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Proteins, as gifts from nature, provide structure, sequence, and function templates
for designing biomaterials. As first reported here, one group of proteins called
reflectins and derived peptides were found to present distinct intracellular
distribution preferences. Taking their conserved motifs and flexible linkers as
Lego bricks, a series of reflectin-derivates were designed and expressed in
cells. The selective intracellular localization property leaned on an RMs
(canonical conserved reflectin motifs)-replication-determined manner,
suggesting that these linkers and motifs were constructional fragments and
ready-to-use building blocks for synthetic design and construction. A precise
spatiotemporal application demo was constructed in the work by integrating
RLNto2 (as one representative of a synthetic peptide derived from RfA1) into the
Tet-on system to effectively transport cargo peptides into nuclei at selective time
points. Further, the intracellular localization of RfA1 derivatives was
spatiotemporally controllable with a CRY2/CIB1 system. At last, the functional
homogeneities of either motifs or linkers were verified, which made them
standardized building blocks for synthetic biology. In summary, the work
provides a modularized, orthotropic, and well-characterized synthetic-peptide
warehouse for precisely regulating the nucleocytoplasmic localization of proteins.
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1 Introduction

Peptides and their derivatives are highly versatile structural and functional building
blocks due to the richness of the amino acid arrangements and combinations available
(Zelzer and Ulijn, 2010; Groß et al., 2016; Acar et al., 2017). On one hand, artificially
designed peptides can generate various architectures [including fibers, tapes, tubes, sheets,
and spheres (Acar et al., 2017)] in vitro, demonstrating the considerable potential for carrier-
mediated drug delivery, tissue engineering, antimicrobial agents, imaging tools, energy
storage, biomineralization, and membrane protein stabilization (Mandal et al., 2014). On the
other hand, peptides and relative derivatives have been developed as effective navigation
systems to selectively target organelles, e.g., endoplasmic reticulum (Field et al., 2015; Wang
et al., 2019), mitochondria (Szeto et al., 2011; Jean et al., 2016), or nucleus (Beyer et al., 2015;
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Yumerefendi et al., 2015). Since the exact localization of proteins is
required to fulfill their biological functions (Itzhak et al., 2016),
transportation of functional proteins or peptides to orientated
intracellular localization is a prerequisite to intensify their
functions in application areas (Niopek et al., 2014; Guntas et al.,
2015) or to study their mechanism in basic research fields (Drake
et al., 2010; Slootweg et al., 2010). Bidirectional transportation of
proteins in or out of nuclear membranes is such a dogmatic example.
Inwards, proteins are translated into the cytoplasm, but many need
to be transported into the nucleus to perform their functions
(Christie et al., 2016). Outwards, RNA-protein complexes need to
be dynamically exported from the nucleus into the cytoplasm
(Grünwald et al., 2011; Niopek et al., 2016).

At this point, molecular tools to quantitatively regulate the entry
and exit of target proteins into and out of the nucleus are of great
value, which brings in various novel applications in synthetic and
cell biology fields (Beyer et al., 2015; Niopek et al., 2016; Vogel et al.,
2017).

Genetical construction of nuclear localization signal (NLS)
sequences into cargo proteins is the most routine approach,
which has successfully transported functional proteins (Beyer
et al., 2015; Yumerefendi et al., 2015), genome-editing elements
(Shi et al., 2019; Zhang et al., 2019), and transcriptional circuits
(Khalil et al., 2012; Fonseca et al., 2019) into the nucleus. Similar but
in the opposite direction, the utilization of NES (nuclear export
signal) allows the translocation of molecular components out of the
nucleus (Beyer et al., 2015; Lerner et al., 2018). Reorientated
trafficking can further present light-responsive properties by
embedding light-activated domains into NLS or NES (Engelke
et al., 2014; Lerner et al., 2018; Allen et al., 2019). Besides,
various NLS sequences have been used as delivery agents to
enhance the cellular uptaking and nuclear targeting of plasmid
DNA (Kim et al., 2012; Aied et al., 2013; Nematollahi et al.,
2018), or other functional nano cargoes (Tammam et al., 2015;
Yang et al., 2015; Yang et al., 2016). In this regard, the identification
and engineering of intracellular guiding sequences from natural
proteins will bring in prosperous advanced applications.

