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Polyhydroxyalkanoate (PHA) synthases (PhaCs) are key enzymes in PHA
polymerization. PhaCs with broad substrate specificity are attractive for
synthesizing structurally diverse PHAs. In the PHA family, 3-hydroxybutyrate
(3HB)-based copolymers are industrially produced using Class I PhaCs and can
be used as practical biodegradable thermoplastics. However, Class I PhaCs with
broad substrate specificities are scarce, prompting our search for novel PhaCs. In
this study, four new PhaCs from the bacteria Ferrimonas marina, Plesiomonas
shigelloides, Shewanella pealeana, and Vibrio metschnikovii were selected via a
homology search against the GenBank database, using the amino acid sequence
of Aeromonas caviae PHA synthase (PhaCAc), a Class I enzymewith awide range of
substrate specificities, as a template. The four PhaCs were characterized in terms
of their polymerization ability and substrate specificity, using Escherichia coli as a
host for PHA production. All the new PhaCs were able to synthesize P(3HB) in
E. coli with a high molecular weight, surpassing PhaCAc. The substrate specificity
of PhaCs was evaluated by synthesizing 3HB-based copolymers with 3-
hydroxyhexanoate, 3-hydroxy-4-methylvalerate, 3-hydroxy-2-methylbutyrate,
and 3-hydroxypivalate monomers. Interestingly, PhaC from P. shigelloides
(PhaCPs) exhibited relatively broad substrate specificity. PhaCPs was further
engineered through site-directed mutagenesis, and the variant resulted in an
enzyme with improved polymerization ability and substrate specificity.
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Introduction

The bacterial polyesters polyhydroxyalkanoates (PHAs) are considered excellent bio-
based plastics and have been demonstrated to be biodegradable in various environments
such as compost, soil, freshwater, and marine water (Suzuki et al., 2021). A myriad of
microorganisms can synthesize PHA as an intracellular carbon and energy reserve under
stressful conditions (Anderson and Dawes, 1990). Poly[(R)-3-hydroxybutyrate], P(3HB), is a
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major member of the PHA family and has been extensively studied
since its discovery in 1926 (Lenz and Marchessault, 2005). Despite
these merits, it is still challenging for PHA to compete with
petroleum-based plastics because of the inherent flaws in P(3HB).
The poor material properties of P(3HB) (Lehrle andWilliams, 1994)
such as its high crystallinity and narrow processing temperature
window have greatly hampered the entry of this polymer into the
commercial world. Fortunately, 3HB-based copolymers (Tsuge
et al., 2005; Mizuno et al., 2010; Mierzati et al., 2020; Furutate
et al., 2021) have been proven to overcome the material property
limitations of P(3HB) to a certain extent, and have been used as a
remedy for problems related to plastics (Sivashankari and Tsuge,
2021).

PHA synthases are key enzymes involved in PHA
polymerization (Sudesh et al., 2000). Based on the substrate
specificities and subunit compositions of PHA synthases, they are
categorized into four classes (Rehm, 2003). Class I and II PHA
synthases are homodimers of the PhaC subunits. Class I PHA
synthases, represented by the Ralstonia eutropha enzyme, mainly
polymerize short chain length (scl)-monomers (C3-C5), whereas
Class II PHA synthases, represented by the Pseudomonas aeruginosa
and Pseudomonas putida enzymes, polymerize medium chain length
(mcl)-monomers (C6-C14). Class III PHA synthases such as
Allochromatium vinosum and Synechocystis sp. PCC
6803 consists of two heterosubunits (PhaC and PhaE). Class IV
PHA synthases, represented by Bacillus megaterium and Bacillus
cereus, are similar to Class III PHA synthases and possess two
subunits (PhaC and PhaR). Similar to Class I synthases, Class III and
IV PHA synthases preferentially polymerize scl-monomers (C3-C5).

PhaCs with broad substrate specificities are attractive
biocatalysts for PHA synthesis because they can naturally
copolymerize different monomers to produce polymers with
desirable physical properties. PhaC from Aeromonas caviae
(PhaCAc) can naturally synthesize poly(3HB-co-3-
hydroxyhexanoate) [P(3HB-co-3HHx)] from vegetable oils and
fatty acids (Kobayashi et al., 1994; Shimamura et al., 1994; Doi
et al., 1995; Tsuge et al., 2007a; Tsuge, 2016), distinguishing it from
other Class I PhaCs because it exhibits polymerization activities
toward 3HBmonomers and mcl 3HHxmonomers (Kobayashi et al.,
1994). Therefore, PhaCAc is a marketable biocatalyst to produce
P(3HB-co-3HHx) copolymers. The potential of PhaCAc has been
fortified through evolutionary engineering with the development of
the PhaCAcNSDG variant (Tsuge et al., 2007b). The PhaCAcNSDG
variant has amino acid substitutions of asparagine 149 by serine
(N149S) and aspartate 171 by glycine (D171G) and was shown to
have the ability to synthesize the P(3HB-co-3HHx) copolymer with
an enhanced 3HHx fraction compared to the wild-type enzyme, as
well as recognize and incorporate other monomer units, such as 3-
hydroxy-4-methylvalerate (3H4MV) (Tanadchangsaeng et al., 2009)
and 3-hydroxy-2-methylbutyrate (3H2MB) (Watanabe et al., 2015).
In addition, the molecular weight of P(3HB) synthesized by
PhaCAcNSDG was higher than that of the wild-type enzyme
(Tsuge et al., 2007b). These properties of PhaCAcNSDG variant
are desirable for the development of PHA as an industrial
biomaterial, making it a promising biocatalyst.

