrix histochemistry, a Sirius Red staining

was performed as previously described (Hyllested et al., 2002;

Greiner et al., 2021). 3D-spheroid sections were stained in

hematoxylin for 8 min, washed in water for 2 min, immersed

into phosphomolybdic acid for 2 min, and washed in water for

2 min. Subsequently, samples were dipped into Picrosirius

Red F3BA Stain (Polysciences, Inc., Warrington, PA,

United States) for 60 min, and finally into HCl 0.1 M

solution for 2 min. Samples were dehydrated with an

increasing ethanol gradient (70%–75%–95%–100%) and

cleared in xylene for 5 min. Sections were then mounted

using Eukitt (Sigma-Aldrich) mounting medium.

Picrosirius red brightfield and polarized light images were

acquired with a Brunel polarization microscope equipped with

a Nikon D500 camera.

Safranin-O staining

Spheroids were fixed in 4% paraformaldehyde (PFA) for 24 h

at room temperature, cryo-protected in 30% sucrose (4°C,

overnight), included in optimal cutting temperature (OCT)

compound, and cut in 10 μm-thick slices through a cryostat

microtome (mod. CM 1950, Leica, Wetzlar, Germany). Safranin-

O staining was used to detect acidic proteoglycans present in the

ECM, according to standard methods (Schmitz et al., 2010b). In

more detail, slices were stained for 10 min with Wiegert’s Iron

Hematoxylin (Biognost), 5 min with 0.5 g/L Fast green (Sigma-

Aldrich), and 7 min with 0.1% Safranin-O solution (Merck

Millipore, United States). Samples were dehydrated with an

increasing ethanol gradient (70%–75%–95%–100%) and

cleared in xylene for 2 min. Sections were then mounted using

Eukitt (Sigma-Aldrich) mounting medium. Safranin-O

brightfield images were acquired with a microscope (BX53,

Olympus, Tokyo, Japan) equipped with an Olympus

SC180 camera (Tokyo, Japan) and Olympus U-TV0.5XC-

3 camera adapter operating Olympus cellSens standard

3.2 software.

Live and dead staining

Cell viability within scaffolds was detected by fluorescence live/

dead assay (Calcein AM solution; Cat. no C1359) and Ethidium

homodimer I solution (Sigma-Aldrich). In more detail, cells were

stained for 1 h at 37°C, washed in 1 × PBS, and captured by

fluorescence microscope (mod. Eclipse, Nikon Corporation,

Tokyo, Japan). Single images were acquired with identical light

intensity, exposure time, and gain settings. Signals intensity was

quantified using ImageJ software (rel.1.52p National Institutes of

Health, Bethesda, MD, United States). Original images in RGB

format were converted into an 8-bit (gray scale) format, and tagged

areas were expressed as an average value of pixel intensity within a

range from 0 (dark) to 255 (white) as better described elsewhere

(Spaepen et al., 2011).

Bead-based multiplex immunoassay

For cytokine measurement in culture medium, a bead-based

multiplex immunoassay was employed with two sets of beads (Beads

A and Beads B) using an internal fluorescence intensity detected in

APC channel. A 9-plex LEGENDplex™ Cutom Panel (BioLegend)

was designed to measure IL-1β, IL-6, TNF-α, hepatocyte growth

factor (HGF), IL-15, IL-10, macrophage inflammatory protein

(MIP)-1α and 1β, and Dickkopf-related protein 1 (DKK1). A

calibration curve was prepared for cytokine quantification

following manufacturer’s instructions. Samples were diluted 1:

50 with fresh complete α-MEM medium and run in duplicate.

Specimens were acquired on a BD FACSVerse cytometer (BD

Biosciences) equipped with two lasers (blue, 488 nm; and red

lasers, 628 nm) and BD FACSuite software (BD Biosciences), and

at least 3,400 beads were recorded. LEGENDplex™ Data Analysis

Software Suite (BioLegend) was used for post-acquisition analysis.

Statistical analysis

For comparison between two independent groups, two-tailed

independent Student’s t test was performed. One-way or two-way

ANOVA was used, followed by Tukey’s multiple comparison test

for comparisons between more than two groups. p values <
0.05 were accepted as significant (de Winter 2013).

