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Automaticmedical image detection aims to utilize artificial intelligence techniques to
detect lesions in medical images accurately and efficiently, which is one of the most
important tasks in computer-aided diagnosis (CAD) systems, and can be embedded
into portable imaging devices for intelligent Point of Care (PoC) Diagnostics. The
Feature PyramidNetworks (FPN) basedmodels arewidely used deep-learning-based
solutions for automatic medical image detection. However, FPN-based medical
lesion detection models have two shortcomings: the object position offset problem
and the degradation problem of IoU-based loss. Therefore, in this work, we propose
a novel FPN-based backbone model, i.e., Multi-Pathway Feature Pyramid Networks
with Position Attention Guided Connections and Vertex Distance IoU (abbreviated as
PAC-Net), to replace vanilla FPN for more accurate lesion detection, where two
innovative improvements, a position attention guided connection (PAC) module and
Vertex Distance IoU Vertex Distance Intersection over Union loss, are proposed to
address the above-mentioned shortcomings of vanilla FPN, respectively. Extensive
experiments are conducted on a public medical image detection dataset,
i.e., Deeplesion, and the results showed that i) PAC-Net outperforms all state-of-
the-art FPN-based depth models in both evaluation metrics of lesion detection on
the DeepLesion dataset, ii) the proposed PAC module and VDIoU loss are both
effective and important for PAC-Net to achieve a superior performance in automatic
medical image detection tasks, and iii) the proposed VDIoU loss converges more
quickly than the existing IoU-based losses, making PAC-Net an accurate and also
highly efficient 3D medical image detection model.
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1 Introduction

Automatic medical image detection aims to utilize artificial intelligence techniques to detect
lesions in medical images accurately and efficiently, which is one of the most important tasks in
computer-aided diagnosis (CAD) systems, and can be embedded into portable imaging devices
for intelligent Point of Care (PoC) Diagnostics (Manhas et al., 2021). Recently, with the
continuous development of artificial intelligence, deep-learning-based methods have started to
play an important part in automatic medical image detection (Wang et al., 2018; Wang et al.,
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2017; Lee et al., 2018). Deep-learning-based detection models that
utilize convolutional neural networks (CNNs) to learn the features of
input images, such as vanilla Faster R-CNN (Ren et al., 2015) and
vanilla YOLO (Redmon et al., 2016), have been increasingly adopted
in medical image detection tasks.

However, the detection of medical images is often more difficult
than detecting objects within natural images because of two reasons: i)
the similarity between the object and the background is higher in
medical images than that in natural images, which increases the
difficulty of object detection (Greenspan et al., 2016), and ii)
medical images often contain small but important lesions and
organs as the detection objects, whose detailed information may be
lost in the deep convolutional processing for feature learning (Ren
et al., 2018). Therefore, to learn features better, medical image
detection works based on models such as Faster R-CNN and
YOLO (Li et al., 2019; Tang et al., 2019; Zhao et al., 2019; Zlocha
et al., 2019) have basically introduced the Feature Pyramid Networks
(FPN) (Lin et al., 2017a) to replace the traditional CNN as the feature
learning backbone. Specifically, differently from conventional CNNs,
FPN first uses a bottom-up path to extract features by convolution,
then adds a top-down pathway to upsample the high-level features,
and then combines them with the corresponding previous layer
features by lateral concatenation. By using FPN as the backbone,
the advanced detection models can fuse features of different scales and
depths in the process of feature learning, making the learned feature
information richer and more complete and avoiding the loss of
detailed information (He et al., 2017; Liu et al., 2018). For example
(Zlocha et al., 2019), uses FPN as the backbone of the retina detection
model to achieve the detection of lesions in CT images. Similarly
(Zhao et al., 2019), proposes an FPN-based PFA-ScanNet for the
detection of breast cancer. Further, to fully utilize the rich spatial
contextual information in 3D medical datasets (Li et al., 2019),
proposes an FPN-based MVP-Net using a three-pathway input to
help the network learn the features of spatial contextual information in
3D CT images and achieved good detection results.

However, the existing detection models mainly suffer from two
shortcomings: i) Object position offset problem (Lin et al., 2017a): To
achieve the fusion of multi-scale features, FPN needs to upsample the
features of each layer of the top-down pyramid and then fill the
expanded pixels with the nearest neighbor interpolation. This will
inevitably cause the offset of the object’s position. Although FPN fuses
features with accurate position information bottom-up by lateral
connections to remedy the problem of position offset, the simple
lateral connections do not completely solve the problem. Therefore,
FPN still has the problem of position offset. However, the position
information of the object is very important for detection. When the
position of the detection object is shifted in the feature map, it will
inevitably make the region proposals (RPs) selected by RPN deviate
from the object’s actual position in the input image to a certain extent,
thus causing the inaccuracy of detection. ii) Degradation problem of
IoU-based loss (Zheng et al., 2020): Most of the existing works use the
original Iou loss (Yu et al., 2016) or IoU-based loss function, such as
GIoU (Rezatofighi et al., 2019) and DIoU (Zheng et al., 2020). But
most of them have certain problems, such as the IoU loss only judges
the bbox quality based on IoU thus leading to giving the same loss in
the face of RPs with different quality. Although GIoU or DIoU take
other factors into account, when there exists a mutual inclusion of RPs
and ground truth (GT) boxes, or there exists some RPs with the same
distance from the center point of GT, the calculation of GIoU and

DIoU will degrade to ordinary IoU loss, thus wrongly getting the same
IoU loss value on bboxes of different quality, which affects the speed
and accuracy of model training.

Therefore, in this work, we propose a novel Multi-Pathway FPN
with Position Attention Guided Connections and Vertex Distance IoU
model, named PAC-Net, for 3D medical image detection. Generally,
PAC-Net addresses the above two problems by first proposing a new
position attention guided connection module to remedy the object
position offset problem caused by upsampling operations on FPN and
then proposing a novel Vertex Distance IoU (VDIoU) loss to solve the
existing problem of inaccurate calculation of IoU-based losses.
Specifically, we first add position attention guided blocks to the
original lateral connections of FPN, resulting in position attention
guided connection (PAC) modules. Different to the existing spatial
attention and channel attention mechanisms, the proposed PAC
module generate a position weight matrix by mapping the feature
map in the bottom-up path to the hidden space through a
convolutional layer and then calculating the dependency between
different regions on the converted feature maps; the position
weight matrix is then multiplied with the feature maps generated
by upsampling in the top-down pyramid to perform a positional
recovery on the offset object. The novel position weight matrix is
effective, because it is computed from the original features with
accurate position information, and it can enhance the features in
the region of the exact position of the object on the top-down feature
map and suppress the features in other regions to perform the position
retraction of the offset object.