The partial crystal structures for several PhaCs have been solved
(Wittenborn et al., 2016; Chek et al., 2017; Kim et al., 2017; Chek
et al., 2020). The differences in the catalytic properties of these

enzymes can be possibly due to their different structures (Chek et al.,
2019). Although the crystal structure of PhaCAc has not yet been
solved, a basic understanding of the enzymatic capability of PhaCAc

could be elucidated using in silico homologymodeling (Harada et al.,
2021). Additionally, the use of structural information, namely the
comparison of the amino acid residues that constitute the substrate-
binding pocket of PhaCs, led to the generation of further engineered
PhaCAcs (Harada et al., 2021).

PhaCAc and its PhaCAcNSDG variant are biocatalysts that
produce PHA polymers with desirable material properties;
however, the number of other naturally occurring PhaCs with
broad substrate specificities are limited, hindering the
development and commercial mass production of desirable
PHAs. Thus, it is necessary to identify other novel PhaCs with
broad substrate specificities to enable industrial-scale production of
PHA copolymers to completely replace petroleum-based plastics.
PhaCs, which can synthesize high-molecular-weight PHA, is
essential to produce PHA as practical materials. The currently
available PhaCAc is highly sensitive to ethanol (Hiroe et al.,
2015), which is a metabolite of some bacteria, including
Escherichia coli, and functions as a chain transfer agent to
terminate polymerization reactions (Tsuge, 2016), resulting in the
synthesis of relatively low-molecular-weight PHA when using E. coli
as a production host. These low-molecular-weight PHA polymers
have less desirable physical properties than their high-molecular-
weight counterparts. Despite the unique ability of PhaCAc to
polymerize various monomers, the relatively low molecular
weight of PHA produced in recombinant E. coli using this
enzyme has room for improvement.

In this study, to explore novel PhaCs with high polymerization
ability and broad substrate specificity, four new PhaCs were
identified by a bioinformatics approach using the PhaCAc amino
acid sequence as a template for a basic local alignment search tool
(BLAST) and included PhaCs from the bacteria Ferrimonas marina,
Plesiomonas shigelloides, Shewanella pealeana, and Vibrio
metschnikovii. PhaC proteins were individually expressed in
E. coli LSBJ to synthesize P(3HB) and 3HB-based copolymers
containing 3HHx, 3H4MV, 3H2MB, and 3-hydroxypivalate
(3HPi) units. Furthermore, the effects of mutagenesis on
polymerization activity and substrate specificity in the highest-
performing PhaC enzyme were investigated.

Materials and methods

Bioinformatic analysis

A BLAST-protein (BLASTP) search was performed against the
protein sub-sections of the National Center for Biotechnology
Information (NCBI) and DNA Data Bank of Japan (DDBJ)
databases using the PhaCAc amino sequence as a template
(Accession No. BAA21815) (Altschul et al., 1990). PhaCs with
more than 85% similarity index and an identity index of 50%–
60% in the BLASTP search were targeted as potential PhaCs with
broad substrate specificities. Among the various PhaCs from
different organisms that satisfied the criteria in the BLASTP
search, four PhaCs were selected based on the diversity of the
N-terminal region for further evaluation. Phylogenetic analyses
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were performed using the maximum likelihood method in MEGA11
(Tamura et al., 2021) and the protein sequences were aligned using
ClustalW. This analysis involved six amino acid sequences: PhaCAc,
four newly selected PhaCs from BLASTP, and PhaC from Ralstonia
eutropha (WP_011615085) as an outgroup.

