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Introduction: Systematic gene knockout studies may offer us novel insights on cell
metabolism and physiology. Specifically, the lipid accumulation mechanism at the
molecular or cellular level is yet to be determined in the oleaginous yeast Y. lipolytica.

Methods: Herein, we established ten engineered strains with the knockout of
important genes involving in central carbon metabolism, NADPH generation, and
fatty acid biosynthetic pathways.

Results: Our result showed that NADPH sources for lipogenesis include the OxPP
pathway, POM cycle, and a trans-mitochondrial isocitrate-α-oxoglutarate NADPH
shuttle in Y. lipolytica. Moreover, we found that knockout of mitochondrial NAD+

isocitrate dehydrogenase IDH2 and overexpression of cytosolic NADP+ isocitrate
dehydrogenase IDP2 could facilitate lipid synthesis. Besides, we also demonstrated
that acetate is amore favorable carbon source for lipid synthesis when glycolysis step
is impaired, indicating the evolutionary robustness of Y. lipolytica.

Discussion: This systematic investigation of gene deletions and overexpression
across various lipogenic pathways would help us better understand lipogenesis
and engineer yeast factories to upgrade the lipid biomanufacturing platform.
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1 Instruction

Currently, concerns about fossil fuel sustainability have driven researchers to develop
renewable lipid-derived biofuels as an alternative (Gu et al., 2018; Lazar et al., 2018). Lipid
synthesis using oleaginous yeasts, owing to their unique metabolism, can achieve high lipid
titers, yields and productivity, thus creating the potential for cost-effective industrial-scale
operations (Ma et al., 2020). Specifically, Yarrowia lipolytica is an oleaginous yeast with GRAS
(generally regarded as safe) status and has several significant attributes, such as a broad
substrate spectrum, relatively well-defined genome annotations, diversified genetic
manipulation methods, and abundant pool size of metabolic precursors, including acetyl-
CoA, malonyl-CoA, and tricarboxylic acid (TCA) cycle intermediates (Abdel-Mawgoud et al.,
2018; Larroude et al., 2018; Markham and Alper, 2018). Therefore, this yeast has emerged as a
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popular non-model organism in the lipid biomanufacturing field (Liu
et al., 2015; Wong et al., 2017; Liu et al., 2019a; Yang et al., 2019).

In Y. lipolytica, extracellular carbon feedstock, such as glucose, is
firstly internalized and converted into cytosolic pyruvate by glycolytic
pathway (Qiao et al., 2017). Then, pyruvate is transported into
mitochondria to synthesize mitochondrial citrate. Next, citrate is
excreted to the cytoplasm by mitochondrial citrate carrier
YlYhm2p (Yuzbasheva et al., 2019) and further cleaved to acetyl-

CoA for lipid synthesis by cytosolic ATP-citrate lyases (Qiao et al.,
2017). However, lipids are the highly reduced metabolites that need to
consume the NADPHs to reduce acetyl groups (CH3-CO-) to alkyl
groups (-CH2-CH2-) for growing fatty acid carbon backbone
(Wasylenko et al., 2015; Xu et al., 2017; Xue et al., 2017).
Currently, optimizing the intracellular metabolic network of Y.
lipolytica has become a trend to improve lipids production by
metabolic engineering and synthetic biology methods (Qiao et al.,

TABLE 1 Strains and plasmids used in this study.

Names Characteristics References

Strains

po1fk Wild-type strain W29 (ATCC20460) derivate; W29 ΔmatA Δxpr2-332 Δaxp-2 Δleu2-270 pBR platform, deletion of
gene ura and ku70; po1g Δura3 Δku70::loxP

Gu et al. (2020a); Gu et al.
(2020b)

po1fk_ylPFK po1fk derivate; Further deletion of gene ylPFK; po1fk ΔylPFK::hygr This study

po1fk_ylPYK po1fk derivate; Further deletion of gene ylPYK; po1fk ΔylPYK::hygr This study

po1fk_ylACO1 po1fk derivate; Further deletion of gene ylAC O 1; po1fk ΔylAC O 1::hygr This study

po1fk_ylMAE1 po1fk derivate; Further deletion of gene ylMAE1; po1fk ΔylMAE1::hygr This study

po1fk_ylIDH2 po1fk derivate; Further deletion of gene ylIDH2; po1fk ΔylIDH2::hygr This study

po1fk_ylIDP2 po1fk derivate; Further deletion of gene ylIDP2; po1fk ΔylIDP2::hygr This study

po1fk_ylZWF1 po1fk derivate; Further deletion of gene ylZWF1; po1fk ΔylZWF1::hygr This study

po1fk_ylPYC1 po1fk derivate; Further deletion of gene ylPYC1; po1fk ΔylPYC1::hygr This study

po1fk_ylFAA1 po1fk derivate; Further deletion of gene ylFAA1; po1fk ΔylFAA1::hygr This study

po1fk_ylSNF1 po1fk derivate; Further deletion of gene ylFAA1; po1fk ΔylSNF1::hygr This study