The other advantage of PAC-Net is to propose a new Vertex
Distance IoU (VDIoU) loss to solve the existing problem of
inaccurate calculation of IoU-based losses. IoU loss is simply a
way to determine the quality of RPs based on IoU, but it has the
same loss for different RPs in many cases, thus affecting the learning
ability of the network. The existing IoU-based losses are all based on
adding new penalty terms to the IoU losses, where the common
GIoU takes the non-overlapping area of the minimum enclosing box
between RP and GT as the penalty term, and the other common
DIoU takes the distance between RP and GT centroid as the penalty
term. However, when RPs and GTs contain each other, GIoU
degenerates to a common IoU. When RPs have the same centroid
distance as GTs, DIoU cannot accurately evaluate the quality of these
RPs, because they have the same DIoU loss. Based on DIoU, CIoU
solves the problem of DIoU by introducing aspect ratio as an
additional penalty term. However, since the calculation of CIoU
involves inverse trigonometric functions, its computational
complexity largely leads to its use outweighing the loss.
Therefore, we propose the Vertex Distance IoU (VDIoU) loss: it
builds on the IoU loss by calculating the sum of the distances
between RP and the four vertices of GT and then dividing it by
the diagonal distance of the minimum enclosing box as a penalty
term. It not only takes into account the distance between RP and GT
but also indirectly takes into account the aspect ratio by dividing the
diagonal distance of the minimum enclosing box. Therefore, it does
not have the problems of GIoU or DIoU, and its calculation is much
simpler than CIoU. In this work, we fuse PAC-Net as the backbone
of the Faster-RCNN detection framework to improve the
performance of medical image detection. Actually, PAC-Net can
also be applied as a feature learning backbone in other detection
models, such as YOLO and RetinaNet, to help them perform better.

The main contributions of this paper are as follows:

Frontiers in Bioengineering and Biotechnology frontiersin.org02

Xu et al. 10.3389/fbioe.2023.1049555

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1049555


• We identify the existing shortcomings of FPN-based detection
models, the problem of object position offset and IoU-based
losses calculation inaccuracy, and propose a novel Multi-
Pathway FPN with Position Attention Guided Connections
and Vertex Distance IoU model, PAC-Net, to achieve more
accurate 3D medical image detection.

• We first propose a new position attention blocks into the lateral
connections of FPN to generate a position weight matrix, thus
importing positional recovery to resolve the object position
offset problem in the upsampled feature map. Then, a vertex
distance IoU (VDIoU) loss is further proposed by calculating the
distance between the vertices of RP and GT divided by the
diagonal length of the minimum enclosing box as the penalty
term of IoU loss, which avoids the problems of inaccurate
calculation (DIoU and GIoU) or large computational
complexity (CIoU) in IoU-based loss calculation.

• We have conducted extensive experimental studies on the
DeepLesion dataset (Ke et al., 2018), and the results show
that: i) The PAC-Net significantly outperforms the state-of-
the-art FPN-based detection baselines on the DeepLesion
dataset. ii) The proposed improvement modules, PAC and
VDIoU loss, are all effective and essential for PAC-Net to
achieve a superior performance on the DeepLesion dataset.
iii) The proposed VDIoU loss converges more quickly than
the existing IoU-based losses, making PAC-Net an accurate and
also highly efficient 3D medical image detection model.

2 Related work

2.1 Automatic medical image detection

Current deep-learning-based object detection models can be
mainly divided into two categories: 1) two-stage models, e.g.,
Faster-RCNN (Ren et al., 2015), and 2) one-stage models, e.g.,
YOLO (Redmon et al., 2016). Faster R-CNN is developed based on
the RCNN, which retains the overall framework of R-CNN (Girshick
et al., 2014) and then uses the region proposal network (RPN) instead
of selective search (SS) to generate region proposals for input to
subsequent networks for classification and regression. By using RPN,
Faster R-CNN achieves a faster and more accurate detection. Various
extensions of Faster R-CNN have been proposed, such as Cascade
R-CNN (Cai and Vasconcelos, 2018) and Mask R-CNN (He et al.,
2017). Unlike the two-stage models, YOLO, the best-known one-stage
method, uses a unified network to directly predict the entire feature
map instead of the RPs for classification and bbox prediction, thus
substantially improving the speed of detection. Based on this, a wide
range of other one-stage models or frameworks have been proposed,
such as YOLOv2 (Redmon and Farhadi, 2017), YOLOv3 (Redmon
and Farhadi, 2018), and RetinaNet (Lin et al., 2017b).

All the above models have been very widely used for automated
medical image detection. However, in order to utilize multi-scale features
to better learn detailed information in medical images, most of these
works use FPN instead of conventional CNNs for feature learning. For
example, (Zlocha et al., 2019), used FPN as the backbone of RetinaNet and
weak RECIST labels as auxiliary supervision to achieve the detection of
lesions in CT images. PFA-ScanNet (Zhao et al., 2019) was proposed to
use FPN to extract local and global features of different receptive fields to
achieve automatic detection for cancermetastasis fromwhole slide images

(WSIs). Besides, (Tsai and Peng, 2022), used FPN for network feature
extraction, and then used a dual-head multi-task supervision approach
with global and local labels to improve the feature learning capability of
the network, and then took different data enhancement approaches for
different task heads to make the different heads of the network achieve
good results thus improving the lung nodule detection capability (Sheoran
et al., 2022). Propose a robust single-stage FPN-based anchor-free lesion
detection network, which can be improved by using the prediction of
boxes that can be correlation-ranked according to their centers rather
than overlap with objects to achieve good detection capability over
different lesion sizes. In addition, to fully use the rich spatial context
information in 3D medical data (Li et al., 2019), proposed an FPN-based
MVP-Net using three-pathway input to help the network learn the
detailed features better, which led to a good result on 3D CT lesion
detection. Our work is similar to MVP-Net, but the significant difference
is that MVP-Net assists the network in improving the detection accuracy
by adding the z-axis position information of slices as additional
information. At the same time, it does not address the position offset
problem that exists in the FPN network structure. Although our work also
focuses on automaticmedical image detection, we identified the positional
offset and IoU-based loss function degradation problems in existing
works and propose a position attention guided connection (PAC)
module and the vertex distance IoU (VDIoU) loss to solve these
problems, respectively.