Bacterial strain and plasmid

Four PhaC amino acid sequences were chosen based on the
BLASTP search results. These phaC genes were chemically
synthesized with optimized codon usage in E. coli by Eurofins
Genomics Co. Ltd. (Tokyo, Japan) for plasmid construction and
evaluation. E. coli LSBJ, a fadB fadJ double-deletion strain of E. coli
LS5218 [fadR601, atoC (Con)] (Tappel et al., 2012a), was used as the
host strain for PHA biosynthesis. This strain is an ideal host for non-
native PHA production because of its ability to take up a wide variety
of substrates to be incorporated into PHA homo- and copolymers,
and bench-level scale-up methodologies available for overall
production (Tappel et al., 2012b; Levine et al., 2016; Pinto et al.,
2016; Fadzil et al., 2018; Furutate et al., 2021; Scheel et al., 2021). A
broad-host-range plasmid pBBR1MCS-2 (Kovach et al., 1995)
harboring the genes encoding the PhaCs to be evaluated, the lac
promoter region, the (R)-specific enoyl-CoA hydratase gene from A.
caviae (phaJAc), the 3-ketothiolase gene (phaA) from Ralstonia
eutropha H16, and the acetoacetyl-CoA reductase gene (phaB)
from R. eutropha H16, termed pBBR1-phaCsABReJAc, was used
for the expression of PhaCs (Supplementary Figure S1). For
phaAB expression, the R. eutropha pha promoter and terminator
regions were located upstream and downstream of their genes,
respectively. To enhance the supply of 3HHx, 3H4MV, and
3H2MB monomers, the plasmid pTTQ-PCT (Furutate et al.,
2017) containing the propionyl-CoA transferase (PCT) gene from
Megasphaera elsdenii (pct) (Taguchi et al., 2008) was introduced into
the E. coli LSBJ strain (Supplementary Figure S1).

Cell culture conditions

Initially, recombinant E. coli LSBJ was incubated overnight at
37°C with reciprocal shaking (160 rpm) in a 50 mL baffle flask
containing 20 mL of lysogeny broth (LB) medium as a seed
culture. The LB medium contained 10 g/L Bacto-tryptone (Difco
Laboratories, Detroit, MI, United States), 5 g/L Bacto-yeast extract
(Difco Laboratories), and 10 g/L NaCl. For plasmid maintenance
throughout the initial incubation period, 50 mg/L of kanamycin and
50 mg/L of carbenicillin were added.

Inoculations for PHA production were started with 5 mL of seed
culture added to 500 mL shake flasks containing 95 mL of modified
M9 medium (Furutate et al., 2021) (final volume:100 mL and 5%
inoculum). The modified M9 medium comprised of 17.1 g/L
Na2HPO4·12H2O, 3 g/L KH2PO4, 0.5 g/L NaCl, 2 mL of 1 M
MgSO4·7H2O, 0.1 mL of 1 M CaCl2, and 2.5 g/L Bacto-yeast
extract. For plasmid maintenance during PHA production,
50 mg/L of kanamycin and 50 mg/L of carbenicillin were added.
Additionally, 1 mM isopropyl-β-D-thiogalactopyranoside (IPTG)
was used to induce phaJ and pct gene expression. The P(3HB)
homopolymer was synthesized from 20 g/L glucose, which was

added at the beginning of the culture at 30°C for 72 h. For the
synthesis of 3HB-based copolymers, the total incubation time was
set to 76 h, in which an initial step for 4 h at 30°C with reciprocal
shaking (130 rpm) was performed before the addition of IPTG,
precursors, and glucose, and further cultured for 72 h. Hexanoic
acid, 4-methylvaleric acid, trans-2-methylbut-2-enoic acid (tiglic
acid), and 2,2-dimethyl-3-hydroxypropionic acid (3-hydroxypivalic
acid), which had previously been converted to their respective
sodium salts, were used as precursors for the 3HHx, 3H4MV,
3H2MB, and 3HPi units, respectively (Füchtenbusch et al., 1998;
Tanadchangsaeng et al., 2009; Watanabe et al., 2015). These
precursors are known to inhibit cell growth, and a high
concentration of glucose can repress phaJ and pct genes,
otherwise induced by IPTG. Thus, lower concentrations of
glucose and the precursors were added intermittently to the
culture medium (at 4, 28, and 52 h). A total of 7.5 g/L glucose
(2.5 g/L each time) and 0.6 g/L precursors (0.2 g/L each time) were
added throughout the main incubation period. Finally, cells were
harvested by centrifugation and lyophilized for further analysis. The
relationship between the precursors used and biosynthesized
polymers is shown in Figure 1.

Site-directed mutagenesis

To construct mutated phaCPs, a substitution (N175G) was
introduced into the gene by overlap extension PCR (Supplementary
Figure S2) (Warrens et al., 1997). The primers for amino acid
substitution were designed and chemically synthesized as follows:5′-
GGCGGCCGCTCTAGAACTAGTGGATCCCGGGGCAA-3′ and
5′- CACTAAGTTTTGACCGCCGTTCTCCAAGGT-3′ for an
amplification of the 1.4-kb fragment, 5′-GCGCTTGGAGGCCGG
CACCG-3′ and 5′- GTGACCTTGGAGAACGGCGGTCAAAAC
TTA-3′ for an amplification of the 2.3-kb fragment. The underlined
sequence in the primer indicates the codon used to replace Asn175
(AAT) with Gly (GGC). The resulting plasmid carrying the mutated
gene was introduced into E. coli LSBJ along with pTTQ-PCT for PHA
biosynthesis analysis.