po1fk pYLXP’-ylPFK po1fk derivate; Further expression of gene ylPFK This study

po1fk pYLXP’-ylPYK po1fk derivate; Further expression of gene ylPYK This study

po1fk pYLXP’-
ylACO1

po1fk derivate; Further expression of gene ylAC O 1 This study

po1fk pYLXP’-
ylMAE1

po1fk derivate; Further expression of gene ylMAE1 This study

po1fk pYLXP’-ylIDH2 po1fk derivate; Further expression of gene ylIDH2 This study

po1fk pYLXP’-ylIDP2 po1fk derivate; Further expression of gene ylIDP2 This study

po1fk pYLXP’-
ylZWF1

po1fk derivate; Further expression of gene ylZWF1 This study

po1fk pYLXP’-ylPYC1 po1fk derivate; Further expression of gene ylPYC1 This study

po1fk pYLXP’-ylFAA1 po1fk derivate; Further expression of gene ylFAA1 This study

po1fk pYLXP’-ylSNF1 po1fk derivate; Further expression of gene ylFAA1 This study

Plasmids

pYLXP’-loxP-Hygr pYLXP’ containing the loxP-hygr-loxP cassette Gu et al. (2020a); Gu et al.
(2020b)

pHyloxP-ylPFK pYLXP’-loxP-hygr containing gene ylPFK deletion cassette This study

pHyloxP-ylPYK pYLXP’-loxP-hygr containing gene ylPYK deletion cassette This study

pHyloxP-ylACO1 pYLXP’-loxP-hygr containing gene ylAC O 1 deletion cassette This study

pHyloxP-ylPYC1 pYLXP’-loxP-hygr containing gene ylPYC1 deletion cassette This study

pHyloxP-ylMAE1 pYLXP’-loxP-hygr containing gene ylMAE1 deletion cassette This study

pHyloxP-ylIDH2 pYLXP’-loxP-hygr containing gene ylIDH2 deletion cassette This study

pHyloxP-ylIDP2 pYLXP’-loxP-hygr containing gene ylIDP2 deletion cassette This study

pHyloxP-ylZWF1 pYLXP’-loxP-hygr containing gene ylZWF1 deletion cassette This study

pHyloxP-ylFAA1 pYLXP’-loxP-hygr containing gene ylFAA1 deletion cassette This study

pHyloxP-ylSNF1 pYLXP’-loxP-hygr containing gene ylSNF1 deletion cassette This study

pYLXP’-ylPFK pYLXP’ containing gene ylPFK expression cassette This study

pYLXP’-ylPYK pYLXP’ containing gene ylPYK expression cassette This study

pYLXP’-ylACO1 pYLXP’ containing gene ylAC O 1 expression cassette This study

pYLXP’-ylPYC1 pYLXP’ containing gene ylPYC1 expression cassette This study

pYLXP’-ylMAE1 pYLXP’ containing gene ylMAE1 expression cassette This study

pYLXP’-ylIDH2 pYLXP’ containing gene ylIDH2 expression cassette This study

pYLXP’-ylIDP2 pYLXP’ containing gene ylIDP2 expression cassette This study

pYLXP’-ylZWF1 pYLXP’ containing gene ylZWF1 expression cassette This study

pYLXP’-ylFAA1 pYLXP’ containing gene ylFAA1 expression cassette This study

pYLXP’-ylSNF1 pYLXP’ containing gene ylSNF1 expression cassette This study
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2015; Liu et al., 2016; Xu et al., 2016; Abdel-Mawgoud et al., 2018). For
example, Lazar et al. knocked out POX1-6 (peroxidase) and TGL4
(triglyceride lipase) with overexpressing GDP1 (glycerol triphosphate
dehydrogenase) and DGA2 (diacylglycerol acyltransferase) in Y.
lipolytica, improving the titer of lipids to 34 g/L (Dulermo and
Nicaud, 2011). Qiao et al. optimized the supply of NADPH, which
maximized the utilization of electrons from alternative NADPH
pathways to increase substrate-to-lipid yields, leading to a 25%
improvement over the starting strain (Qiao et al., 2017).
Notwithstanding, much effort has been investigated to improve
lipid accumulation, such as deletion of degradation pathways,
overexpression of lipid synthesis pathways, eliminating of
regulatory bottlenecks, and strengthening the supply of precursor,
such as acetyl-CoA and NADPH (Groenewald et al., 2014; Silverman
et al., 2016; Liu et al., 2019b). However, the influences of the important
gene deficiency on lipid accumulation, such as carbon feedstock
degradation and NADPH metabolism, have not been explored in
Y. lipolytica.

Herein, we systematically investigated the influence of deleting
important lipogenesis genes on lipid synthesis and cell growth,
involving in carbon metabolism, NADPH metabolism, and fatty
acid biosynthetic pathways. Specifically, we demonstrated that the
sources of NADPH for lipogenesis include the OxPPP pathway,
pyruvate-oxaloacetate-malate (POM) cycle, and isocitrate-2-
oxoglutarate shuttle in Y. lipolytica. Moreover, the knockout of
mitochondrial NAD+ isocitrate dehydrogenase IDH2 and
overexpression of cytosolic NADP+ isocitrate dehydrogenase
IDP2 could facilitate lipid synthesis. Besides, we also concluded
that acetate is a favorable carbon source for producing lipid in Y.
lipolytica. This study may help us better understand lipogenesis
mechanisms, and the insights obtained here will guide us to
engineer efficient cell factories for oleochemical production.