2.2 Attention mechanism

The attention mechanism is widely used in target detection tasks to
help the network pay more attention to those important regions to
improve detection results (Xu et al., 2022; Xu et al., 2019). (Zhou et al.,
2019) uses the detection GT as a segmentation label and learns its features
as an attention map to fuse to the original feature map to suppress the
background to improve detection results (Huang et al., 2020). Transposes
the gradient-based attention tensor over space and channels to generate
inverted attention feature maps urging the network to detect objects based
on parts of the object that are not too sensitive (Zhu et al., 2018). Combines
attention-related information with global and local information about the
object to improve detection performance by using a cascaded attention
structure to perceive the global attention graph and encoding the attention
graph into the network to obtain local perceptual features of the object (Lin
et al., 2021). Propose an attention regularization module for the properties
of local and global consistency and mutual knowledge transfer, using class
activation maps (CAMs) of image-segmentation pairs to discover
additional supervision in the regression network, and CAMs can act as
augmentation gates for regions of interest, which in turn facilitate the
segmentation task. Differently from these works, we focus on medical
image detection tasks, and our position attention is targeted at the position
offset problem encountered during upsampling operations in FPN. We
compute the correlation between different regions based on the feature
map without position offset to generate a position weight matrix to help
recover the position offset problem.

2.3 IoU-based loss function

The IoU-based loss function is widely used in target detection
tasks. The original IoU loss (Yu et al., 2016) is used as an evaluation
criterion for the quality of region proposals by calculating the cross-
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merge ratio between RP and GT. Based on IoU loss, other methods of
IoU-based loss add other judging factors as penalty terms to calculate
the loss function. GIoU loss (Rezatofighi et al., 2019) takes the non-
overlapping area of the minimum enclosing box between RP and GT
as the penalty term. DIoU loss (Zheng et al., 2020) takes the distance of
the centroid between RP and GT as the penalty term. On top of DIoU
loss, CIoU loss (Zheng et al., 2020) additionally takes the similarity of
the aspect ratio of RP and GT as the penalty term. However, GIoU and
DIoU loss will degenerate to ordinary IoU loss in the face of some
situations, and the high computational complexity of CIoU loss is not
conducive to the training speed. Therefore, we propose VDIoU loss,
which solves the above problem and has a low computational
complexity by calculating the distance between RP and GT vertices
divided by the diagonal length of the minimum enclosing box as the
penalty term.

3 Methods

In order to achieve accurate medical image detection, in this
work, a novel FPN-based model, called Multi-Pathway FPN with
Position Attention Guided Connections and Vertex Distance IoU
Loss (PAC-Net), is proposed. As shown in Figure 1, we use the
proposed PAC-Net instead of FPN as the backbone of the Faster
R-CNN to extract features and then feed the features into the
subsequent RPN and R-CNN networks and use the VDIoU loss to
calculate the regression loss for training. Compared to the
conventional FPN, PAC-Net mainly consists of two additional
advanced modules: SPP block and position attention guided

connection (PAC) blocks. For better feature extraction, we add
the SPP block to the last layer of FPN’s bottom-up, since it
significantly increases the receptive field and separates out the
most significant context features. At the same time, in order to
solve the position information offset problem caused by the up-
sampling operation in the lateral connection in FPN and the SPP
block, we add position attention (PA) to each lateral connection
of the FPN and the SPP block to form a position attention guided
connection (PAC) block. Specially, in order to better focus on
important regions, we also add a self-attention-based context
attention (CA) module to the top-level features after SPP to
enable them to focus more on important regions through the
correlation weights of global features. PA recovers the position of
the offset object by multiplying the position weight matrix
calculated from the original features with accurate position
information with the feature map generated by upsampling in
a top-down pyramid. Specifically, features with high-level
semantic information and features with accurate location
information are combined to obtain a more comprehensive
representation by refining the PAC structure composed of CA
and PA jointly at the top layer of the FPN. Furthermore, the PAC
composed of PA alone is used in the lateral connection of FPN to
solve the problem of position information offset caused by the
upsampling operation. Besides, we also use VDIoU loss instead of
IoU-based loss to solve the possible inaccurate evaluation
problem.

In general, we use the slices corresponding to 3D medical images
with annotations as the central slices and the adjacent slices as the
upper and lower slices. The three sets of slices are input to the three-

FIGURE 1
Overview of incorporating PAC-Net into Faster R-CNN for 3D medical image detection.
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pathway PAC-Net, and then the features with larger receptive fields
are obtained with the SPP block after multiple convolutions by the
bottom-up pyramid. These features are fed into a top-down pyramid
for upsampling, and then passed through a PAC composed of CA and
PA multidimensional attention at the top level, and fused with the
corresponding feature maps with precise spatial location information
through a PAC composed of separate PA after each upsampling to
better learn the important information including semantic and
location information. Then, the features of the corresponding
prediction layers of the three pathways are concatenated together
and fed into a 1 × 1 convolution layer. Finally, the features are fed into
the RPN and R-CNN networks for lesion detection by calculating the
VDIoU regression loss and classification loss. Details of these
advanced modules will be presented in the rest of this section.

3.1 Position attention guided connection
module

Although the features from the SPP block contain rich receptive
field information, not all of them are useful to facilitate the
performance of object detection. The accuracy may be reduced due
to bounding box or area suggestions being misleading by redundant
information, and also due to the offset of object position information
caused by upsampling operations. Thus, to remove the negative
impacts of the redundancy and further enhance the representation
ability of feature maps, we propose a Position Attention Guided
Connection (PAC) Module, which can capture salient dependencies
with strong semantics and precise locations. As shown in Figure 1, in
the top layer of the FPN, the PAC module consists of two parts: i) the
positional attention module (PA) and ii) the context attention module
(CA); and in the lateral connection of the FPN, the PAC module
consists of PA alone.