Analysis of PHA

The dry cell weight was gravimetrically measured after
centrifuging the culture medium at 6,000 × g for 10 min at room
temperature three times (once for collecting the cells, discarding the
medium, and twice to wash away the remaining salts with water) and
lyophilized for approximately 3 days.

PHA content, PHA yield, and 3HAmonomer composition were
determined by gas chromatography (GC) using a Shimadzu GC-
2014s instrument (Shimadzu, Kyoto, Japan) with a flame ionization
detector. Lyophilized cells were methanolyzed to convert PHA into
3HA-methyl ester constituents in the presence of 15% sulfuric acid
for GC analysis. The methanolysis reaction was carried out at 100°C
for 140 min, except for 3H2MB- and 3HPi-containing polymers, for
which the reaction time was set to 8 h to increase the reaction yield.
The methanolyzed samples were allowed to cool to room
temperature, and 1 mL of deionized water was added to separate
the polar components from the non-polar components. The non-
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polar fraction containing 3HA-methyl ester was filtered, and an
equal volume of chloroform solution containing 0.1% (w/v) methyl-
n-octanoate as an internal standard was added to prepare the final
sample for GC analysis. The samples were injected through the GC
capillary column InertCap 1 (30 m × 0.25 mm, GL Science, Tokyo,
Japan). The column temperature was initially set at 90°C for 2 min,
increased to 110°C at a rate of 5°C/min, and then increased to 280°C
at a rate of 20°C/min. The signal peak areas obtained were calculated
for the total PHA content and 3HA monomer composition.

The molecular weight of P(3HB) synthesized using various
PhaC enzymes was determined by gel permeation
chromatography (GPC) using a Shimadzu Nexera GPC system
with an RI-504 refractive index detector (Shodex, Tokyo, Japan)
equipped with two KF-406 LHQ joint-columns (at 40°C, Shodex,
Tokyo, Japan). Chloroform was used as the mobile phase at a flow
rate of 0.3 mL/min. The sample concentration and injection volume
were set at 1 mg/mL and 10 μL, respectively. Polystyrene standards
with low polydispersity were also analyzed as reference standards to
construct a calibration curve.

Results and discussion

Identification of new PhaC enzymes using
BLAST

A BLASTP search was performed against the protein sub-
sections of the NCBI and DDBJ databases using the amino acid
sequence of PhaCAc, the first enzyme characterized by the natural
copolymerization of 3HB and 3HHx monomers to PHA
copolymers. Four PhaCs from the bacteria Ferrimonas marina
(Katsuta et al., 2005), Plesiomonas shigelloides (Ferguson and

Henderson 1947; Janda et al., 2016), Shewanella pealeana
(Leonardo et al., 1999), and Vibrio metschnikovii (Lee et al.,
1978) were selected for further evaluation, because of the
diversity of the N-terminal region such as positions 149 and
171 in PhaCAc. These PhaCs were identified as Class I PHA
synthases, which have a high potential for synthesizing scl-mcl
PHA copolymers in a manner similar to PhaCAc, based on their
homology. Although these bacteria were discovered long ago, their
ability to produce PHA has not yet been studied.

A comparison with the amino acid sequence of PhaCAc

revealed that the four PhaC enzymes identified in this study
shared 85%–91% similarity and approximately 55% identity
with PhaCAc (Table 1). Multiple sequence alignment of PhaCs
is shown in Figure 2. All new PhaCs have a PhaC box sequence at
the active site, which is typically described as G-X-C-X-G-G
(where X is an arbitrary amino acid), and cysteine (Cys319 in
PhaCAc) is the active center (Nambu et al., 2020). In PhaCAc,
the active sites Cys319, Asp475, and His503 have been proposed to
form a catalytic triad (Tsuge et al., 2007a), which are all conserved
in the newly identified PhaC enzymes. In contrast, PhaC from P.
shigelloides has a primary sequence of approximately 30 amino
acid residues greater than that of others and exhibits relatively low
sequence homology in the C-terminal region. The phylogenetic
tree shown in Figure 3 indicates that PhaC from F. marina is
closely related to PhaCAc, whereas PhaC enzymes from S. pealeana
and V. metchniskovii are evolutionarily distinct. PhaC from P.
shigelloides is neither closely related nor evolutionarily distant
from PhaCAc. To the best of our knowledge, no study has explored
PhaC enzymes isolated from these bacteria for PHA production.
Thus, genes encoding the four PhaC enzymes were chemically
synthesized with optimized codon usage in E. coli. The DNA
sequences are included in Supplementary Information.

FIGURE 1
Chemical structure of PHA copolymers and precursors.
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TABLE 1 Four PhaCs characterized in this study.