Results

hTGF-β1 at 10 ng/ml efficiently induces
chondrogenic differentiation of hBM-
MSCs

To identify optimal conditions for chondrogenic commitment

of hBM-MSC, amedium supplemented with two concentrations of
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hTGF-β1 (1 and 10 ng/ml) was tested in a 16-day culture system.

Higher growth factor concentrations were not considered, because

published literature describes inhibitory effects (Huang et al.,

2004b). Unsupplemented cells harvested at matched time points

were used as negative control. Culture medium with 1 ng/ml

hTGF-β1 resulted in a 2.33-fold increase (p < 0.0001) of SOX9

levels at day 16, whereas 10 ng/ml hTGF-β1 stimulated a SOX9

3.94-fold up-regulation (p < 0.001). The lower hTGF-β1
supplementation induced a marked COL2A1 downregulation at

day 8 followed by expression recovery to control levels at day 16. In

contrast, at 10 ng/ml concentration, COL2A1 expression showed a

2-fold increase only at day 16.ACANwas not detected at each time

point at both concentrations explored. COL1A1 and COL3A1

expression were always downregulated in response to hTGF-β1
supplementation (Figures 1A,B).

Cytokines expression along chondrogenic events was also

monitored. Supplementation with 1 ng/ml hTGF-β1 resulted in

transcriptional upregulation of pro-inflammatory cytokines,

especially TNF-α and IL-12A, respectively 2.25-fold (p <
0.0001) and 1.88-fold, at day 8; while no changes in anti-

inflammatory cytokines were observed. After 16 days, only IL-

12A retained significant upregulation (3.17-fold; p < 0.01)

(Figure 1C). At 10 ng/ml, hTGF-β1 supplementation

promoted TNF-α (2.16-fold; p < 0.01) and IL-12A (1.8-fold;

p < 0.05) upregulation after 8 days. Moreover, IL-12A (6.06-fold;

p < 0.01) and IL-1β (1.99-fold) displayed significant changes at

day 16. Among anti-inflammatory cytokines, only IL-10 was

upregulated (2.3-fold) (Figure 1D).

Effects of hTGF-β1 on type II and III collagen production

was monitored by semi-quantitative immunofluorescence (q-IF)

FIGURE 1
Effect of hTGF-β1 on the expression of chondrogenic markers and cytokines by hBM-MSCmonolayer. Two different concentrations of hTGF-
β1 (1 ng/ml and 10 ng/ml) for up to 16 days were tested. Untreated cells at matched time points were used as control. mRNA expression levels of
positive and negative chondrogenic markers (COL1A1, COL2A1, COL3A1, SOX9, and ACAN) at 1 ng/ml (A) and at 10 ng/ml (B); pro- and anti-
inflammatory cytokines (IL-6, TNF-α, IL-12A, IL-1β, IL-10, and TGF-β1) at 1 ng/ml (C) and at 10 ng/ml (D). All data were analyzed by two-way
ANOVA, N = 3 (biological replicates); *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001 vs. control.
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assay (Figure 2A). hBM-MSCs displayed low basal expression of

types II and III collagen that increased following 16 days of

continuous hTGF-β1 exposure; however, type II collagen

staining (green) was more intense when cells were

supplemented with 10 ng/ml of growth factor at day 16. This

behavior was confirmed by q-IF data, which indicated an increase

(2.74-fold) of the stained protein signal at day 16 (Figure 2B).

Supplementing 1 ng/ml, several spindle shaped aggregates were

observed at day 16. No spindle systems were evidenced when a

concentration of 10 ng/ml was used. Type III collagen signal was

upregulated at day 16 in all conditions when compared to

baseline (Figure 2C), while its intensity decreased following

chondrogenic medium treatment compared to matched

untreated cells.

Based on these data, 10 ng/ml hTGF-β1 was chosen as the

optimal concentration for culture medium supplementation in

the next 3D high-density approach.