Reflectin proteins, exclusively expressed by Cephalopods (squid,
octopus, and cuttlefish), are one group of unique functional proteins
dominating the formation of biophotonic systems and manipulating
structural coloration. Reflectins are highly enriched in periodically
stacked lamellae called Bragg reflectors in iridocytes, which present
iridescence by multilayer interference (Tao et al., 2010; DeMartini
et al., 2013). While reflectins in leucophores are located in granular
vesicles, responsible for producing bright white by unselectively
reflecting all incident light (Williams et al., 2019). Intricate reflectin-
based biophotonic systems have already inspired the development of
various next-generation tunable photonic, though the underlying
biological mechanism remains elusive (Qin et al., 2013; Phan et al.,
2015; Dennis et al., 2017) and electronic platforms and devices
(Ordinario et al., 2014; Yu et al., 2014; Phan et al., 2016). More
significantly, groundbreaking attempts have been made to use
reflectins as molecular tools to modify mammalian cell functions.
Recently, Chatterjee et al. (2020) and Ogawa et al. (2020) expressed
reflectins in the human embryonic kidney (HEK) 293 cells. After the
formation of phase-separated aggregates, engineered human cells
obtained an outstanding new feature, tunable optical properties.

This is a milestone in discovering novel biosynthetic tools and
endows mammalian cells with new features (Tang et al., 2020).

Based on similar considerations, HEK-293T cells were
employed as a platform to explore the biological mechanism of
reflectins and their functional potentials. Other than Atrouli and
Junko’s brilliant findings (Chatterjee et al., 2020; Ogawa et al.,
2020), our previous work was devoted to understanding the
extensive interaction of reflectins with other cellular
components (e.g., cytoskeleton) and explaining the formation of
indelicate biophotonic structures fabricated by reflectins (Song
et al., 2022). Reflectin A1, A2, B1, and C were found to present
distinguished cyto-/nucleoplasmic localization preferences during
this process. As natural block copolymers composed of positively
charged polyelectrolyte linker regions (reflectin linkers, RLs)
interspersed with highly conserved polyampholyte segments
(reflectin motifs, RMs) (Levenson et al., 2019; Song et al.,
2020), several RLs and RMs are speculated to dominate the
subcellular distribution of different reflectins.

Hence, taking RLs and RMs as well-prepared and ready-to-use
building blocks, they verify the hypothesis and designed a novel
guiding system based on programmable RfA1 sequences, which
could precisely transport peptides cargos to selective intracellular
regions (nucleoplasm and cytoplasm).

As the first step, native reflectins RfA1, RfA2, RfB1, and RfC
were introduced into HEK-293T cells and found to be
preferentially enriched in nuclei or cytoplasm. Considering their
sequence differences, the repetition of conserved motifs was likely
to be in charge of selective intracellular localization. RfA1 and its
derivatives were designed and engineered into cells to confirm it.
RLNto1, RLNto2, and RLNto3 were found to transport GFP (as a cargo
molecule) into the nucleus, while RLNto5 caused a prominent
cytoplasmic enrichment of GFP outside the nucleus. This strict
intracellular localization of RfA1 derivatives confirmed the motif-
repetition-dependent hypothesis and suggested them as editable
guiding tags to transport molecular cargoes to selective regions.
Subsequently, the precise nuclear enrichment was then temporally
regulated with the administration of doxycycline by integrating the
Tet-On system (T Das et al., 2016; Zhou et al., 2006) with RLNto2.
In this case, Tet-On components worked as the launch button,
while RfA1-derived sequences were guided missiles that carried
molecular cargos to prefixed targets. At last, genes of two
recombinationally designed peptides RMN + RM1*5 and RM1*3
+ RL2*2 were synthesized to verify the functional homogeneity of
RMs and RLs during subcellular localization. Subtle differences
among motifs or linkers were eliminated for these two peptides.
The distribution of these two recombinational peptides was exactly
similar to comparable RfA1 derivatives in this assay, indicating
that these peptide building blocks could be unified and
standardized.