PhaC from Abbreviation Accession Protein size (amino acids) Homology to PhaCAc

Identity Similarity

Ferrimonas marina PhaCFm WP_067661665 592 58% (341/585) 91% (534/585)

Plesiomonas shigelloides PhaCPs WP_116546999 623 54% (324/595) 86% (512/595)

Shewanella pealeana PhaCSp WP_012154995 584 53% (303/564) 88% (499/564)

Vibrio metschnikovii PhaCVm WP_154168902 590 52% (306/580) 85% (494/580)

PhaCAc: PhaC from Aeromonas caviae (Accession BAA21815) with a protein size of 594 aa.

FIGURE 2
Multiple sequence alignment of PHA synthases (PhaCs) from Aeromonas caviae, Ferrimonas marina, Plesiomonas shigelloides, Shewanella
pealeana, and Vibrio metschnikovii. The active site residues of PhaCAc, cysteine (C319), aspartic acid (D475), and histidine (H503) are highlighted in blue. For
the PhaCAcNSDG variant, the positions of two amino acid substitutions (N149 replaced with S and D171 replaced with G) are highlighted in orange.

FIGURE 3
A phylogenetic tree of PhaCs rooted by outgroup (PhaC from Ralstonia eutrophus, WP_011615085). Sequences were aligned using ClustalW, and
the phylogenetic tree was generated using MEGA11 software. PhaCs from Aeromonas caviae (BAA21815), Ferrimonas marina (WP_067661665),
Plesiomonas shigelloides (WP_116546999), Shewanella pealeana (WP_012154995), and Vibrio metschnikovii (WP_154168902) were used. Bootstrap
values (expressed as percentages of 1,000 replications) are shown at the branch points. Scale bar = 0.2 substitution per amino acid position.
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P(3HB) synthesis in recombinant E. coli
expressing PhaC enzymes

The biosynthesis of P(3HB) from 20 g/L glucose using one of
the four PhaC enzymes is summarized in Table 2. P(3HB)
accumulation ranging from 38.4 wt% to 54.2 wt% was achieved
using the new PhaC enzymes, which was comparable to PhaCAc

and its variant PhaCAcNSDG. Thus, all newly identified PhaC
enzymes showed great potential as biocatalysts for P(3HB)
production. However, PhaCs from P. shigelloides (PhaCPs)
showed the highest P(3HB) accumulation among the wild-type
PhaCs tested.

The molecular weight is a crucial aspect in determining the
suitability of a material for various commercial uses (Sudesh et al.,
2000). The weight-average molecular weight (Mw) is more closely
related to material properties than the number-average molecular
weight (Mn). For PHA, ultrahigh molecular weight polymers can
form strong fibers (Tsuge, 2016), thus meeting the requirements
for practical use. In addition, a low polydispersity index (PDI)
(Tsuge, 2016) also plays a significant role in determining the
suitability of PHA for specific applications. However, not all PhaC
enzymes can synthesize PHAs with high Mw and low PDI. In this
study, PhaCPs synthesized P(3HB) with an ultrahigh Mw, which
exceeded 3 × 106, with a relatively low PDI below 1.5 (Table 2).
Moreover, the other two identified PhaC enzymes from F. marina
and S. pealeana could also synthesize P(3HB) with Mw of
approximately 2 × 106 with PDIs ranging from 1.3 to 1.5.
PhaCVm from V. metschnikovii proved to be an exception, with
PDI >2.5. The currently available PhaCAc is highly sensitive to
ethanol (Hiroe et al., 2015), which is a metabolite of some bacteria,
including E. coli, and functions as a chain transfer agent to
terminate polymerization reactions (Tsuge, 2016), resulting in
the synthesis of relatively low-molecular-weight PHA. The new
PhaCs reported in this study may be less sensitive toward ethanol,
thereby producing PHA with high Mw and low PDI. These new
PhaC enzymes, especially PhaCPs, exhibited superiorMw and PDI

values compared with PhaCAc and its NSDG variant, which could
benefit PHA processing and material properties.

PHA copolymer synthesis by recombinant
E. coli expressing PhaC enzymes

The new PhaC enzymes were evaluated for their substrate
specificities alongside PhaCAc and its NSDG variant for
incorporating 3HHx, 3H4MV, 3H2MB, and 3HPi monomers.
Biosynthesis was performed using four precursors (hexanoic acid, 4-
methylvaleric acid, tiglic acid, and 3-hydroxypivalic acid) in the
presence of glucose (Figure 1). These precursors are toxic to cells,
thus inhibiting cell growth and subsequently lowering PHA
accumulation in bacteria. As PHA production is associated with cell
growth (Sudesh et al., 2000), it is imperative to eliminate or reduce the
risk of toxicity induced by such precursors. Therefore, the precursors
were introduced into the culture medium after 4 h, once substantial cell
growth was achieved, mainly for better tolerance (Furutate et al., 2021).
Meanwhile, a high glucose concentration can cause catabolic repression
of phaJ and pct genes induced by IPTG (Furutate et al., 2021); thus, the
glucose concentration was maintained at a minimum to promote cell
growth only. Glucose and its precursors were intermittently added to
allow for better uptake of the second monomer, with no or fewer
unanticipated effects on the cells. The details of the biosynthesis results
are summarized in Tables 3–6.