2 Materials and methods

2.1 Strains, plasmid, primers, and chemicals

The strain po1fk obtained in our previous work was chosen as the
starting strain in this study (Gu et al., 2020a). Moreover, strains,
plasmids and primers have been listed in Table1 and Supplementary
Table S1, respectively. Chemicals, including methyl tridecanoic acid
and triglyceryl heptadecanoic acid were purchased from Sigma-
Aldrich.

2.2 Gene knockout vectors construction

The marker-free Cre-loxP based gene knockout method was used
as previously reported (Gu et al., 2020a; Gu et al., 2020b). In this study,
constructed gene knockout plasmids included pHyloxP-ylPFK
(encoding phosphofructose kinase), pHyloxP-ylPYK (encoding
pyruvate kinase), pHyloxP-ylPYC1 (encoding pyruvate
carboxylase), pHyloxP-ylMAE1 (encoding malic enzyme), pHyloxP-
ylIDH2 (encoding mitochondrial isocitrate dehydrogenase), pHyloxP-
ylIDP2 (encoding cytosolic isocitrate dehydrogenase), pHyloxP-
ylFAA1 (encoding peroxisomal fatty acyl-CoA ligase), pHyloxP-
ylACO1 (encoding aconitate hydratase), and pHyloxP-ylSNF1
(encoding AMP-activated protein kinase).

Here, we took the process of constructing the plasmid pHyloxP-
ylPFK as an example. Firstly, the upstream and downstream sequences
(both 1000 bp) of flanking gene ylPFK were obtained by the PCR-
amplified reactions using primers ylPFK_UpF/ylPFK_UpR and
ylPFK_DwF/ylPFK_DwR. Then, pYLXP’-loxP-Hyr containing loxP-
Hyr-loxP cassette was digested by endonucleases AvrII and SalI to
obtain loxP-Hyr-loxP cassette and plasmid backbone of pYLXP’-loxP-
Hyr. Next, the upstream fragment ylPFK_Up, downstream fragments
ylPFK_Dw, loxP-Hyr-loxP cassette and pYLXP’-loxP-Hyr backbone
were joined by Gibson Assembly to generate the plasmid pHyloxP-
ylPFK. The constructed plasmids were sequenced by Sangon Biotech
Co., Ltd. (Shanghai, China).

2.3 The expression plasmid construction and
assembly

The pYLXP’, a YaliBrick plasmid, was used for gene expression (Gu
et al., 2020a; Gu et al., 2020b). For example, to construct the
recombinant plasmid pYLXP’-ylPFK, pYLXP’ was firstly digested by
SnaBI and KpnI, obtaining the linearized pYLXP’. Then, the linearized
pYLXP’ was ligase with the DNA fragment of gene PFK (that was
obtained by the PCR-amplified reaction using primers PFK-F and PFK-
R) by Gibson assembly method to generate plasmid pYLXP’-ylPFK,
which was sequenced by Sangon Biotech Co., Ltd. (Shanghai, China).

2.4 Yeast transformation

The standard protocols of Y. lipolytica transformation have been
reported (Gu et al., 2020b; Lv et al., 2020). In brief, 1-mL cells were
harvested from YPD medium (yeast extract 10 g/L, peptone 20 g/L,
and glucose 20 g/L) at 24 h. Then, cells were resuspended by using
105 uL transformation solution, containing 90 uL 50% PEG4000, 5 uL
lithium acetate (2 M), 5 uL boiled single strand DNA (salmon sperm,
denatured), and 5 uL DNA products. Next, the mixture was incubated
at 39°C for 1 h before spreading on selected plates, which needed to be
vortexed for 15 s every 15 min. In this study, the selected markers,
including leucine and hygromycin, were used.

2.5 Shake flask cultivations

Shake flask cultivations of genetically modified Y. lipolytica were
performed in 250 mL flasks with 25 mL fermentation medium at
220 r.p.m. and 30°C for 120 h. For this, 0.8 mL seed solution was
inoculated, which was cultured in 14 mL shaking tubes under the
conditions of 220 r.p.m. and 30°C for 48 h. One milliliter of
fermentation broth was sampled every 24 h for OD600, lipid,
glucose, and acetate measurements.

Seed culture medium of CSM (the yeast complete synthetic media)
contains ammonium sulfate 5.0 g/L, YNB (yeast nitrogen base without
ammonium sulfate) 1.7 g/L, glucose 20.0 g/L, CSM-Leu 0.74 g/L, and
L-leucine 0.20 g/L. The CSM fermentation medium (C/N = 80)
contains ammonium sulfate 1.1 g/L, YNB 1.7 g/L, glucose 40.0 g/L,
CSM-Leu 0.74 g/L, and L-leucine 0.20 g/L. Specifically, phosphoric
buffer solution (PBS), including 0.2 MNa2HPO4 and 0.2 MNa2HPO4,
with pH 6.0 was used to replace water to make CSM-Acetate
fermentation medium. Besides, CSM-acetate medium (C/N = 80)

Frontiers in Bioengineering and Biotechnology frontiersin.org03

Zhu et al. 10.3389/fbioe.2023.1098116

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1098116


contains ammonium sulfate 1.1 g/L, YNB 1.7 g/L, acetate 41.0 g/L,
CSM-Leu 0.74 g/L, and L-leucine 0.20 g/L.