Briefly, a series of building blocks were identified from reflectin
amino acid sequences by this work. Reorganization of these building
blocks led to an accurate cytoplasmic or nucleoplasmic enrichment
of ligated molecular cargos (e.g., GFP), which was quantified by
repetitions between RMs and RLs. Combined with other synthetic
biology-based tools, this programmable RfA1-derived strategy can
be further upgraded as a spatiotemporal controllable toolkit to
realize precise intracellular delivery.
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2 Results

2.1 Subcellular localization of reflectin
proteins and deconstruction of
RfA1 sequence

Two types of patterned ~25-amino-acid methionine-rich motifs
are reported in reflectin sequence: N-terminal motif (RMN)
[MEPMSRM(T/S)- MDF(H/Q)GR(Y/L)(I/M)DS(M/Q)(G/D)R(I/
M)VDP (R/G)] and a series of conserved reflectin motifs (RMs)
[M/FD(X)5MD(X)5MDX3/4] (Crookes et al., 2004) (see Figure 1A
and Supplementary Figure S1). The N-terminal region is more
evolutionarily conserved across species (Doryteuthis opalescens,
Doryteuthis pealeii, Loligo forbesii, Sepia officinalis, Euprymna
scolopes, and Octopus bimaculoides) and reflectin isoforms (23 in
27 kinds of the most known reflectins) than canonical RMN (Izumi
et al., 2010). While almost all “X” sites are populated largely by one
specific residue with minor alternative residues usually represented
in only one or a few reflectin motifs in the entire known library.
Specifically, RfC is the shortest reflectin containing a GMXX motif
and RM*. The GMXX motif is a unique region of increased overall
hydrophobicity composed of a four amino acid repeat, where ‘X’
represents less conserved locations within the repeat. Asterisk-
marked RM* of RfC contains substantial deviations in the
sequence not observed in any other reflectin motifs (Levenson

et al., 2017). Supplementary Figure S1 shows reflectins and their
RMN and RMs.

At present, studies are mostly focused on their self-assembly
properties in vitro (DeMartini et al., 2015; Levenson et al., 2016;
Levenson et al., 2019). The dynamic reflectin assembly properties
have already inspired the development of various next-generation
tunable photonic (Qin et al., 2013; Phan et al., 2015; Dennis et al.,
2017) and electronic platforms and devices (Ordinario et al., 2014;
Yu et al., 2014; Phan et al., 2016).

Four reflectin proteins were constructed into pEGFP-C1 vectors
and transfected into HEK 293T cells to further investigate their
intracellular characteristics. Compared with cells transfected by no-
load pEGFP-C1, all these four kinds of reflectins tend to form protein
condensates or spherical droplets in cells (see Supplementary Figure
S2 for large area immunofluorescence images and Supplementary
Figure S3 for cell viability tested by CCK-8 kits). The formation of
proteinaceous condensates is consistent with speculation that
reflectins are the potential intrinsically disordered protein to
execute phase separation (Levenson et al., 2019).

More significantly, RfA1 condensates were exclusively distributed
in the cytoplasm, while RfA2, RfB1, and RfC droplets were highly
enriched in nuclei (see Figures 1B, E). Since amino acid composition
lays the foundation of a protein structure and function, the similarities
and differences among reflectins are also determined by their primary
structure. The reason why they are sorted into one protein family is

FIGURE 1
Selective Intracellular Localization of Reflectins and Free-Distribution of Single Motifs. (A) Schematics of reflectin proteins sequences. Conserved
Reflectin Motifs (RMN and repeated RM1-5) are designated by boxes, while reflectin linkers (RLs) are lines. (B,C) Fluorescence microscopy images of
transfected HEK-293T cells stained with DAPI and DiD. While reflectins and variants are visualized by tandem EGFP, Scalebar = 10 μm. (D) Cell number
statistics and quantification of transfection efficiencies of four reflectins andGFP. (E)Distribution ratio statistics of fluorescent intensity in transfected
cells and their nuclei. (F)Cell number statistics and quantification of transfection efficiencies of five single RMs. Data are presented asmean values ±SD for
n = 3 independent experiments.
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reflectin motifs (RMs) that they share. Meanwhile, the most
significant difference among reflectins is also the number of RMs
repetitions. As suggested by Morse and coworkers, these canonical
reflectin motifs (RMs) could be structural or functional elements of
reflectins (Levenson et al., 2016). Seeing from this point, cytoplasm-
retained RfA1 contains the largest numbers of reflectin motifs, while
nucleoplasm-enriched reflectins contain less. Hence, the work cloned
the six RMs of RfA1 (RMN, and RM1,2,3,4,5, primers in Supplementary
Table S1) and introduced them into cells to explore the role of
conserved RMs during the protein condensation and selective
localization. Results showed that all individual RMs distributed
freely in both cytoplasm and nucleoplasm, with no difference
compared to GFP alone expressed in cells (see Figure 1C).
Therefore, the cytoplasmic enrichment of reflectins other than
conserved amino acid composition should be driven by its
segmented sequence structure. Transfection efficiencies were
calculated and shown in Figures 1D/F.