3D high-density culture

3D high density culture were monitored for 16 days of

incubation using brightfield microscopy for morphological

analysis. hBM-MSC showed spherical structures with smooth

FIGURE 2
Effect of hTGF-β1 on the expression of type II (stained in green) and type III (stained in red) collagens by BM-MSC monolayer. Spindle-shaped
systems were observed at Day 16 only when 1 ng/ml hTGF-β1 was supplemented (A). Higher type I collagen stain was observed when 10 ng/ml were
supplemented, as indicated by signals relative quantification (B,C) *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001, one-way ANOVA. N = 3
(biological replicates). Scale bar: 75 µm.
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borders, especially after 4 and 8 days (Figure 3A). A mean Feret’s

diameter of 450 µm (±64) and circularity of 0.54 µm (±0.16) were

calculated after 16 days of treatment with hTGF-β1. Similarly,

control 3D culture without growth factor had a mean diameter of

460 µm (±64), with a lower circularity of roughly 0.46 µm

(±0.11). hWJ-MSC 3D systems were bigger and more regular,

with a mean Feret’s diameter of 1,163 µm (±69) and circularity of

0.62 µm (±0.08) at the end of chondrogenic culture (Figure 3B).

Gene expression profiles of chondrogenic markers and

cytokines were monitored along the experimental timeline. All

chondrogenic markers were upregulated in 3D culture combined

with hTGF-β1 treatment. At day 8, hBM-MSCs displayed

upregulation of SOX9 (3.15-fold), COL2A1 (191.68-fold),

ACAN (1.50-fold), COL3A1 (1.13-fold), and COL10A1 (242.2-

fold). At day 16, increased upregulation was noted for SOX9

(8.05-fold, p < 0.001), COL2A1 (925.44-fold), ACAN (15.16-

fold), and COL10A1 (3704-fold), whilst COL1A1 was

downregulated and COL3A1 was unchanged compared to

control (Figure 4A). On the other hand, WJ-3D systems at

day 8 displayed strong upregulation of SOX9 (33.04-fold),

COL2A1 (30.76-fold), COL1A1 (83.55-fold), COL3A1 (13.94-

fold), and COL10A1 (231.5-fold) while ACAN underwent

FIGURE 3
Brightfield images of hBM-MSCs (A) and hWJ-MSCs (B) 3D high-density culture supplemented with 10 ng/ml of hTGF-β1 and acquired at Days
4, 8, and 16. Untreated spheroids (CTR) at matched time-points were presented for control purposes. Scale bars were 200micron for BM culture and
100 micron for WJ one.
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slight upregulation. At day 16, SOX9 (89.30-fold, p < 0.001),

COL2A1 (146.60-fold), and ACAN (4.27-fold, p < 0.05) all

underwent further upregulation, while COL1A1 (29.94-fold,

p < 0.001), COL3A1 (6.39-fold) and COL10A1 (137.6-fold)

displayed downregulation in comparison to day 8 levels

(Figure 4B).

hBM-MSC upregulated all pro-inflammatory cytokines

genes (e.g., TNF-α and IL-12A, respectively 440.75-fold and

205-fold, at day 8). Among anti-inflammatory cytokines, IL-10

showed a strong upregulation with a 2154-fold change. After

16 days, only TNF-α underwent a further increase (1071-fold, p <
0.01), whereas the other ones retained an expression similar to

that of previous time-points. Moreover, at the end of culture, IL-

10 maintained its upregulated (2158-fold, p < 0.01), instead,

TGF-β1 retained a slight increase compared to control

(Figure 4C). However, at protein level, IL-6 tended to increase

in the culture medium from day 11, as well as MIP-1α, CCL-4,
and DKK1, while only HGF was significantly higher at day

11 compared to baseline (p = 0.0136) (Figure 5A). Other

cytokines were not detected. In hWJ-MSCs, cytokine

expression resulted in limited transcriptional upregulation of

all pro-inflammatory cytokines genes, with IL-6 that reached the

highest fold-value (68.24-fold) at day 8, while IL-10 showed a

strong upregulation (40.47-fold). As the culture progressed, TNF-

α (27.65-fold, p < 0.01) and IL-12A (22.61-fold, p < 0.001)

significantly increased, while other pro-inflammatory

cytokines displayed a lower shift. Moreover, IL-10 and TGF-

β1 expression increased compared to control, reaching

respectively 430-fold (p < 0.0001) and 17.31-fold (p < 0.05)

(Figure 4D). At protein level, IL-6 tended to increase in the

culture medium from day 7, as observed in BM-MSC cultures,

while IL-1β was significantly reduced starting from day 7 (p =

0.0265) and DKK1 increased at day 7 (p = 0.0015) compared to

baseline (Figure 5B).