Specifically, in the top-level PAC module, CA focuses on the
semantics between subregions of a given feature map (i.e., features
from the SPP layer). However, the position information of each object
is offset due to the upsampling operation. To alleviate this problem, we
introduce PA, which focuses more on guaranteeing spatial
information. Finally, the features refined by CA and PA are
combined to obtain a more comprehensive representation.
Furthermore, in the laterally connected PAC module, features with
high-level semantic information are combined with the accurate
position information of the shallow features extracted by the PA
module to ensure that the features can obtain a more comprehensive
representation.

3.1.1 Context attention
To actively capture the semantic dependencies between

subregions, we introduce a context attention (CA) module based
on the self-attention mechanism. We feed the preceding features,
which contain multi-scale receptive field information, into the CA
module. Based on these informative features, CA adaptively pays more
attention to the relations between subregions, which are more relevant.
Thus, the output features from CA will have clear semantics and
contain contextual dependencies within surrounding objects.

As can be seen in Figure 1, given discriminative feature maps
P5 ∈ RC×H×W, we transform them into a latent space by using the
convolutional layers Wq and Wk, respectively. The converted feature
maps are calculated by

Q � W⊤
qP5 and K � W⊤

kP5, (1)

where {Q,K} ∈ RC×H×W. Then, we reshape Q and K to RC×HW. To
capture the relationship between each subregion, we calculate a
correlation matrix as

S � Q⊤K, (2)
where S ∈ RHW×HW and then reshape it to R ∈ RHW×H×W. After
normalizing S via softmax activation function and average pooling,
we build an attention matrix S′, where S′ ∈ R1×H×W. Meanwhile, we
transform the feature map F to another representation V by using the
convolutional layer Wv:

V � W⊤
v P5, (3)

where V ∈ RC×H×W. Finally, an element-wise multiplication is
performed on S′ and the feature V to get the attentional
representation E. We formulate the function as

E � S′ ⊙ V. (4)
By calculating the correlation between the subregions in the feature
map containing multi-scale information, the network is able to pay
more attention to the contextual information and thus focus more on
those key regions to improve the detection results.

3.1.2 Position attention
Due to the effects of upsampling, the position information in the

feature map is offset, thus affecting the detection accuracy. To solve
this problem, we propose a new attention module, called position
attention (PA) module, which uses the accurate position information
in the unsampled feature maps to guide deep features with rich
contextual information to obtain feature maps that maintain high-
level semantic information while having accurate position
information.

As shown in Figure 1, similarly to CA, we use convolutional layers
to transform the given feature maps. Different from the CA, the input
of the PA consists of two parts, which are Pn rich in high-level
semantic information and the corresponding feature map Fn with
accurate position information for calculating the weight matrix. To get
the attention matrix, first, we apply two convolutional layers Wq′ and
Wk′, to convert Fn into the latent space, respectively:

Q′ � W⊤
q′Fn and K′ � W⊤

k′Fn, (5)

where {Q′,K′} ∈ RC×H×W. Then, we reshape the dimension of Q′ and
K′ to RC×HW, and produce the correlation matrix similar to Eq. 2 as:

X � Q′⊤K′, (6)
where X ∈ RHW×HW. After reshaping S to RHW×H×W, we employ
softmax function and average pooling to produce an attention
matrix X′ ∈ R1×H×W. To obtain a prominent representation, we
combine the extracted features V′ with X′ by element-wise
multiplication:

E′ � X′ ⊙ V′. (7)
The weight matrix extracted by shallow features that have accurate

location information can enhance the features in the region of the
exact position of the object on the feature map and suppress the
features in other regions to perform the position retraction of the offset
object. Therefore, the feature map with rich high-level semantic

Frontiers in Bioengineering and Biotechnology frontiersin.org05

Xu et al. 10.3389/fbioe.2023.1049555

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1049555


information but offset location information can be repaired by PA to
obtain a feature map with more comprehensive representation
capability.

3.1.3 Position attention guided connections
Asmentioned earlier, the FPN fuses the high-resolution feature maps

containing location information with the low-resolution feature maps
containing more semantic information by lateral concatenation to
preserve the location information in the feature maps as much as
possible. However, the position information in the later feature maps
with rich semantic information has been changed due to a large number
of upsampling operations, which affects the detection accuracy. Therefore,
we add a PA module in the lateral connection, aiming to let the high-
resolution feature map with a lot of position information guide the low-
resolution feature map with more semantic information to recover the
corrupted position information as much as possible. Specifically, in the
lateral concatenation of each layer, we use the featuremapPn rich in high-
level semantic information but with a offset in the position information
and the corresponding feature map Fn containing accurate position
information as the input of the PA. Then, we concatenate the
obtained result with the feature map Pn after 1 × 1 convolution.
Finally, after 1 × 1 convolution, the output feature map Pn−1 is
obtained as the prediction feature map of this layer and the input of
the next layer.

3.2 VDIoU loss

Based on the original IoU, many evaluation factors are derived
from enriching the evaluation dimensions of previous IoU from those
different aspects. The original IoU loss only considers the calculation
of overlapping areas. Its calculation formula is as follows:

LIoU � 1 − GT ∩ RP

GT ∪ RP
. (8)

Only the overlapping area does not accurately judge the quality of a
region proposal (RP). Therefore, IoU loss has some errors in the
evaluation of a RP in some cases. Meanwhile, GIoU pays attention to
the overlapping and non-overlapping areas, strengthening the
discussion of the evaluation system. Its calculation formula is as
follows:

LGIoU � LIoU + MBR − GT ∪ RP

MBR
, (9)

where MBR is the area of the Minimum Bounding Rectangle as shown
in Figure 3. However, GIoU obviously ignored the measurement of the
difference between RP and GT. The measurement of the difference
between RP and GT include the distance between the center points
and the ratio of length-width. Ignoring these factors will result in
GIoU not being able to assess how good an RP is either truly. As shown
in Figure 2, when the RPs are in different locations in the GT interior,
they have the same IoU and GIoU loss, but obviously, the quality of
these RPs is different. A good loss for bounding box regression should
consider three important geometric measures, i.e., overlap area,
central point distance, and aspect ratio, which have been ignored
for a long time. By combining these geometric measures, The
Distance-IoU (DIoU) loss was proposed for bounding box
regression, leading to faster convergence and better performance
than IoU and GIoU losses. Its calculation formula is as follows:

LDIoU � LIoU + d2

c2
, (10)

where d is distance between the center points of GT and RP and c is
the diagonal length of the Minimum Bounding Rectangle (MBR) of
RP and GT as shown in Figure 3. But DIoU loss cannot distinguish
which region proposals are more similar to ground truth when the
center points of the region proposals are at the same position.
Furthermore, based on DIoU, CIoU uses the similarity of the
aspect ratio of RP and GT as the evaluation factor, which enables
CIoU to be more accurate in evaluating the quality of a RP. Its
calculation formula is as follows:

LCIoU � LIoU + d2

c2
+ αυ, (11)

where υ is:

υ � 4
π2

arctan
wGT

hGT
( ) − arctan

wRP

hRP
( )( )

2

, (12)

where, as in Figure 3,wGT, hGT are the width and height of GT, andwRP,
hRP are the width and height of RP. And α is:

α � υ

LIoU + υ
. (13)

However, its high computational complexity due to the use of the
inverse trigonometric function calculation will slow down the training
speed. Moreover, it can also fail in some cases. As shown in Figure 2,
when the aspect ratio between RP and GT is fixed and the centroid
distance is the same, the different positions of RP in GT do not affect
the results of several IoU losses mentioned above, but it is obvious that
these boxes have different qualities.

Therefore, based on the original IoU loss functions, we propose
Vertex Distance IoU (VDIoU) loss functions in this paper. The
VDIoU loss function is obtained by taking the ratio of the sum of
the distances between the four vertices corresponding to RP and
GT and the diagonal length of the minimum enclosing frame as an
additional penalty term of the IoU loss. The VDIoU loss function
converges faster and greatly reduces the complexity of the
operation. Specifically, Vertex Distance Intersection over Union
(VDIoU) loss is an evaluation method that indirectly examines the
similarity of RP and GT by not directly measuring the similarity of
distance and shape between their centroids but by using these two
rubrics in an indirect way. The VDIoU-loss-specific formula is
shown below:

LVDIoU � LIoU + VDIoU, (14)
where LIoU is the original IoU loss, and the additional penalty term
VDIoU is calculated as shown in Figure 3. AE, BF, CG, and DH are the
distances between the corresponding four vertices of RP and GT, and
XY is the diagonal length of theMinimum Bounding Rectangle (MBR)
of RP and GT. The sum of the distances between the four vertices is
divided by two times the diagonal length of theMBR to obtain VDIoU,
as shown in the following equation:

VDIoU � AE + BF + CG +DH

2XY
. (15)

By observing this equation, we can intuitively feel that in the process
of backpropagation, the model tends to pull the four vertices of the
region proposal toward the four vertices of the ground truth until
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they overlap. In this process, the difference in centroid distance and
aspect ratio between RP and GT decreases simultaneously. Although
the formula of VDIoU does not mention centroid distance and
aspect ratio, its calculation result is directly affected by the centroid
distance and aspect ratio. So the final calculation result reflects a
measure of the degree of difference between RP and GT. A lower
value of VDIoU represents a higher degree of similarity between RP
and GT.

3.3 SPP block

Generally, with a deeper network, the receptive field will be larger, and
it is easier to extract the global feature information. However, the
performance of object detection is not simply positively correlated with

the receptive field. The deep features contain more object category
information, and the shallow features contain more object location
information. Therefore, fusing the features of different receptive fields
and the features of sub-regions can enhance the feature representation
ability of the network (Wang et al., 2019). Therefore, we added the SPP
block to the network to effectively use multi-scale feature information to
enhance the feature representation ability of the overall network.

4 Experiments

4.1 Datasets

In order to evaluate the performance of our proposed PAC-Net for
lesion detection tasks on 3D medical images, we conduct extensive

FIGURE 2
Calculation of the existing IoU-based losses.

FIGURE 3
Calculation of IoU-based loss and Vertex Distance IoU (VDIoU) loss, where the red, blue, and green dotted boxes represent the Ground Truth (GT),
Region Proposal (RP), andMinimumBounding Rectangle (MBR), respectively; M, N is the central point of GT and RP, respectively; c is the distance betweenGT
and the RP center point and d is the diagonal length of the MBR; A, B, C, D and E, F, G, H are the vertices of GT and RP, respectively.
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experiments on the DeepLesion dataset1, the largest publicly available
dataset of multi-class, lesion-level annotated clinical medical CT images.
It is a large-scale dataset with 32,735 lesions distributed over 32,120 axial
slices from 10,594−ΔΔCT studies of 4,427 unique patients. The dataset
provides not only the key CT slice containing the lesion but also its 3D
context (additional slices of 30 mm above and below the key slice, for a
total of 928,020−ΔΔCT images). Furthermore, the dataset provider has
already divided the dataset into three subsets, i.e., 15% of the dataset is
used as the validation set (4889 lesions), another 15% is used as the test
set (4927 lesions), and the rest is used as the training set (22919 lesions).
In addition, unlike existing datasets that typically focus on one type of
lesions, DeepLesion includes several different types of lesions, e.g., lung,
liver, kidney, etc.; therefore, to better evaluate the performances of
different methods under the detection tasks of different types of lesions,
the dataset provider also further divides the validation set and test set,
according to the different lesion detection tasks at different body parts,
into eight subsets, i.e., lung (LU), abdomen (AB), mediastinum (ME),
liver (LV), pelvis (PV), soft tissue (ST), kidney (KD), and bone (BN),
respectively. Almost all the existing works directly adopt these two
official divisions of the dataset in their experiments; to keep fair
comparison, these two official divisions are also adopted for all the
methods (including the proposed PAC-Net and all the baselines) in our
work. The number of validation sets and test sets contained in different
subsets is shown in Table 1. We uniformly resize the images to 512*512.