2.2 Reconstruction of block amino acid
sequence

Five pairs of primers were designed to clone the DNA sequences
from RfA1 genes (see Supplementary Table S2 for primers) and
gradually extend peptide sequences and restore their segmented
structure. PCR products responsible for coding RLNto1, RLNto2,
RLNto3, RLNto4, and RLNto5 are subsequently ligated to vector
pEGFP-C1. The common characteristic for cells expressed with
RLNto1, RLNto2, and RLNto3 is their enrichment in nuclei (see Figures

2A, E). It is different from the cytoplasmic-localization-preference of
RfA1 or free-distribution of single RMs, but quite similar to simpler
reflectins (RfA2, RfB1, and RfC). Besides, RLNto2 and RLNto3 are
enriched in cytoplasm and phased out from the crowded cellular
milieu (see Figures 2A, E). As sharp contrasts, longer RLNto4 and
RLNto5 start to be excluded from nuclei and form condensates in the
cytoplasm (see Figures 2A, E), which extremely resembles RfA1(see
Figures 1B, E).

Guan et al. (2017) reported that reflectin motifs may be traced to
a 24-bp transposon-like DNA fragment from symbiotic
bioluminescent bacterium Vibrio fischeri in 2017. Afterward,
million years of self-replication and translocation of that
transposon leads to the formation of reflectin motifs and the
prosperous reflectin family. Here, the repetition numbers of RMs
(as basic units) accurately determine the different properties (e.g.,
intracellular localization) among RfA1, A2, B1, and C. Being a
subordinate element and evolutionary origin, the 24-bp
transposon-like DNA fragment is expected to be the root source
of reflectins diversification, which makes our finding a strong clue to
support Guan’s evolution hypothesis.

On the other hand, if GFP is taken as a molecular cargo, reflectin
derivatives can be regarded as intelligent vehicles to transport
cargoes to pre-selected destinations (cytoplasm or nucleoplasm).
Based on this consideration, we tested the application potentials of
RfA1 variants as synthetic biology tools. As the shortest peptide
strictly targets nuclei, RLNto2 was used in the following studies and
regarded as a guiding tag, with transfection conditions optimized by
dose-dependent and time-scale preliminary assays (see
Supplementary Figure S5).

FIGURE 2
Recurrence of phase separation and cyto-/nucleo-localization preferences of RfA1-derived peptides in fixed HEK-293T cells. (A) Nuclei and
membrane are stained with DAPI (blue) and DiD (red), and RfA1-derived peptides are indicated by tandem EGFP (green). Scalebars = 10 μm. (B)
Schematics of RfA1 derivatives. (C) Illustration of subcellular localization of RLNto1, RLNto2, RLNto3, RLNto4, and RLNto5. (D) Cell number statistics and
quantification of transfection efficiencies of RLNtox (x = 1, 2, 3, 4, and 5). (E)Distribution ratio statistics of fluorescent intensity in transfected cells and
their nuclei (see Supplementary Figure S4 for large-area immunofluorescence images and Supplementary Figure S3 for Cell viability tested by CCK-8 kits).
Data are presented as mean values ±SD for n = 3 independent experiments.
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2.3 Doxycycline-induced Tet-On system
integrated with RLNto2

RLNto2 is constructed into Tet-On plasmids that can be easily
switched on or off by doxycycline (dox) to exhibit its application
potential as a synthetic biology component (see Figure 3A). When cell
confluence reaches ~30%, transfection is conducted according to
Lipofectamine 3,000 protocol. Transfection efficiency is checked by
fluorescent images after 24 h. Cells are then treated with
concentration-gradient dox and cultivated for another 24 h. Afterward,
the nuclei-targeted expression of RLNto2 is observed (see Figures 3B, C and
Supplementary Figure S6) by confocalmicroscope. The expression level of
RLNto2 is enhanced synchronously with the dox concentration gradient
(see Figure 3C). This implies the successful activation of this Tet-On
system and its controllability based on the dox dose-dependent behavior.