Cell viability inside 3D aggregate systems was performed

after 8 and 16 days of culture using Live and Dead assays, and

FIGURE 4
Gene expression profiles of both hBM-MSCs and hWJ-MSCs based high density culture supplemented with 10 ng/ml of hTGF-β1. mRNA
expression levels of positive and negative chondrogenic markers (COL1A1, COL2A1, COL3A1, COL10A1, SOX9, and ACAN) (A,B) and cytokines (IL-6,
TNF-α, IL-12A, IL-1β, IL-10, and TGF-β1) (C,D); untreated cells at time zero were used as control. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p <
0.0001 (two-way ANOVA). N = 3 (Biological replicates).
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micrographs are shown in Figure 6A-B for hBM-MSCs and WJ-

MSCs, respectively. The red signal, associated with dead cells, was

detectable only in the core of 3D systems and varied from 5% at

day 8–10% at day 16. Therefore, cultures longer than 16 days

were not considered for both cells type, as also suggested by

literature (Lee et al., 2017).

Production of type I and II collagen (proteins) wasmonitored

by immunofluorescence (IF) assay (see Figures 7A,B). BM-MSC

3D-system displayed a basal expression of type I collagen, that

decreased following 16 days of continuous hTGF-β1 exposure;

however, type II collagen staining (green) was more intense at

day 16. The same trend was observed for WJ-MSC 3D system as

documented by IF micrographs, where the green signal

associated with type II collagen was markedly increased from

8 to 16 days. Histological evaluation by Sirius red acquired with a

polarized microscope to intercept the birefringence of collagen

fibers was also performed on both 3D culture. An example of the

intensity of red signal, mainly associated with type II collagen,

increased from 8 to 16 days, confirming previous IF data.

Translucent new fibers were also clearly detected at day 16 of

culture (Figure 8A). Further histological evaluation by Safranin-

O for WJ-3D culture was performed and detected the

accumulation of acid proteoglycans (Figure 8B).

Discussion

3D in vitro chondrogenic models using human stem cells

derived from different tissues have great potential in cartilage

healing and regeneration (Mobasheri et al., 2014). In this study,

we investigated chondrogenic propensity of human MSCs

harvested from BM and WJ using 3D high-density culture

coupled with hTGF-β1 supplementation. We also observed

the variations in cytokine production during differentiation by

gene expression profiling for pro- and anti-inflammatory

cytokine genes.

Chondrogenesis from human MSCs is a complex process,

involving the activation of different genes, especially the

transcription factor SOX9 that plays a key role in trigging the

differentiation phase. Indeed, its upregulation promotes stem cell

commitment toward chondrogenic phenotype and reduces

hypertrophic drift leading to cartilage mineralization, often

FIGURE 5
Cytokine release profiles of BM (A) and WJ (B) 3D culture in a chondrogenic medium supplemented with 10 ng/ml of TGF-β1 for up to 16 days.
Cytokine levels expresses as (pg/ml) were measured in the culture medium using a multiplex bead-based immunoassay at various time points and
shown as means ± SD. *p < 0.05 and **p < 0.01 (N = 2).
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accompanied by apoptosis of chondrocytes and matrix

ossification (Mueller and Tuan, 2008; Jiang et al., 2018).

While SOX9 is rapidly upregulated along chondrogenesis, the

expression of other genes emerges later. COL2A1 represents the

gold standard among chondrogenic markers and is usually

detectable only after several days of chondrogenic induction.