To better show the performance of different methods under different
detection difficulty tasks, we further combine these eight subset parts into
three types of different difficulty detection subtasks, i.e., easy, medium,

and hard detection tasks. The easy detection task represents the task with a
high detection accuracy of existing methods, which combines three easy
detection subsets, LU, ME, and LV; the medium detection task represents
the task with an average detection accuracy of existing methods, which
combines two medium detection subsets, PA and AB; the hard detection
task represents the task with a poor detection accuracy of existing
methods, which combines three subsets with high detection difficulty,
BN, KD, and ST. The number of validation sets and testing sets contained
in the three types of different difficulty detection subtasks is also shown in
Table 1. Please note that all the experimental results of all methods shown
in the same table or figure in our work are obtained by experiments under
the same dataset division.

4.2 Baseline

Four state-of-the-art deep models on natural image detection,
i.e., Faster R-CNN, Cascade R-CNN, YOLOv3, and RetinaNet, are
used as the baselines. All the above models use FPN with ResNet-50 as
the backbone. Besides, we also compare our proposed PAC-Net with
two state-of-the-art methods on the DeepLesion dataset, i.e., 3DCE
(Yan et al., 2018) and MVP-Net. MVP-Net uses FPN to improve
detection accuracy using multi-scale information, while 3DCE uses
R-FCN. For a fair comparison, we replace R-FCN with FPN in 3DCE.
As before, these methods use ResNet50 as the backbone.

4.3 Evaluation metrics

The free-response receiver operating characteristic (FROC) curves
allow the evaluation of arbitrary abnormalities on each image and are

TABLE 1 Dataset information.

LU ME LV ST PV AB KD BN Easy Medium Hard

Validation set 1294 808 584 458 342 1003 261 139 2686 1345 858

Test set 1100 864 700 409 339 1173 234 108 2664 1512 751

Total 2394 1672 1284 867 681 2176 495 247 5350 2857 1609

TABLE 2 Comparison with state-of-the-art object detection on DeepLesion. Sensitivity at various FPs per image and mAP on the test set of the official data split of
DeepLesion. IoU criteria and 3 slices input (one key slice and two neighbor slices) are used.

Sensitivity IoU (%) Mean of mAP

0.125 0.25 0.5 1 2 3 4 8 [0.125–8] (%)

Faster R-CNN 25.65 36.25 48.60 60.57 71.19 74.53 76.51 84.77 59.76 20.8

Cascade R-CNN 25.29 36.55 48.93 61.24 72.15 74.66 76.72 84.81 60.04 21.1

YOLO-v3 24.52 35.70 46.19 59.60 69.65 72.37 75.21 82.18 58.17 19.6

RetinaNet 24.89 36.31 47.26 59.90 70.68 72.57 75.34 83.15 58.76 20.1

3DCE, 3 slices 32.55 44.03 56.49 67.85 76.89 80.56 82.76 87.03 66.02 25.6

FPN+3DCE, 3 slices 33.82 46.84 58.85 69.44 78.90 81.13 83.82 87.26 67.51 28.2

MVP-Net, 3 slices 44.20 57.46 69.39 77.91 84.05 88.13 88.75 89.86 74.97 34.6

Ours, 3 slices 49.25 62.90 73.19 81.12 86.91 88.76 91.37 92.21 78.21 36.3

1 https://nihcc.app.box.com/v/DeepLesion.
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therefore often used in medical detection tasks. Specifically, the
detection of medical images requires an extremely high recall rate
and therefore tolerates a certain number of false positives on a single
image. Therefore, for most medical detection tasks, sensitivity at
different false positives (FPs) on each image is a common
evaluation metric. Furthermore, in order to show the superior
performances of our proposed model more comprehensively, we
show the sensitivity results at 0.125, 0.25, 0.5, 1, 2, 3, 4 and 8 FPs
per image on the DeepLesion dataset in Table 2. However, although
the sensitivity will increase with higher FPs, setting too high FPs will
result in too many false positive boxes in the image, which thus greatly
interfere the diagnosis and is inapplicable in the clinical practices.
Therefore, most of the existing works use the sensitivity at 2 and 4 FPs
as evaluationmetrics, e.g., (Tang et al., 2019), (Yan et al., 2018), and (Li
et al., 2019). Therefore, in this work, to keep fair comparison, we
follow this setup and report the sensitivity at 2 and 4 FPs in Tables
3–Tables 5. In addition, we use mAP, which is commonly used on
natural images, as an evaluation metric. The mAP is calculated by
computing the average of APs with an IoU threshold of 0.5–0.95.
Meanwhile, the p-value is used to measure the significance of
improvements.

4.4 Implementation details

Our experiments are implemented using the PyTorch framework
and run on an NVIDIA GeForce RTX 2080Ti GPU. We use FPN with
ResNet-50 for all experiments. The ResNet-50 backbone is initialized
with an ImageNet pre-trained model, and all other layers are
randomly initialized. Each mini-batch had 2 samples, where each
sample consisted of three 3-channel images for 3D fusion. Anchor
scales in RPN are set to (16, 32, 64, 128, 256) and anchor aspect ratios
are set to (0.5, 1, 2). Differently from the upsampling in the original
FPN, we use bilinear interpolation instead of nearest-neighbor
interpolation. We used SGD to train PAC-Net and set the base
learning rate to 0.004, then reduced it by a factor of 10 after
4 epochs. We train the network for 15 epochs with a batchsize of
2 to ensure that the network converges completely. Then the model
with the best results on the validation set is selected for testing.

5 Results

In this section, we conduct extensive experiments to investigate
the effectiveness of the proposed method in medical image detection
tasks. We first compare our proposed PAC-Net with several state-of-
the-art baseline methods on the DeepLesion dataset. After that, we
further validate the effectiveness of important components of our
model, including PAC, VDIoU loss, and SPP block. Extensive
experimental results demonstrate the effectiveness of our proposed
method and verify that each part of our proposed approach is efficient
and significant.