Foreseeable, if reporter gene mCherry was replaced by other
functional or therapeutical peptides, the Tet-On-Rfs system can
precisely transport the molecular cargos into nuclei to amplify their
biological effects. Besides, if certain components prefer to fulfill their
functions in the cytoplasm, RLNto2 can be replaced by RLNto4 or
RLNto5. At this point, the programmable RfA1 sequences provide an
editable and selectable engineered toolkit to precisely transport
proteins or peptide cargoes to the preselected subcellular area.

2.4 Design of a blue-light-controlled
subcellular enrichment system

Based on Figure 2, RfA1-derived peptides occupying more than
3 RM motifs tend to stay in the cytoplasm. Otherwise, shorter
peptides are inclined to be enriched in nucleoplasm. Perspectively,

peptides RLNto2 can travel across nuclear membranes, while its
dimer or analog may be resisted. Hence, CoH2/DocS domains
were introduced for their stable and high-affinity interaction to
verify this speculation (Li et al., 2020; Yu et al., 2020).

Recombined proteins mCherry-RLNto2-CoH2 and GFP-RLNto2 can
pass through nuclear membranes and get into nuclei (see Figure 4A).
Since these twoproteins share the same transmembranemechanism, they
induce similar molecular responses in nuclei and co-localized to each
other. Similarly, co-expression of mCherry-RLNto2 and GFP-RLNto2-
DocS leads to the same phenomenon (See Figure 4B). However,
when CoH2 and DocS domains are fused to mCherry-RLNto2 and
GFP-RLNto2, respectively, most of the fluorescence signal is retained in
the cytoplasm (see Figure 4C). The results suggest that the repetition-
dependent nucleocytoplasmic localization preference of RfA1-derived
peptides can be adjusted by molecular splicing. Inspired by this, the
CRY2–CIB1 system is then employed to generate photoactivatable
subcellular localization. mCherry-RLNto2-CIB1 and GFP-RLNto2-
CRY2 without blue-light stimulus tend to be enriched in nuclei and
co-localize with each other (Figure 4D). Contrastly, the green fluorescent
signal of GFP-RLNto2-CRY2 in a fraction of cells was prevented from
entering the nuclei upon blue-light irradiation (Figure 4E). In this case,
blue-light induced interaction between CIB1 and CRY2 elevates the RMs
repetition level because RLNto2 turned into dimer analog RLNto2-Pairs-
RLNto2 and leads to their retention in cytoplasm (Figure 4F) .

2.5 Verification of standardization of
reflectin-derived building blocks

Building blocks used for synthetic biology should better be
standardized and modalized. Although the RMs in reflectins are

FIGURE 3
Dose-dependent nuclei-targeted Tet-On-RLNto2 system mediated by doxycycline. (A) schematic diagram of the Tet-On-Rfs system. (B) Total
Intensity, which represents the gross expression of mcherry_RLNto2. Data are presented as mean values ±SD for n = 3 independent experiments. (C)
Activation of the Tet-On-Rfs system. Transfected cells are indicated by GFP (green), and the localization of RLNto2 is labeled by tandem mCherry (Red);
Scalebars = 100 μm.
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highly canonical and conserved, there are still subtle composition
differences among them (Crookes et al., 2004; Izumi et al., 2010;
Levenson et al., 2017). We replaced all RM1~5 in RfA1 with a unified
RM1 to eliminate this subtle composition discrepancy (see
Supplementary Table S3 for sequence information and Figure 5B
for sketches of artificial peptides). Being similar to the original RfA1,
RMN + RM1*5 is also observed to be highly enriched in cytoplasm
(Figures 5A, E). This unification process (RM1~5 into RM1) will not
change proteins’ properties at least for intracellular localization
preferences. Moreover, one recombinational peptide RM1*3 +
RL2*2 is designed (see Supplementary Table S3 for sequence
information; Figure 5D for the sketches of artificial peptides). It
is transported and enriched in nuclei Figure 5C, which is similar to

RfA1-derived analog RLNto2 (Supplementary Figure S6C, E). Hence,
building blocks or functional components derived from reflectin
amino acid sequences can be standardized without losing their
intracellular localization preferences, which favors their
application in synthetic biology.