In preliminary monolayer experiments, chondrogenesis-related

gene expression was not affected by 1 ng/ml hTGF-β1
supplementation in culture medium, while increased when

using 10 ng/ml after 16 days of culture, in agreement with

previously published data (Li et al., 2011). ACAN, another

chondrogenic marker, was not detected at any time point at

1 and 10 ng/ml hTGF-β1 concentrations, possibly because its

expression becomes evident between 18 and 24 days of culture

(Xu et al., 2008); however, some variations are described due to

biological variabilities, number of culture passages, different

media and TGF (β1 or β3) used, and cell types employed

(e.g., adipose-, BM-, or WJ-derived MSCs) (Sacchetti et al.,

2016; Huynh et al., 2019; Futrega et al., 2021). Higher

concentrations of hTGF-β1 have already been reported to

FIGURE 6
Live & Dead assay and quantify fluorescent signal of hBM-MSCs (A) and hWJ-MSCs (B) in 3D high-density cultures supplemented with 10 ng/ml
of hTGF-β1 and acquired at Days 8 and 16. Viable cells appear green, non-viable cells in red. Scale bar: 200 µm.
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exert inhibitory effects on adipose-derived MSCs (Huang et al.,

2004a). Therefore, we did not test higher doses in our monolayer

experiments and we chose 10 ng/ml of hTGF- β1 for the 3D

culture systems as the optimal condition because of a significant

increase in chondrogenic-related genes. Conversely, COL1A1,

COL3A1, and COL10A1 were employed as negative markers

because largely reported to be dedifferentiation genes of

hyaline cartilage phenotype and often associated with

differentiation towards other musculoskeletal lineages. Type I

collagen gene expression is related to both tenogenic

commitments (Ciardulli et al., 2020b) and fibrocartilage tissue

(Kovermann et al., 2019). Moreover, its expression increases in

chondrocytes during progression of human osteoarthritis

(Zhong et al., 2016). Type III collagen is often co-localized

with type I within the same fibril (Dehne et al., 2010), for this

reason, it is also considered as a negative marker. However, its

exact role in chondrogenesis remains unclear because contrasting

evidence on its protective or pathological functions after injuries

is reported (Alcaide-Ruggiero et al., 2021). The development of a

stellate or fibroblast-like phenotype during culture compromises

clinical outcome of potential regenerative therapy and is a major

issue for application of hBM-MSCs in cartilage defect repair (Li

et al., 2019). According to published literature, these genes were

downregulated in response to 1 and 10 ng/ml hTGF-β1
concentrations in our monolayer experiments confirming

chondrogenic commitment of stem cells in our system culture.

FIGURE 7
Immunofluorescence of hBM-MSCs (A) and hWJ-MSCs (B) in 3D high-density cultures supplemented with 10 ng/ml of hTGF-β1 and acquired
at different time-point. Type I collagen was stained in red and type II collagen in green. DAPI was used to counterstain the nuclei (blue) Scale bars
were 200 microns for BM culture and 100 microns for WJ one.
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In vitro chondrogenic BM-MSC differentiation in 3D high-

density cultures supplemented with TGF-β1 or TGF-β3 is often

accompanied by up-regulation of genes associated with

chondrocyte hypertrophy, including type X collagen and its

transcription factor (RUNX-2), or matrix metalloproteinases

(MMPs), and by activation of alkaline phosphatase (ALP) (Agar

et al., 2011). Hypertrophic processes are strongly dependent on types

and concentrations of chondrogenic inducers used and also on in vitro

FIGURE 8
Brightfield and cross-polarized images of picrosirius red (A) and Safranin-O (B) staining on 3D high density culture at days 8 and 16. Fine
birefringent collagen fibers were visible by day 8 and day 16 (see white arrows) in BM culture. Scale bar: 50 µm (A); accumulation of acid
proteoglycans (stained in red) after 8 and 16 days in WJ-3D culture. Scale bar 20 µm (B).
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culture time (Mueller et al., 2010). In our study, the early phase of

chondrogenic differentiation, also known as pre-differentiation or

commitment phase, was investigated using a short culture period

(only 16 days). Even though our system could not prevent

hypertrophic drift of BM-derived MSCs, we observed a high

chondrogenic potential not only in the case of BM- but also with

WJ-derived stem cells in 3D high-density conditions and we also

documented COL10A1 downregulation over time (from 8 to 16 days)

for WJ-culture, thus showing a less tendency to hypertrophic drift of

these cells. WJ-MSCs are another possible source of mesenchymal

stromal cells for regenerative medicine approaches; however, few or

absent data are present about hWJ-MSC chondrogenic commitment

efficiency. In our study, we assumed that similar events to those

occurring in hBM-MSCs may be induced in WJ cells. Similar to that

reported in 2DBM-MSCculturewith 10 ng/ml of TGF-β1,WJ-MSCs

showed SOX9 upregulation at day 16, and COL1A1 decreased

expression from day 8–16. These results support the use of WJ-

MSCs as a valid alternative for chondrogenic commitment of stem

cells in regenerative medicine.