All PhaCs, except PhaC from S. pealeana (PhaCSp), were able to
incorporate all targeted monomers (3HHx, 3H4MV, 3H2MB, and
3HPi). PhaCSp copolymerized 3HB with 3HHx or 3HPi, but not
3H4MV or 3H2MB. The number of PhaC enzymes with broad
substrate specificity is scarce; thus, the new PhaC enzymes reported
in this study are highly intriguing for future studies. Furthermore, PHAs
containing α-carbon methylated units are potentially attractive bio-
based materials (Füchtenbusch et al., 1998; Furutate et al., 2021); thus,
PhaCs with the ability to polymerize 3H2MB and 3HPi are of great
interest. PhaCPs demonstrated superior performance in the

TABLE 2 Biosynthesis of P(3HB) from glucose by E. coli LSBJ expressing various PhaCs.

PhaC Dry cell wt. (g/L) P(3HB) content (wt%) P(3HB) yield (g/L) Molecular weight

Mw (×105) PDI

A. caviae 2.66 ± 0.02 39.8 ± 1.4 1.06 ± 0.04 8.5 ± 0.4 2.58 ± 0.36

A. caviae 3.83 ± 0.04 60.1 ± 4.3 2.30 ± 0.15 13.2 ± 0.5 2.45 ± 0.17

NSDG variant

F. marina 2.77 ± 0.04 42.3 ± 1.1 1.17 ± 0.04 24.0 ± 3.0 1.39 ± 0.12

P. shigelloides 3.31 ± 0.02 54.2 ± 1.0 1.80 ± 0.03 34.4 ± 2.7 1.46 ± 0.13

P. shigelloides 3.59 ± 0.07 63.5 ± 1.4 2.28 ± 0.07 31.8 ± 5.9 1.37 ± 0.04

NG variant

S. pealeana 2.39 ± 0.02 38.4 ± 5.0 0.92 ± 0.13 22.6 ± 1.6 1.54 ± 0.25

V. metschnikovii 3.08 ± 0.10 49.0 ± 2.2 1.51 ± 0.12 19.7 ± 1.5 2.62 ± 0.10

E. coli LSBJ harboring pBBR1-phaCsABReJAc was incubated in themodifiedM9medium containing 20 g/L glucose as a carbon source. The values of dry cell weight, PHA content, andmolecular

weight were the averages of three independent experiments. P(3HB): poly(3-hydroxybutyrate). The NSDG variant of A. caviae PhaC had a double mutation of N149S and D171G. The NG

variant of P. shigelloides PhaC had a single mutation of N175G. PDI is polydispersity index (Mw/Mn).
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polymerization of 3HPi to PhaCAc. Additionally, all PhaCPs-expressing
strains showed higher PHA content than PhaCAc-expressing strains.
Therefore, the potential of PhaCPs was further explored using site-
directed mutagenesis.

Generation and evaluation of PhaCPsNG
variant

In vitro evolution of PhaC is a powerful approach for
enhancing the productivity and quality of PHA (Kichise et al.,
2002; Taguchi and Doi, 2004). For instance, PhaCAcNSDG, a
variant of PhaCAc, exhibits enhanced performance (such as

production yield and substrate specificity) compared to that of
the wild-type enzyme (Tsuge et al., 2007b). In addition, various
studies have proven the efficacy of PhaC engineering in PHA
production towards the formation of super biocatalysts for tailor-
made PHAs (Taguchi and Doi, 2004; Nomura and Taguchi,
2007). Therefore, PhaCPs, which exhibited the best
performance among the new PhaCs, were selected for site-
directed mutagenesis to study their potential positive effects
on PHA production. Considering that the double mutation of
PhaCAcNSDG, amino acid substitutions of N149S and D171G
drastically enhanced the performance of the enzyme (Tsuge et al.,
2007b; Harada et al., 2021), similar efforts were adopted to
generate a PhaCPs variant. According to the alignment

TABLE 3 Biosynthesis of P (3HB-co-3HHx) by E. coli LSBJ expressing various PhaCs from glucose and hexanoic acid.