3 Discussion

As essential biomacromolecules, the exact localization of
proteins is required for organelles to work correctly (Itzhak et al.,
2016). Proteins are translated into cytoplasm, but many need to be
transported into nuclei to perform their functions (Christie et al.,

FIGURE 4
Restoration of repetition-level dependent cytoplasmic enrichment. (A) Confocal observation of HEK-29ET cells transfected with pCDNA3.1-
mCherry-RLNto2-CoH2 and pCDNA3.1-GFP-RLNto2. (B) Confocal observation of HEK-29ET cells transfected with pCDNA3.1-mCherry-RLNto2 and
pCDNA3.1-GFP-RLNto2-DocS. (C) Confocal observation of HEK-29ET cells transfected with pCDNA3.1-mCherry-RLNto2-CoH2 and pCDNA3.1-GFP-
RLNto2-DocS. (D,E) Confocal observation of HEK-29ET cells transfected with CDNA3.1-mCherry-RLNto2-CIB1 and pCDNA3.1-GFP-RLNto2-CRY2,
treated with or without blue light, respectively. (F) Illustration for the blue-light induced interaction between recombinant mCherry-RLNto2-CIB1 and
GFP-RLNto2-CRY2. Scalebars = 10 μm.

FIGURE 5
Homogeneity/standardization of reflectin-derived building blocks. (A,C) Fluorescence images of fixed HEK-293T transfected with pEGFP-C1-(RMN

+ RM1*5) and pEGFP-C1-(RM1*3 + RL2*2), respectively. The nucleus and cytomembrane are stained with DAPI and DiD. (B,D) Schematics of RMN +
RM1*5 and RM1*3 + RL2*2 sequences. (E) Distribution ratio statistics of fluorescent intensity in transfected cells and their nuclei. Data are presented as
mean values ±SD for n = 3 independent experiments.
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2016). On the other hand, the dynamic export of RNA-protein
complex out from nuclei is also a central but not fully understood
process for molecular biology (Grünwald et al., 2011; Niopek et al.,
2016). Hence, molecular tools, which qualitatively and quantitatively
regulate the entry and exit of target proteins into and out of nuclei,
bring in various novel applications in synthetic and cell biology
(Beyer et al., 2015; Niopek et al., 2016; Vogel et al., 2017).

The work found the different intracellular localization
preferences among reflectin proteins. Based on this property, a
series of synthetic peptides were designed to precisely target
preselected destinations. Moreover, the selectable enrichment of
reflectin-derived peptides and conjugated molecular cargoes can
further be temporal-/spatial-tunable upon chemical or light stimuli
by integrating with other well-established cell biology tools,
demonstrating their potential as biosynthetic elements.

Being curious about their intracellular functions and properties,
genes of four native reflectins (RfA1, RfA2, RfB1, and RfC) were
introduced into HKE-293T cells. Interestingly, the localization
preferences of reflectins were distinguishable: RfA1 was
exclusively located in the cytoplasm, while RfA2, RfB1, and RfC
were highly enriched in the nucleoplasm. Being natural block
copolymers, reflectins are composed of positively charged
polyelectrolyte linker regions (reflectin linkers, RLs) interspersed
with highly conserved polyampholyte segments (reflectin motifs,
RMs). The most significant difference among reflectins is the
number and localizations of RMs.

Hence, reflectin sequences provide programmable building
blocks to guide cargo molecules and achieve selective subcellular
localization from a biosynthetic application perspective. RfA1 was
taken as the initial template by cutting RMs off one by one from the
RfA1 amino acid sequence via gene engineering. Longer
RfA1 derivatives with more RMs repetitions tended to stay in the
cytoplasm, while shorter RfA1 truncates started to enter nuclei.
Moreover, we integrated the RfA1-derived guiding peptides with the
Tet-On system. Tet-On elements worked as a trigger in this demo,
which allowed precise activation at the scheduled time point under
the regulation of doxycycline. While RfA1 derivatives RLNto2
worked as precision-guided systems, which carry the molecule
cargo (e.g., mcherry) into nuclei.

The repetition-dependent nucleocytoplasmic localization
preference of RfA1-derived peptides could be adjusted by
molecular splicing. Increased RMs repetition level prevented
dimer-analog RLNto2-CoH2/DocS-RLNto2 from entering nuclei
and made these combined proteins stay in the cytoplasm by
integrating nucleoplasmic-preferential RLNto2 with high-affinity
interaction pair CoH2/DocS. The subcellular localization
preference of RfA1-derived peptides was even controllable by
replacing the CoH2/DocS system with a blue-light regulated
CRY2/CIB1 system. These results strongly implied the
expansibility of the RfA1-derived molecular toolkit by integrating
them into other synthetic biology systems. However, the optimal
conditions to precisely regulate this blue-light-controlled
intracellular distribution system are not adequately acquired at
this stage, including plasmids ratio, light intensity, and treatment
duration. Since the blue-light receptor cryptochrome underwent
oligomerization when transducing blue-light signals after irradiation
(Ma et al., 2020), the blue-light induced retention of RLNto2-CRY2/

CIB1-RLNto2 in the cytoplasm might be more complex and the
underlying mechanism was not fully understood.