2.6 Quantification of biomass, glucose, citrate
and lipid

Cell densities were monitored by measuring the optical density at
600 nm (OD600). The OD600 value could be converted to dry cell
weight (DCW) according to Eq. 1 OD600 = 0.35 g/L. The
concentrations of glucose and acetate were measured under a
flow rate of 0.6 mL/min of the mobile phase (5 mM of H2SO4) at
40°C by high-performance liquid chromatography (HPLC) equipped
with a HPX-87H column (Bio-Rad, Hercules, CA, United States) and
a refractive index detector through Shimadzu Prominence HPLC
LC-20 A. To determine lipid composition, 4 OD units of cells were
directly saponified with 0.5 M sodium methoxide with vortexing at
1,200 rpm for 2 h, and then neutralized with 40 μL 98% sulfuric acid
to facilitate transesterification. Next, 400 μL hexane was added to
extract fatty acid methyl ester for GC analysis. Moreover, to
quantitatively determine lipid titer, 100 μL of 2 g/L of
tridecanoate methyl ester and 2 g/L of glyceryl trihepta-decanoate
were added as internal standard at the beginning, to benchmark the
transesterification and saponification efficiency, respectively.

Triplicate samples were taken and results were reported as
average ± standard deviations. Lipid samples were taken at 120 h
of shaking incubation. The method of GC analysis is consistent with
previously reported method (Xu et al., 2016).

3 Results

3.1 Selecting the important genes for
investigating the lipogenesis metabolism in Y.
lipolytica

Noticeably, cytosolic acetyl-CoA is a direct precursor for lipid
synthesis (Qiao et al., 2017), which is carboxylated to malonyl-CoA,
further transacetylated to malonyl-ACPs, the true precursor to extending
the growing chain of fatty acids, catalyzed by fatty acid synthases
(FAS1 and FAS2). Thus, in acetyl-CoA metabolism, we chose three
genes for investigation, including ylPFK (YALI0D16357g, encoding 6-
phosphofructokinase), ylPYK (YALI0F09185g, encoding pyruvate kinase),
and ylAC O 1 (YALI0D09361g, encoding aconitate hydratase), and
further constructed three strain po1fk_ylPFK, po1fk_ylPYK, and
po1fk_ylACO1.

On the other hand, acetyl groups (CH3-CO-) originating from acetyl-
CoA is reduced to alkyl groups (-CH2-CH2-) when growing fatty acid

FIGURE 1
The fatty acid metabolic network of Y. lipolytica. FAA1, fatty acyl-CoA synthase; ZWF1, glucose-6-phosphate dehydrogenase; PFK, 6-
phosphofructokinase; PYK, pyruvate kinase; PYC1, pyruvate carboxylase; MAE1, malic enzyme; ACO1, Aconitase; IDH2, mitochondrial isocitrate
dehydrogenase; IDP2, cytosolic NADP-specific isocitrate dehydrogenase; G-6-P, Glucose-6-phosphate; F-6-P, fructose-6-phosphate; F-1,6-P, fructose-
1,6-diphosphate; PEP, phosphoenolpyruvic acid; OAA, oxaloacetic acid; Fum, fumaric acid; Suc, succinyl coenzyme A; α-KG, 2-oxoglutarate; 6-PGL, 6-
phosphogluconolactone; Ru5P, ribulose-5-phosphate; X5P, xylulose-5-phosphate; DHAP, dihydroxyacetone phosphate; G-3-P, glyceraldehyde-3-
phosphate; DAG, diacylglycerol; TAG, triacylglycerol; FFA, free fatty acid; PL, phospholipid; Glx, glutamine; QH2, coenzyme QH2.
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carbon backbone, which needs to consume the reducing equivalent
NADPH (Liu et al., 2019a). It has been reported that the sources of
cytosolicNADPH includeNADP+-dependent isocitrate dehydrogenase, the
OxPP pathway, and POM cycle (Silverman et al., 2016), related to malate
dehydrogenase (encoded by gene ylMAE1, YALI0E18634g), mitochondrial
isocitrate dehydrogenase (encoded by gene ylIDH2, YALI0D06303g),
cytosolic isocitrate dehydrogenase (encoded by gene ylIDP2,
YALI0F04095g), and glucose-6-phosphate dehydrogenase (encoded by
gene ylZWF1, YALI0E22649g). Particularly, the POM cycle (Figure 1)
also involves the reductive carboxylation of pyruvate to oxaloacetate
by pyruvate carboxylase (encoded by gene ylPYC1, YALI0C24101g).
Thus, these five genes in the NADPH metabolism were deleted
to obtained strains po1fk_ylMAE1, po1fk_ylIDH2, po1fk_ylIDP2, po1fk_
ylZWF1, and po1fk_ylPYC1, respectively. Moreover, we also investigated
the influences of deleting lipogenesis gene ylFAA1 (YALI0D17864g,
long chain fatty acyl-CoA synthetase) on the lipid synthesis (Figure 1),
which generated strain po1fk_ylFAA1. In addition, the regulator SNF1
(encoded by gene YALI0D02101g, carbon catabolite-derepressing protein
kinase) was also knocked out, which is a cellular carbon
metabolism regulator in Y. lipolytica to control the transition from
growth phase to oleaginous production phase (Lazar et al., 2018),
obtaining po1fk_ylSNF1.