Monolayer culture systems have various limitations,

especially in chondrogenic differentiation of human stem cells,

because cells grow in adhesion at the flask bottom without

mimicking the complex physiological in vivo tissue

architecture. When stem cells are cultured in 2D tend to lose

their stemness and differentiation potential (Lei and Schaffer,

2013), as documented by the lack of ACAN expression due to the

short culture period in order to avoid de-differentiation processes

on long-term 2D chondrocyte cultures (Caron et al., 2012b).

Moreover, living 3D structures seem to be advantageous,

especially in chondrogenesis studies, due to the presence of a

hypoxic core within the structure that could stimulate

differentiation. Indeed, recent studies have confirmed that

hypoxia is a full-fledged chondrogenic stimulating factor,

because articular cartilage is an avascular tissue with a

reduced oxygen and nutrient intake. Hypoxia seems to better

reproduce the natural chondrocyte environment (Lee et al., 2013;

Citeroni et al., 2021). In our study, successful 3D high-density

cultures were obtained when 5 × 105 cells/ml were used. BM-

MSC 3D systems with a mean Feret’s diameter of 401 ± 39 µm

and circularity of 0.60 ± 0.14 µm were obtained after 4 days of

culture with 10 ng/ml hTGF-β1 supplemented medium. As

culture moved forward, these systems became larger in size,

but less regular in shape at day 16, probably due to the

proliferative effect of TGF-β1 (Giudice et al., 2021). Lower cell

amounts resulted in smaller and frailer 3D systems making

extremely challenging further studies (data not shown).

BM-MSC 3D system was more effective than 2D cultures in

driving chondrogenesis, as confirmed by the higher upregulation

of markers associated with hyaline cartilage, including ACAN at

day 16, not observed in monolayer experiments. Moreover,

COL1A1 was significantly downregulated at day 16,

confirming the capability of the 3D system to inhibit the

expression of this gene (Danišovič et al., 2012b). In contrast,

hWJ-MSCs high-density culture showed larger and more regular

aggregates, with a mean Feret’s diameter of 1,113 ± 28 µm and

circularity of 0.73 ± 0.08 at day 4 and reaching values of 1,163 ±

69 μm and 0.62 ± 0.08 µm, respectively in diameter and

circularity at the end of chondrogenic culture, thus showing a

rise in size trend but a slight decrease in circularity over time.

Different 3D culture morphology between BM and WJ-MSCs

could be caused by various patchy adhesion forces and a higher

proliferative rate of WJ-MSCs compared to BM-MSCs. Indeed,

cell aggregates formation can be influenced by different

parameters, such as cell suspension density, manufacturing

method, medium composition, or incubation time. Cells

suspensions assemble into 3D pellets because of cell-to-matrix

and cell-to-cell interactions via integrins and cadherins (Foty and

Steinberg, 2005; Gionet-Gonzales and Leach, 2018). Despite their

larger diameters, WJ-3D cultures overexpressed all chondrogenic

markers, including ACAN at day 16 and COL2A1, with marked

downregulation of COL1A1 and COL3A1 already starting from

day 8 through day 16, suggesting that also WJ-3D system can be

effective in vitro tool for cartilage tissue engineering.

3D system also displayed good cell viability, even if small

mortality was observed within the core. This behavior could be

due to hypoxic stress or low nutrient exchanges to which the cells

within the system are subjected. Looking at immunofluorescence

data of the 2D culture, up to 3-fold change of collagen II was

measured by q-IF at day 16, coupled with a slight downregulation

of collagen III along the culture (1-fold), especially when 10 ng

were supplemented. A further observation must be done, when

supplementing 1 ng/ml in BM-2D culture; i.e., in this condition

spindle-shaped aggregates were detected only at Day 16; these

spindle structures may be considered an early organization of

cellular 3D structure in the context of tenogenic commitment

(Barboni et al., 2012). Therefore, 1 ng/ml hTGF-β1 dose may

stimulate alternative differentiation pathways, while 10 ng/ml

hTGF-β1 could drive hBM-MSC chondrogenic commitment

(Puetzer et al., 2010).