PhaC Dry cell wt. (g/L) PHA content (wt%) PHA yield (g/L) PHA composition (mol%)

3HB 3HHx

A. caviae 1.93 ± 0.04 16.9 ± 0.8 0.30 ± 0.01 86.7 ± 0.8 13.3 ± 0.8

A. caviae 2.12 ± 0.02 25.2 ± 1.3 0.51 ± 0.03 78.2 ± 1.4 21.8 ± 1.4

NSDG variant

F. marina 1.92 ± 0.03 23.6 ± 1.2 0.45 ± 0.02 90.5 ± 1.0 9.5 ± 1.0

P. shigelloides 1.78 ± 0.04 19.1 ± 0.3 0.34 ± 0.01 89.1 ± 1.2 10.9 ± 1.2

P. shigelloides 1.80 ± 0.05 11.9 ± 0.7 0.21 ± 0.12 90.0 ± 0.2 10.0 ± 0.2

NG variant

S. pealeana 1.68 ± 0.06 12.2 ± 0.5 0.20 ± 0.01 89.5 ± 0.5 10.5 ± 0.5

V. metschnikovii 1.82 ± 0.01 18.7 ± 0.9 0.34 ± 0.02 96.0 ± 0.2 4.0 ± 0.2

E. coli LSBJ harboring pBBR1-phaCsABReJAc and pTTQ-PCT was incubated in the modified M9 containing 7.5 g/L glucose (2.5 g/L × 3 times) and 0.6 g/L hexanoic acid (0.2 g/L × 3 times),

which were added at 4, 28, and 52 h. The values of dry cell weight, PHA content, and PHA composition were the averages of three independent experiments. The NSDG variant of A. caviae

PhaC had a double mutation of N149S and D171G. The NG variant of P. shigelloides PhaC had a single mutation of N175G. 3HB: 3-hydroxybutyrate; 3HHx: 3-hydroxyhexanoate.

TABLE 4 Biosynthesis of P (3HB-co-3H4MV) by E. coli LSBJ expressing various PhaCs from glucose and 4-methylvaleric acid.

PhaC Dry cell wt. (g/L) PHA content (wt%) PHA yield (g/L) PHA composition (mol%)

3HB 3H4MV

A. caviae 1.66 ± 0.04 17.8 ± 1.2 0.30 ± 0.03 95.4 ± 0.3 4.6 ± 0.3

A. caviae 1.68 ± 0.01 18.0 ± 1.4 0.30 ± 0.02 93.7 ± 0.5 6.3 ± 0.5

NSDG variant

F. marina 1.92 ± 0.02 27.0 ± 2.9 0.52 ± 0.06 98.5 ± 0.1 1.5 ± 0.1

P. shigelloides 1.78 ± 0.03 20.9 ± 0.8 0.37 ± 0.01 97.5 ± 0.2 2.5 ± 0.2

P. shigelloides 1.86 ± 0.01 16.6 ± 4.9 0.31 ± 0.10 96.3 ± 0.1 3.7 ± 0.1

NG variant

S. pealeana 1.69 ± 0.01 18.4 ± 1.2 0.31 ± 0.02 100 ND

V. metschnikovii 1.85 ± 0.02 20.7 ± 2.1 0.38 ± 0.04 98.1 ± 0.4 1.9 ± 0.4

E. coli LSBJ harboring pBBR1-phaCsABReJAc and pTTQ-PCT was incubated in the modified M9 containing 7.5 g/L glucose (2.5 g/L × 3 times) and 0.6 g/L 4-methylvaleric acid (0.2 g/L ×

3 times), which were added at 4, 28, and 52 h. The values of dry cell weight, PHA content, and PHA composition were the averages of three independent experiments. The NSDG variant of A.

caviae PhaC had a double mutation of N149S and D171G. The NG variant of P. shigelloides PhaC had a single mutation of N175G. 3HB: 3-hydroxybutyrate; 3H4MV: 3-hydroxy-4-

methylvalerate.
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(Figure 2), PhaCPs naturally contain a serine residue at the
corresponding position of 149 in PhaCAcNSDG. Thus, a single
amino acid substitution was performed in PhaCPs in which
asparagine 175 was changed to glycine (N175G). The resultant
variant was termed PhaCPsNG, and its PHA production ability
was examined.

Interestingly, PhaCPsNG showed enhanced P(3HB)
synthesis, while maintaining a high molecular weight
(Table 2). PhaCPsNG exhibited enhanced activity for the
incorporation of the α-methylated monomer 3H2MB
compared with the parent enzyme and PhaCAcNSDG
(Table 5). This indicates the potential of PhaCPsNG to surpass
the currently best-performing enzyme (PhaCAcNSDG) for the

incorporation of the 3H2MB monomer. Moreover, PhaCPsNG
was shown to have a better ability to incorporate 3H4MV and
3HPi than the parent enzyme but less so than PhaCAcNSDG
(Table 4 and Table 6). Finally, PhaCPsNG exhibited an almost
similar level of 3HHx incorporation as the parent enzyme, which
was inferior to PhaCAcNSDG (Table 3).

Conclusion

In conclusion, four Class I PhaC enzymes from different
bacteria were identified using BLASTP and were characterized
for PHA production. To the best of our knowledge, this is the

TABLE 5 Biosynthesis of P (3HB-co-3H2MB) by E. coli LSBJ expressing various PhaCs from glucose and tiglic acid.