3.2 Characterization of engineered Y.
lipolytica strains under the nitrogen-limited
shaking cultivation

To confirm whether cell growth and lipid levels of engineered Y.
lipolytica strains were changed, we performed the nitrogen-limited
shaking cultivation using the CSM medium (C/N = 80) to measure
the lipid titers and cell growth. As a result, the maximal biomasses of
strains po1fk_ylPYC1, po1fk_ylACO1, and po1fk_ylMAE1 were slightly
decreased compared with po1fk (Figure 2), and deletion of gene ylIDP2
and ylPFK almost does not influence on cell growth. However, cell
growth of strains po1fk_ylPYK and po1fk_ylZWF is severely inhibited.
The maximum biomass of po1fk_ylPYK and po1fk_ylZWF are 72.5%
and 52.2% lower than that of the control strain po1fk, respectively,
reaching 3.96 and 6.47 (OD600). Notably, gene ylPYK encodes pyruvate
kinase, which converts the reaction of phosphoenolpyruvate to pyruvate
in glycolysis. Therefore, deletion of gene ylPYK could block the
metabolic flux from the glycolytic pathway to TCA cycles. On the
other hand, glucose-6-phosphate dehydrogenase ZWF1 catalyzes
glucose 6-phosphate to 6-phospho-glucono-1,5-lactone, providing the
primary source of cytosolic NADPH in Y. lipolytica. It should be noted
that NADPH functions as reducing equivalents to maintain cellular

FIGURE 2
Time profiles of cell growth, glucose consumption, lipid titer and lipid yield in the CSM-leu medium and the morphology analysis of gene knockout
strains. (A)Glucose consumption of po1fk, po1fk_ylPYK, po1fk_ylACO1, po1fk_ylPFK, po1fk_ylSNF1, po1fk_ylIDP2, po1fk_ylZWF, po1fk_ylIDH2, po1fk_ylMAE,
po1fk_ylPYC1, and po1fk_ylFAA; (B)Cell growth of po1fk, po1fk_ylPYK, po1fk_ylACO1, po1fk_ylPFK, po1fk_ylSNF1, po1fk_ylIDP2, po1fk_ylZWF, po1fk_ylIDH2,
po1fk_ylMAE, po1fk_ylPYC1, and po1fk_ylFAA; (C) Lipid titer of po1fk, po1fk_ylPYK, po1fk_ylACO1, po1fk_ylPFK, po1fk_ylSNF1, po1fk_ylIDP2, po1fk_
ylZWF, po1fk_ylIDH2, po1fk_ylMAE, po1fk_ylPYC1, and po1fk_ylFAA; (D) Lipid yield of po1fk, po1fk_ylPYK, po1fk_ylACO1, po1fk_ylPFK, po1fk_ylSNF1, po1fk_
ylIDP2, po1fk_ylZWF, po1fk_ylIDH2, po1fk_ylMAE, po1fk_ylPYC1, and po1fk_ylFAA; (E) the morphology analysis of gene knockout strains. For analyzing the
morphology, cells were harvested from CSM-leu medium at 48 h and washed twice using .9% of NaCl solution. Then, cells were re-suspended and diluted to
an appropriate concentration and spread on the CSM plates, cultivating at 30°C for 96 h.
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redox homeostasis and serves as important electron donors in the
anabolic metabolism (Wang et al., 2017). In this study, we found
that deletion of gene ylZWF gave a 76.9% reduction (0.18 ± 0.05 g/L
with the yield of 13.01 mg/g Glucose) in the lipid synthesis, indicating that
the OxPP pathway is the primary NADPH source for lipogenesis.
However, an interesting phenomenon to note is that the surface
wrinkle of po1fk_ylZWF1 is disappeared. We speculated that the
reduced surface area of po1fk_ylZWF1 colony may be attributed to
the less oxygen demand for the ZWF1 deficient strain.