At last, the functional homogeneity of RMs and RLs was verified
by replacing RM2,3,4,5 in RfA1 with unified RM1 or
recombinationally designing an artificial peptide “RM1*3 +
RL2*2.” Guiding sequences derived from the RfA1 amino acid
sequence can be modified as unified and standardized building
blocks for cyto- or nucleo-targeting. The RfA1-derived strategy
and standardized building blocks can be further programmed
and developed as versatile and spatiotemporal controllable
toolkits by combining them with other responsive synthetic
biology components.

4 Methods

4.1 Construction of recombinant pEGFP-C1
vectors

The nucleotide sequences of D. (Loligo) pealeii reflectin A1
(RfA1) (Genbank: ACZ57764.1), D. (Loligo) pealeii reflectin A2
(RfA2) (Genbank: ACZ57765.1), D. (Loligo) pealeii reflectin B1
(RfB1) (Genbank: ACZ57766) and D. (Loligo) Opalescens
reflectin C (Genbank: AIN36559.1) were optimized for
human-cell expression. Then, they were synthesized and
sequencing-identified by Sangon Biotech® (Shanghai, China)
Primers (F-GAATTCTATGAATAGATATTTGAATAGACA;
R-GGATCCATACATATGATAATCATAATA ATTT) were
designed to introduce EcoR I and BamH I cutting sites, so the
modified RfA1 CDS could be constructed into pEGFP-C1 via a
standard restriction enzyme cloning process. As for truncated RfA1
derivatives, six pairs of primers were coupled. If RMN-F and RM3-R
primers were selected, then a nucleotide sequence responsible for
coding of RMN-RL1-RM1-RL2-RM2-RL3-RM3 (simplified as
RMNto3 in the work) was obtained after PCR. Meanwhile,
5′GCATGGACGAGCTGTACAAG 3′ and 5′ TTATGATCAG-
TTATCTAGAT 3’ were added to those F-primers and R-primers
separately during primers synthesis, which enabled sequences to be
ligated to pEGFP-C1 by Ready-to-Use Seamless Cloning Kit from
Sangon Biotech® (Shanghai, China).

4.2 Growth and transfection of human cells

HEK-293T cells (ATCC®, CRL-3216TM) were cultured on
plastic dishes in Dulbecco’s Modified Eagle Medium (DMEM,
GibcoTM) supplemented with 10% fetal bovine serum (FBS,
GibcoTM) at 37°C and under 5% CO2. Cells were seeded at
~33% of the confluent density for the glass bottom dishes from
Cellvis (California, United States) 1 day before transfection, and
grown for another 24 h. Then transfection mixtures containing
Lipofectamine 3,000 (Ther-mo Scientific) and recombinant
vectors were added to the medium and incubated for ~16–~24 h.
1 × 104 cells were seeded into each hole of 96-well plates 1 day before
transfection for CCK-8 tests. Then they were transfected with
recombinant vectors and incubated for another 24 h. After that,
10-μL CCK-8 solutions were added into wells for a ~2- to ~4-h
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chromogenic reaction. OD450 was detected by Multiskan FC
(Thermo Scientific).

4.3 Fluorescence microscopy of stained
cells

Transfected HEK-293T cells grown in Cellvis plastic dishes
were firstly fixed with 4% paraformaldehyde at room temperatures
for 30 min and then stained with DiD (diluted in 0.5% Triton X-
100 PBS) for ~30 min after PBS rinses. Fixed cells were embedded
in DAPI-Fluoromount (Beyotime, Shanghai, China) after washing
off the fluorescent dye with PBS, and characterized with a Leica
TCS SP8 imaging system in fluorescence imaging mode. 405 Diode
laser was used for DAPI detection; 488 Argon was used for GFP
detection; DPSS 561 was used for mcherry detection; HeNeB
633 was used for DiD detection. The resulting images were
analyzed with ImageJ (Java 1.8.0_172/1.52b) (Schindelin et al.,
2012).
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