5.1 Main results

The results on the entire DeepLesion dataset are shown in Table.2,
while the results on the eight subclasses are shown in Table.3. Also, as
mentioned earlier, to further validate the performance of our methodTA
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under different detection difficulties, the results on three subclasses
according to the difficulty are shown in Table.4. To investigate the
effectiveness of our proposed PAC-Net, we compared the performance
of PAC-Net with the baseline of four SOTAmethods for natural image
detection (Faster R-CNN, Cascade R-CNN, Yolo-v3, and RetinaNet)
and two SOTA methods on DeepLesion (3DCE and MVP-Net). In
addition, since the original implementation of 3DCE is based on
R-FCN, we have re-implemented 3DCE as a baseline using the FPN
backbone for a fair comparison.

In general, as shown in Table.2, we find that our proposed PAC-
Net outperforms all baselines in general, which proves that our
proposed PAC-Net is more accurate than the SOTA methods for
3D medical image detection. Specifically, we first find that the results
of 3DCE improve a lot after using FPN instead of R-FCN as the
backbone. This well demonstrates that FPN enables the network to
learn features of different depths at different scales throughmulti-scale
feature fusion to improve the final detection results. Then, we find that
the results of the 3-slices input-based methods are much better than
those of the single-slice input, because the 3-slices input can make full
use of the spatial information of 3D medical images to learn richer
features from them to help the network improve the feature
representation. Finally, as shown in Table 2, the proposed PAC-
Net achieves better detection performance than the SOTA methods
3DCE and MVP-Net in all evaluation metrics. We also calculate the
p-value of the proposed model PAC-Net w.r.t. the state-of-the-art
baselines, i.e., MVP-Net and 3DCE. Specifically, the p-value of our
work w.r.t. the SOTA 3DCE model is 0.0422, which proves that our

work achieves very significant improvements compared to 3DCE.
Furthermore, the p-value of our work w.r.t. MVP is 0.2855; although it
is higher than 0.05, it is also a remarkable improvement because it is
not easy to always achieve statistically significant improvements in the
deep learning related research areas, e.g., the p-value of MVP-Net
compared to 3DCE is 0.1745 (also large than 0.05), and our work is
further improving on the basis of the SOTA MVP-Net, which is more
challenging. The reasons for our improvement compared to the
previous method are the following: i) PAC-Net utilizes the position
attention guided connection module to compensate for the object
position offset problem caused by the upsampling operation on the
FPN, ii) PAC-Net additionally utilizes the SPP block to effectively use
multi-scale feature information to enhance the feature representation
ability of the overall network, and iii) the improved VDIoU loss can
also help the network training to be more accurate.

The DeepLesion dataset can be roughly divided into 8 different
types of lesions. In Table.3, we show in detail the detection results of
eight types of lesions. It can be seen that in these eight types of
lesions, our detection accuracy has improved to varying degrees, and
the accuracy of the most difficult to detect bones is the most obvious.
This shows the effectiveness of our method, which proves that our
network has fully learned the feature differences between different
lesions and can cope with the difficult task of detecting different
lesions.

In order to demonstrate more fully that our proposed method is
able to achieve a degree of improvement even in the more difficult
types of detection, we have divided these eight subsets of lesions into
three subsets, the Easy set, the Medium set, and the Hard set,
according to the difficulty of detection. For medical reasons, such
as the low contrast between bone and surrounding tissues and the
small target and variable morphology of soft tissues, the three types of
lesions, BN, KD, and ST, are more difficult to detect overall, so we
classify them in the Hard set. On the other hand, the AB, LU, and LV
are easier to detect because of their greater contrast with surrounding
tissue and larger detection targets, so we have placed these three
subsets in the Easy set. The others are classified as the Medium set.

As before, we not only compared the results of the traditional
methods on these three sets but also the SOTAmethods’ results on the
DeepLesion dataset. The results are shown in Table.4. It can be clearly
seen that our results are the best no matter which method is compared.
Furthermore, on the Hard set, which is the hardest to detect, we have
the biggest improvement. This is because we can use the characteristics
of different receptive fields by using multi-scale features, detecting
larger lesions and learning from small ones. Moreover, 3D contextual
information and an attention mechanism that retains position
information can help the bboxes return more accurately. This
effectively proves the effectiveness of our method.

5.2 Ablation study

To investigate the effect of the two proposed advanced modules,
the position attention guided connection (PAC) module and the
Vertex Distance IoU loss (VDIoU), and the additional added
multi-scale module SPP layer in an ablation study, Table five shows
the detection accuracy of the model on the DeepLesion dataset. Firstly,
it can be seen that the detection results are improved after adding the
multi-scale module SPP layer, which indicates that the additional
multi-scale information fusion is still helpful for FPN.

TABLE 4 Sensitivity (%) at 2 and 4 false positives per image on DeepLesion’s three
subsets of detection difficulty.

Easy (FPs) Medium
(FPs)

Hard (FPs)

2 4 2 4 2 4

Faster R-CNN 71.90 77.13 71.36 76.17 60.12 64.97

Cascade R-CNN 72.06 77.53 71.94 76.66 60.68 65.43

YOLO-v3 70.10 75.78 69.27 74.84 59.27 63.99

RetinaNet 70.92 76.37 70.32 75.39 59.84 64.38

3DCE, 3 slices 76.39 82.90 77.65 82.64 64.06 69.83

FPN+3DCE, 3 slices 78.65 83.87 79.21 84.56 65.07 71.39

MVP-Net, 3 slices 84.48 88.20 84.89 87.02 69.89 73.36

Ours, 3 slices 87.69 91.67 86.21 90.68 71.81 75.33

TABLE 5 Ablation study of our approach on the DeepLesion dataset.

FPN SPP layer PAC VDIoU loss FPs@2.0 FPs@4.0

✓ 78.90 83.82

✓ ✓ 80.57 85.16

✓ ✓ ✓ 85.24 89.36

✓ ✓ ✓ 82.68 86.53

✓ ✓ ✓ ✓ 86.91 91.37
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5.2.1 Effectiveness of PAC
We then compared the effectiveness of the PACmodule on detection.

The results show that FPN with PAC always outperforms vanilla FPN in
the metrics with the help of PAC. Thus, this demonstrates that PAC can
enhance features in the exact location region of the object and suppress
features in other regions on the top-down feature map by means of a
position weight matrix calculated from the original features with accurate
position information to achieve position retraction of the offset object.
Also, to verify the validity of our proposed attention, we not only did the
above ablation experiment, but we also visualized the heat map of
attention. As shown in Figure 4, the top is the visualization of the
heat map without attention, while the bottom is the visualization of
the heat map with attention added. The comparison between the two is
still obvious, as we can clearly see that with the addition of attention, the
model is able to focus more on the focal area and not on a scattered area.