Moreover, the lipid titer of po1fk_ylFAA1, po1fk_ylPYC1, po1fk_
ylACO1, and po1fk_ylMAE1 are 0.49 ± 0.11, 0.59 ± 0.10, 0.62 ± 0.02, and
0.67 ± 0.02 g/L, decreased by 38.0%, 25.3%, 21.5%, and 15.2% relatively to
po1fk (0.79 ± 0.10 g/L), respectively, suggesting that genes ylFAA1,
ylPYC1, ylAC O 1, and ylMAE are necessary for the lipid synthesis in
Y. lipolytica. However, the deletion of gene ylIDH2 increased the lipid titer,
reaching .87 g/L with the yield of 44.8 mg/g Glucose, which were 1.10-fold
and 1.19-fold of that in the strain po1fk, respectively. It is

incomprehensible because the mitochondrial NAD+ isocitrate
dehydrogenase IDH2 is important for TCA cycle, catalyzing isocitrate
to 2-oxoglutarate. To explain this result, we performed a KEGG pathway
analysis and found that the mitochondrial NAD+ isocitrate
dehydrogenases have two isoenzymes in Y. lipolytica, encoded by
genes YALI0E05137g and YALI0D06303g, respectively. Therefore, we
speculate that deletion of IDH2 downregulated the activity of
mitochondrial NAD+ isocitrate dehydrogenases, which strengthened
the accumulation of citrate to promote the synthesis of lipids. Besides,
the deletion of carbon catabolite repressor gene ylSNF1 significantly
increased the lipid titer, reaching 2.45 ± 0.02 g/L with the yield of
100.1 mg/g Glucose, which was 3.10-fold and 2.65-fold of that of po1fk,
respectively. This result is consistent with the previous research (Seip et al.,
2013). The regulator SNF1 is involved in the transition from the growth
phase to the oleaginous phase, and allows strains to accumulate lipids even
in the nitrogen-abundant medium (Wang et al., 2020). However, how
SNF1 regulates the lipid synthesis pathway has not been resolved (Lazar

FIGURE 3
Time profiles of cell growth, acetate consumption, lipid titer and lipid yield in CSM-Acetate medium. (A) Glucose consumption of po1fk, po1fk_ylPYK,
po1fk_ylACO1, po1fk_ylPFK, po1fk_ylSNF1, po1fk_ylIDP2, po1fk_ylZWF, po1fk_ylIDH2, po1fk_ylMAE, po1fk_ylPYC1, and po1fk_ylFAA; (B) Lipid titer of po1fk,
po1fk_ylPYK, po1fk_ylACO1, po1fk_ylPFK, po1fk_ylSNF1, po1fk_ylIDP2, po1fk_ylZWF, po1fk_ylIDH2, po1fk_ylMAE, po1fk_ylPYC1, and po1fk_ylFAA; (C) Cell
growth of po1fk, po1fk_ylPYK, po1fk_ylACO1, po1fk_ylPFK, po1fk_ylSNF1, po1fk_ylIDP2, po1fk_ylZWF, po1fk_ylIDH2, po1fk_ylMAE, po1fk_ylPYC1, and
po1fk_ylFAA; (D) Lipid yield of po1fk, po1fk_ylPYK, po1fk_ylACO1, po1fk_ylPFK, po1fk_ylSNF1, po1fk_ylIDP2, po1fk_ylZWF, po1fk_ylIDH2, po1fk_ylMAE,
po1fk_ylPYC1, and po1fk_ylFAA.

FIGURE 4
Time profiles of cell growth, glucose consumption, lipid titer and lipid yield in CSM-leumedium. (A)Glucose consumption of po1fk pYLXP’, po1fk pYLXP’-
ylPYK, po1fk pYLXP’-ylACO1, po1fk pYLXP’-ylPFK, po1fk pYLXP’-ylSNF1, po1fk pYLXP’-ylIDP2, po1fk pYLXP’-ylZWF, po1fk pYLXP’-ylIDH2, po1fk pYLXP’-ylMAE,
po1fk pYLXP’-ylPYC1, and po1fk pYLXP’-ylFAA; (B) The lipid titer of po1fk pYLXP’, po1fk pYLXP’-ylPYK, po1fk pYLXP’-ylACO1, po1fk pYLXP’-ylPFK, po1fk pYLXP’-
ylSNF1, po1fk pYLXP’-ylIDP2, po1fk pYLXP’-ylZWF, po1fk pYLXP’-ylIDH2, po1fk pYLXP’-ylMAE, po1fk pYLXP’-ylPYC1, and po1fk pYLXP’-ylFAA; (C) Cell
growth of po1fk pYLXP’, po1fk pYLXP’-ylPYK, po1fk pYLXP’-ylACO1, po1fk pYLXP’-ylPFK, po1fk pYLXP’-ylSNF1, po1fk pYLXP’-ylIDP2, po1fk pYLXP’-ylZWF,
po1fk pYLXP’-ylIDH2, po1fk pYLXP’-ylMAE, po1fk pYLXP’-ylPYC1, and po1fk pYLXP’-ylFAA; (D) Lipid yield of po1fk pYLXP’, po1fk pYLXP’-ylPYK, po1fk pYLXP’-
ylACO1, po1fk pYLXP’-ylPFK, po1fk pYLXP’-ylSNF1, po1fk pYLXP’-ylIDP2, po1fk pYLXP’-ylZWF, po1fk pYLXP’-ylIDH2, po1fk pYLXP’-ylMAE, po1fk pYLXP’-
ylPYC1, and po1fk pYLXP’-ylFAA.
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et al., 2018), possibly due to the SNF1-mediated MAP kinase, which
phosphorylates acetyl-CoA carboxylase and downregulates lipid
synthesis. In brief summary, knocking out mitochondrial IDH2 and
SNF1 will improve lipid accumulation in Y. lipolytica under the culture
condition of using the CSM medium.