MSCs can have immunomodulatory activities as described in

several hematological disorders, such as primary myelofibrosis

where they can also promote marrow fibrosis, or acquired

aplastic anemia where BM-MSCs maintain the physiological

balance between T regulatory cells and T helper (Th)

17 lymphocytes in the BM niche (Huo et al., 2020). Moreover,

cytokines are important in regulation of normal chondrogenesis

and pathological drift, as during osteoarthritis (Zhou et al., 2018).

However, modifications of cytokine expression during

chondrogenic commitment in both 2D and 3D culture

systems using both BM- and WJ-derived MSCs have not been

investigated yet. In our study, we demonstrated that when

supplementing 10 ng/ml of hTGF-β1 in 2D system, TNF-α
and IL-12A, two pro-inflammatory cytokines, were

upregulated starting from day 8 of culture. TNF-α and IL-1β
might hamper chondrogenesis of mesenchymal stromal cells,

through NF-κB pathway, inhibition of SOX9 expression, and
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increase the synthesis of degradative enzymes involved in

cartilage degeneration, like matrix metalloproteinases (MMPs)

(Jagielski et al., 2014). Other studies suggest that in vitro exposure

to TNF-αmight increase proliferation, migration, and osteogenic

differentiation of MSCs (Voskamp et al., 2020). In our system,

BM- or WJ-3D culture showed an upregulation of all pro-

inflammatory cytokine genes explored at day 8, except for IL-

6 that showed a poor upregulation followed by a decrease at day

16, as also observed at the protein levels by measuring cytokines

in culture medium. IL-6 behavior is in agreement with a previous

study, where its expression during chondrogenic differentiation

by pellet culture decreases from day 8 to day 16 (Kondo et al.,

2015). During chondrogenic commitment, the most expressed

cytokine was IL-10, as we also have observed (Behrendt et al.,

2018); however, this cytokine was undetectable in culture

medium. Therefore, both BM- and WJ-derived MSCs can

produce pro-inflammatory cytokines that might support

chondrogenic processes in an autocrine manner, as proposed

by more pronounced variations in chondrogenic-related genes in

3D systems. Indeed, cell-to-cell contacts and spheroid structure

in 3D culture better resemble physiological tissue architecture

and reproduce interactions between cells and ECM. On the other

hand, despite 3D cultures can be valid in vitro systems for

studying chondrogenesis, our model needs further

improvements and optimization for long-term cultures of

chondrocytes after the production of well-organized and

functional cartilage, in order to prevent dedifferentiating and/

or hypertrophic drift events. Indeed, articular cartilage structure

has a complex multi-layer architecture with different

compositions and functions, and chondrocytes are clustered in

small areas, known as lacunae. In our 3D system, we clearly

observed randomly distributed depositions of acidic

proteoglycans around cells, even if still not well organized as

lacunae-like structures. However, in vivo reproduction of this

peculiar architecture remains the main challenge in regenerative

medicine of cartilage tissue.

Conclusion

In vitro models to investigate cartilage regeneration processes

are becoming increasingly important. Our results indicate that 3D

high-density stem cell culture supplemented with 10 ng/ml of

hTGF-β1 represents a simple and rapid 3D model of

chondrogenic commitment. These 3D biomaterials are extremely

versatile tools and could be used to evaluate the effects of several

drugs and growth factors on cartilage regeneration and healing, as

well as to explore the role of cytokines in leading chondrogenic

commitment. Indeed, our 3D-culture systems highlighted a well-

balanced expression of pro and anti-inflammatory cytokines

suggesting their involvement in chondrogenic events. This trend

was already observed for BM- but never described for WJ-3D

systems and provided an important correlation between

chondrogenic commitment that might be sustained by autocrine

cytokine production. Our findings open interesting prospective for

the use of hWJ-MSCs to develop 3D models for cartilage tissue

engineering.
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