5.2.2 Effectiveness of VDIoU loss
Then, we compare the performance of FPN with VDIoU in Table 5.

The results show that using VDIoU loss can improve the prediction
accuracy of the model. This greatly supports our argument that using
VDIoU loss to replace the IoU-based loss in the general detectionmodel can
solve the existing problem of IoU series loss and thus improve the accuracy.

5.2.3 Effectiveness of using both PAC and VDIoU loss
Finally, we find that by using both PAC and VDIoU loss in

Table 5, the results are better than using only one of them. This is
because PAC and VDIoU loss are designed to solve different problems
in FPN-based detection networks and can complement each other to
improve the detection accuracy of the depth model. Consequently, all
the above observations demonstrate that PAC-Net is an effective and
efficient FPN-based backbone model, and both PAC and VDIoU loss
are effective and essential for PAC-Net to achieve a superior
performance.

5.3 Visualization results

To compare the final detection results more visually, Figure 5
visualizes the final detection results of the different methods and our
method, where GT is on the left and the last three columns are Faster
R-CNN, MVP-Net, and our method. The red boxes on the graph
represent Ground Truth (GT), the blue boxes represent True Positive
(TP), and the purple boxes represent False Positive (FP). It is intuitive
from the first line that all the other methods give redundant detection
boxes, whereas ours does not. Furthermore, in the second three rows,
although all the detections have redundant boxes, the positions of the
boxes detected by our method are all around the GT, whereas the other
methods give detection boxes in places that are not relevant. This indicates
that our model can focus more accurately on the location of the lesion, so
the detection boxes are more accurately located.

From the results, we can see that our results are the best compared
with traditional target detection networks or the SOTA detection
networks on the DeepLesion dataset. This is because we have used 3D
information input, multi-scale feature extraction, and a joint attention
mechanism that preserves location information to extract richer
features from 3D CT slices. The above results prove the
effectiveness of our proposed method.

5.4 Effectiveness of loss function

As shown in Table 6, we compare the results of our proposed VDIoU
loss with commonly used loss functions such as smooth-L1 loss and
several common IoU losses on mAP. The ordinate is the mAP, and the
abscissa is the number of iterations. It can be seen that themethod that we
proposed can quickly improve themap result in the early stage of training.
At this time, the map obtained by our method is higher than other
methods, which proves that our loss function can speed up the initial

FIGURE 4
Results of the attention heat map. Above is the result without PAC, and below is the result with PAC.
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training speed of themodel. After reaching convergence, our loss function
can also achieve the best results. This proves that the proposed loss
function can speed up the model’s initial training speed and improve the
accuracy after the final convergence.

6 Discussion

In this section, we first summarize the main differences between
the proposed FPN-based backbone model, PAC-Net, and previous
studies on medical image detection. We also point out the limitations
of our proposed model as well as potential solutions to deal with these
limitations in the feature.

6.1 Comparison with previous work

Our proposed PAC-Net uses a position-guided attention module
to solve the position offset problem caused by upsampling in FPN.

Unlike the attentionmodule of previous methods, we use feature maps
with accurate position information to generate position weight
matrices to guide high-level features with rich semantic
information so that the fused features have both rich semantic
information and accurate position information to enhance the
comprehensive representation of features. Compared with the IoU-
based loss functions commonly used in medical image detection, our
proposed VDIoU loss also has some improvements. In some cases, the
common IoU-based losses can degrade or even fail. Therefore, we
differ from the common IoU-based losses by using the sum of the
vertex distances of GT and RP divided by the diagonal distance of the
minimum enclosing subsection as an additional penalty term of the
IoU loss to avoid the above problem. At the same time, this
computation process does not add too much computation and thus
affects the training speed. Therefore, our proposed VDIoU loss can
help the network converge more accurately and quickly. In addition,
PAC-NeT also adds an additional SPP block to expand the feature
map receptive field and thus enhance the overall feature
characterization capability of the network.

FIGURE 5
Visualization results under differentmodels. The red box represents the ground truth, the blue box represents true positive, and the purple box represents
false positive.

TABLE 6 mAP results after different iterations of training with different loss function.

Iteration

5000 10000 15000 20000 25000 30000 35000

Smooth-L1 12.7 18.8 22.5 26.4 29.3 32.6 34.1

IoU 9.8 15.7 21.1 25.0 31.4 32.8 35.3

DIoU 13.1 18.3 22.7 27.1 31.2 34.6 36.2

Ours 9.3 19.7 24.8 29.2 33.6 35.4 36.3
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6.2 Limitations and future work

Although our proposed PAC-Net achieves good performance in
our task, its performance can be further improved in the future by
carefully addressing the following limitations or challenges.

First, in our current implementation, the fusion of FPN features at
different scales results in information loss. FPN loses semantic
information during the fusion of deep and shallow features as the
number of channels is changed by 1 × 1 convolution to make them
fuse with each other, thus weakening the expressiveness of multi-scale
features. Therefore, it is a future research direction to find a more
efficient feature fusion method to minimize the loss of semantic
information during the fusion process of features at different
scales. Second, insufficient data for medical image detection has
been a challenge, where the annotation is time-consuming and
requires the collaboration of researchers and radiologists. We plan
to expand the amount of data and thus the capability of the model by
some data augmentation methods in the future.

7 Conclusion

In this paper, we first identified the existing shortcomings of
FPN-based medical lesion detection models and then proposed a
novel FPN-based backbone model, PAC-Net, to remedy these
problems and achieve better medical lesion detection. We
conducted extensive experiments and the results demonstrate
that i) the proposed PAC-Net achieves a better detection
accuracy than the state-of-the-art baseline. ii) The advanced
modules, PAC and VDIoU, are both effective and important for
the PAC-Net to achieve a superior lesion detection performance. In
the future, we intend to apply PAC-Net to more practical medical
imaging lesion detection tasks to validate its applicability and
scalability.
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