PhaC Dry cell wt. (g/L) PHA cont. (wt%) PHA yield (g/L) PHA composition (mol%)

3HB 3H2MB

A. caviae 2.02 ± 0.04 23.1 ± 0.6 0.47 ± 0.02 95.7 ± 0.1 4.3 ± 0.1

A. caviae 2.33 ± 0.03 29.5 ± 2.6 0.69 ± 0.06 95.1 ± 0.2 4.9 ± 0.2

NSDG variant

F. marina 2.30 ± 0.08 31.9 ± 1.2 0.74 ± 0.05 99.3 ± 0.0 0.7 ± 0.0

P. shigelloides 2.21 ± 0.08 29.5 ± 2.6 0.76 ± 0.05 97.9 ± 0.2 2.1 ± 0.2

P. shigelloides 2.24 ± 0.03 30.0 ± 1.2 0.67 ± 0.03 94.6 ± 0.1 5.4 ± 0.1

NG variant

S. pealeana 1.88 ± 0.06 20.3 ± 0.3 0.38 ± 0.01 100 ND

V. metschnikovii 2.31 ± 0.03 30.4 ± 2.7 0.72 ± 0.01 99.5 ± 0.0 0.5 ± 0.0

E. coli LSBJ harboring pBBR1-phaCsABReJAc and pTTQ-PCT was cultured in the modified M9medium containing 7.5 g/L glucose (2.5 g/L × 3 times) and 0.6 g/L tiglic acid (0.2 g/L × 3 times),

which were added at 4, 28, and 52 h. The values of dry cell weight, PHA content, and PHA composition were the averages of three independent experiments. The NSDG variant of A. caviae

PhaC had a double mutation of N149S and D171G. The NG variant of P. shigelloides PhaC had a single mutation of N175G. 3HB: 3-hydroxybutyrate; 3H2MB: 3-hydroxy-2-methylbutyrate.

TABLE 6 Biosynthesis of P (3HB-co-3HPi) by E. coli LSBJ expressing various PhaCs from glucose and 3-hydoxypivalic acid.

PhaC Dry cell wt. (g/L) PHA cont. (wt%) PHA yield (g/L) PHA composition (mol%)

3HB 3HPi

A. caviae 2.01 ± 0.03 16.3 ± 1.4 0.33 ± 0.03 94.2 ± 0.6 5.8 ± 0.6

A. caviae 2.07 ± 005 19.4 ± 1.2 0.40 ± 0.03 79.9 ± 1.1 20.1 ± 1.1

NSDG variant

F. marina 2.22 ± 0.04 23.1 ± 0.3 0.51 ± 0.01 97.5 ± 0.6 2.5 ± 0.6

P. shigelloides 1.98 ± 0.05 16.7 ± 1.3 0.33 ± 0.03 89.8 ± 0.4 10.1 ± 0.4

P. shigelloides 1.91 ± 0.22 15.0 ± 2.7 0.29 ± 0.06 88.4 ± 0.5 11.6 ± 0.5

NG variant

S. pealeana 1.80 ± 0.08 9.7 ± 0.1 0.17 ± 0.01 97.9 ± 0.4 2.1 ± 0.4

V. metschnikovii 2.15 ± 0.03 24.2 ± 0.9 0.52 ± 0.02 97.2 ± 0.2 2.8 ± 0.2

E. coli LSBJ harboring pBBR1-phaCsABReJAc and pTTQ-PCT was incubated in the modified M9 medium containing 7.5 g/L glucose (2.5 g/L × 3 times) + 0.6 g/L 3-hydroxypivalic acid (0.2 g/

L × 3 times), which were added at 4, 28, and 52 h. The values of dry cell weight, PHA content, and PHA composition were the averages of three independent experiments. The NSDG variant of

A. caviae PhaC had a double mutation of N149S and D171G. The NG variant of P. shigelloides PhaC had a single mutation of N175G. 3HB: 3-hydroxybutyrate; 3HPi: 3-hydroxypivalate.
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first report to characterize PhaC enzymes from F. marina, P.
shigelloides, S. pealeana, and V. metschnikovii. These PhaCs
exhibited a relatively high potential for polymerizing P(3HB) in
recombinant E. coli. PhaC enzymes identified in this study, with
the exception of PhaCSp from S. pealeana, were able to
incorporate all the targeted monomers, namely 3HHx,
3H4MV, α-carbon methylated 3H2MB, and α-carbon
dimethylated 3HPi. Among the four new PhaCs, PhaCPs

from P. shigelloides displayed the best performance; thus, we
attempted to further improve their attributes through protein
engineering. The resultant variant PhaCPsNG exhibited
superior capability in polymerizing the 3H2MB monomer
compared to PhaCAc and its NSDG variant. Furthermore,
PhaCPsNG showed the enhanced synthesis of P(3HB) with
ultrahigh molecular weight and low PDI. Finally, these newly
identified PhaC enzymes show great versatility, suggesting their
potential as workhorse enzymes for the industrial-scale
production of 3HB-based copolymers.
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