3.3 Using acetate as carbon source for lipid
synthesis by engineered Y. lipolytica strains

The acetate uptake pathway in Y. lipolytica could function as an
acetyl-CoA shortcut, which has been demonstrated to achievemetabolic
optimality in producing polyketides (Liu et al., 2019b). Therefore, we
turned to use acetate as the carbon source for lipid synthesis. Specifically,
extracellular acetate is first catalyzed by acetyl-coA synthase to generate
acetyl-coA, which enters into cellular metabolic pathways for
maintaining cell activities. However, it should be noted that partial
acetyl-CoAwould pass through gluconeogenesis into theOxPP pathway
to provide NADPH for fatty acid synthesis.

Noticeably, the cultivation pH will keep increasing when sodium
acetate is used as a carbon source. For this, an in situ pH indicator
(bromocresol purple) was used to track the change of cultivation pH (Liu
et al., 2019a). By performing the shaking flask, we found that po1fk_
ylPYK, po1fk_ylZWF, and po1fk_ylFAA1 showed the remarkable
recovery of cell growth (Figure 3) when acetate was used as sole
carbon source, reaching 20.02 ± 1.18, 20.72 ± 1.56, and 21.38 ± 4.11
(the maximum biomass, OD600), respectively. These results indicate that
the evolutionary robustness of cells that enable them adapt to alternate
carbon sources when central metabolism is compromised, and most
importantly, acetate could be used as a shortcut nutrient to support cell
growth. However, the cell growth of po1fk_ylPYC1 was repressed in the
CSM-acetate medium, and its maximum biomass (OD600) was 5.72 ±
0.50, which could be attributed to the fact that PYC is important for cell
to replenish gluconeogenesis when the cells were grown on the acetate
media. The maximal lipid titer was produced by po1fk_ylPFK, reaching
1.04 ± 0.23 g/L, which is 1.09-fold of that of po1fk (0.95 ± 0.04 g/L).
Interestingly, the lipid titer of po1fk_ylSNF1 was close to that of po1fk
using acetate as carbon source. Studies have reported that

downregulation of Snf1 can activate the activity of acetyl-CoA
carboxylase ACC1, which could facilitate the flux from acetyl-CoA to
malonyl-CoA (Gross et al., 2019). Therefore, we speculated the increase
flux from acetyl-CoA to malonyl-CoA in the engineering po1fk_ylSNF1
strain leads to a reduction of NADPH supply and limits the synthesis of
lipid under the acetate cultivation.

3.4 The effect of overexpressing the selected
genes on cell growth and lipid synthesis

To further identify the potential functions of the selected genes, we
overexpressed these genes under the control of strong constitutive pTEF-
intron promoter by the plasmid pYLXP’. Shake flask cultivation of these
engineering strains, including po1kf pYLXP’-ylPFK, po1kf pYLXP’-
ylPYK, po1kf pYLXP’-ylPYC1, po1kf pYLXP’-ylMAE1, po1kf pYLXP’-
ylIDH2, po1kf pYLXP’-ylIDP2, po1kf pYLXP’-ylFAA1, po1kf pYLXP’-
ylACO1, and po1kf pYLXP’-ylSNF1, show no significant differences in cell
growth (Figure 4). Further, we analyzed the lipid titer of these engineering
strains. As shown in Figure 4, individual overexpression of gene IDP2
result in a significant increase in the lipid titer, reaching 0.62 g/L with the
yield of 29.58 mg/g Glucose. InY. lipolytica, gene IDP2 encodes the cytosolic
NADP+ isocitrate dehydrogenase IDP2, which catalyzes the reaction of
isocitrate to 2-oxoglutarate with generating one molecule of NADPH.
However, the cytoplasmic TCA cycle in Y. lipolytica is incomplete, which
lacks cytoplasmic aconitate hydratase, succinyl-CoA ligase, fumarate
hydratase, etc. Thus, we speculated that has a trans-mitochondrial
isocitrate-α-oxoglutarate NADPH shuttle in Y. lipolytica, which can be
responsible for maintaining the redox homeostasis and transporting the
reducing equivalent from mitochondria NADH to cytoplasm NADPH.

4 Discussions

In Y. lipolytica, lipogenic pathway is consisting of three parts:
acetyl-CoA, NAPDH, and lipid metabolism pathways. Herein, we
systematically investigated the knockout of ten important genes in
these three parts, including ylPFK, ylPYK, ylAC O 1, ylMAE1, ylIDH2,

TABLE 2 The productivity of engineering strains in the different cultivations.

Names Productivity (g Lipid/L/g DCW Names Productivity (g Lipid/L/g DCW

Glucose Acetate Glucose

po1fk 0.169 0.158 po1fk pYLXP’ 0.125

po1fk_ylPFK 0.132 0.139 po1fk pYLXP’-ylPFK 0.111

po1fk_ylPYK —/ 0.109 po1fk pYLXP’-ylPYK 0.137

po1fk_ylACO1 0.141 0.121 po1fk pYLXP’-ylACO1 0.114

po1fk_ylMAE1 0.154 0.139 po1fk pYLXP’-ylMAE1 0.114

po1fk_ylIDH2 0.177 0.128 po1fk pYLXP’-ylIDH2 0.102

po1fk_ylIDP2 0.169 0.130 po1fk pYLXP’-ylIDP2 0.137

po1fk_ylZWF1 0.041 0.118 po1fk pYLXP’-ylZWF1 0.104

po1fk_ylPYC1 0.136 —/ po1fk pYLXP’-ylPYC1 0.119

po1fk_ylFAA1 0.144 0.150 po1fk pYLXP’-ylFAA1 0.124

po1fk_ylSNF1 0.289 0.131 po1fk pYLXP’-ylSNF1 0.114
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ylIDP2, ylZWF1, ylPYC1, ylFAA1, and ylSNF1. Noticeably, pyruvate
kinase PYK plays an important role in the glycolysis pathway, which
provides the precursor pyruvate for TCA. Deleting gene ylPYK
resulted in the block of the glycolytic pathway, and thus leaded to
an impaired glucose uptake, retarded cell growth and compromised
lipid synthesis. Specifically, the previous effort has showed that Y.
lipolytica possesses strong acetate utilization pathway, which is
equivalent or even superior to the hexose utilization pathway (Liu
et al., 2019b). Therefore, it is believable that strain po1fk_ylPYK
showed a remarkable recovery of cell growth using acetate as the
carbon source. Specifically, we deduced the overall stoichiometry of
glucose or acetate conversion to lipid (Supplementary Note 1). As
suggested by the stoichiometry, the yield of lipid synthesized from
acetate (0.294 g/g Acetate) is higher than that from glucose (0.271 g/g

Glucose), indicating that acetate is a dominant carbon source for lipid
synthesis. As a result, strain po1fk_ylPYK produced 0.96 ± 0.06 g/L of
lipid using acetate as the carbon source.

The glucose-6-phosphate dehydrogenase ZWF is a key enzyme that
catalyzes glucose 6-phosphate to 6-phosphogluconolactone with
generating NADPH. NADPH provides reducing power for
synthesizing biological macromolecules (such as lipids, proteins, and
glycogen) and directly affects cell growth, protein expression, and other
secondary metabolites synthesis (polyketides or triterpenoids) (Xu et al.,
2018). We found that deletion of PYC1 or MAE1 both decreased the
synthesis of lipid, suggesting the POM cycle participates in lipogenesis for
NADPH supplementation in Y. lipolytica. However, in the CSM-acetate
medium, the cell growth of po1fk_ylPYC1 was repressed, suggesting that
the deficiency of pyruvate carboxylase PYC1 would lead to the disruption
of gluconeogenesis. Moreover, it is reported that the distributions of the
cellular reducing equivalent are highly compartmentalized in eukaryotes,
which is attributed to the specific localization of metabolic pathways and
impermeabilities of organelles membranes (Kory et al., 2020). Specifically,
mitochondria are important organelles for the NADHmetabolism due to
its respiratory functions, the existence of electron transport chain for
oxidative phosphorylation. Therefore, the dynamic balance of the reducing
equivalent between mitochondria and cytoplasm are necessary for
maintaining cellular redox homeostasis (Spinelli and Haigis, 2018). Our
results of deletion of gene IDH2 and overexpression of gene IDP2
suggested the existence of a trans-mitochondrial isocitrate-α-
oxoglutarate NADPH shuttle in Y. lipolytica. Specifically, according to
the ways of NADPH supplement, we also deduced the overall
stoichiometry of glucose or acetate conversion to lipid and calculated
the yield of lipid (Supplementary Note 1), which could help us to
understand the influences of NADPH supplement on lipid synthsis.

In addition, protein kinase ylSNF1 is a crucial regulator of glucose
signal transduction, which is a negative regulator of the fatty acid
biosynthesis pathway and acetyl-CoA carboxylase. It has been
identified that SNF1 plays a vital role in the transition from growth
to oil production in Y. lipolytica. Herein, deletion of genes ylSNF1
significantly increased the lipid titer in the CSM-leu medium, reaching
2.45 ± 0.02 g/L with the yield of 100.0 mg/g Glucose and the productivity
of 0.289 g Lipid/L/g DCW (Table2), which is consistent with the previous
research (Seip et al., 2013).

5 Conclusion

In this work, we established ten engineered strains with
deleting the important gene involved in the central carbon,

NADPH, and lipid metabolism, and systematically investigated
the influence of such gene deletions on the lipid synthesis and cell
growth. As a result, our study demonstrated that NADPH sources
for lipogenesis include the OxPP pathway, POM cycle, and
isocitrate-2-oxoglutarate shuttle in Y. lipolytica. Moreover, the
knockout of mitochondrial isocitrate dehydrogenase IDH1 and
the carbon catabolite repressor SNF1 could facilitate the lipid
synthesis. Besides, acetate is a more favorable carbon source for
the lipid synthesis when glycolysis step is impaired, indicating this
could be alternate carbon source that reach metabolic optimality
in lipid synthesis. This systematic investigation of gene deletions
and overexpression across various lipogenic pathways would help
us better understand lipogenesis and engineer yeast factories to
upgrade the lipid biomanufacturing platform.
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